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The uniform electron gas (UEG) at finite temperature is of high current interest due to its key
relevance for many applications including dense plasmas and laser excited solids. In particular,
density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently,
the only existing first-principle results had been obtained for N = 33 electrons with restricted path
integral Monte Carlo (RPIMC), for low to moderate density, rs = r/aB & 1. These data have been
complemented by configuration path integral Monte Carlo (CPIMC) simulations for rs ≤ 1 that
substantially deviate from RPIMC towards smaller rs and low temperature. In this work, we present
results from an independent third method—the recently developed permutation blocking path integral
Monte Carlo (PB-PIMC) approach [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] which we
extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density
range down to half the Fermi temperature (θ = kBT/EF = 0.5) and, therefore, to compare our results
to both aforementioned methods. While we find excellent agreement with CPIMC, where results are
available, we observe deviations from RPIMC that are beyond the statistical errors and increase with
density. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936145]

I. INTRODUCTION

Over the last years, there has been an increasing interest
in the thermodynamic properties of degenerate electrons in
the quantum mechanical regime. Such information is vital
for the description of highly compressed matter,1–3 including
plasmas in laser fusion experiments4–9 and in compact stars
and planet cores.10–12 In addition, the widespread density
functional theory (DFT) approach crucially depends on the
availability of accurate quantum Monte Carlo (QMC) data
for the exchange correlation energy of the uniform electron
gas (UEG), hitherto at zero temperature.13–17 However, in
recent years more and more applications with highly excited
electrons have emerged, which require to go beyond ground
state DFT. Hence, there exists a high current need for an ab
initio thermodynamic description of the UEG at finite T .

The widely used path integral Monte Carlo (PIMC)
method, e.g., Ref. 18, is a powerful tool for the ab initio
simulation of both distinguishable particles (often referred to
as “boltzmannons,” e.g., Refs. 19 and 20) and bosons and
allows for quasi exact results for up to N ∼ 103 particles at
finite temperature.21,22 However, the application of PIMC to
fermions is hampered by the notorious fermion sign problem
(FSP), e.g., Ref. 23, which might render even small systems
unfeasible for state of the art QMC methods and is known
to be NP-hard for a given representation.24 With increasing
degeneracy effects, permutation cycles with opposite signs
nearly cancel each other and the statistical uncertainty grows
exponentially. Hence, standard PIMC cannot provide the

a)Electronic mail: dornheim@theo-physik.uni-kiel.de

desired results without further improvement. Brown et al.25

have presented the first finite temperature results for the UEG
down to rs = 1 using restricted PIMC (RPIMC),26 a popular
approach to extend PIMC to higher degeneracy, that is, lower
temperature and higher density. To avoid the FSP, this method
requires explicit knowledge of the nodal surface of the density
matrix, which is, in general, unknown and one has to rely
on approximations. The use of the ideal nodes for a nonideal
system appears to be problematic, as has been shown for
the case of hydrogen.27,28 In addition, it has been shown
analytically that RPIMC does not reproduce the exact limit
of the ideal Fermi gas (rs → 0).29,30 Therefore, the quality of
the RPIMC data remains unclear. Indeed, recent configuration
PIMC (CPIMC)31,32 results for the highly degenerate UEG
by Schoof et al.33 have revealed a significant disagreement
between the two methods at small rs and low temperature.
While the first application of a novel density matrix QMC
(DMQMC) approach34 to the UEG for four particles reports
excellent agreement with CPIMC,35 additional simulations
of larger systems are needed to resolve the discrepancy
towards RPIMC. For completeness, we mention that QMC
results by Filinov et al.36 cannot be used as a benchmark
due to the different treatment of the homogeneous positive
background and a different account of the long-range Coulomb
interaction37,38 than the usual Ewald summation. In this
situation, an independent third first-principle method, capable
to treat warm dense matter (WDM) parameters, would be
highly desirable.

In this work we, therefore, investigate the applicability
of the recently developed permutation blocking PIMC (PB-
PIMC) approach39 to the uniform electron gas. We note

0021-9606/2015/143(20)/204101/8/$30.00 143, 204101-1 © 2015 AIP Publishing LLC
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that PB-PIMC is essentially standard PIMC but combines
two well known concepts: (1) antisymmetric imaginary time
propagators,40–42 i.e., determinants, between all “time slices”
and (2) a higher order factorization of the density matrix.43–46

This means that each particle is represented by a “path”
consisting of 3 × P coordinates (“beads”), where P is the
number of high-temperature factors (or propagators). (3)
To efficiently sample this more complicated configuration
space, PB-PIMC uses a novel Monte Carlo update scheme
which combines the worm algorithm idea21,22 with the
temporary construction of artificial trajectories, cf. Ref. 39.
The application of determinants leads to a relieve of the
FSP by an effective cancellation of positive and negative
terms in the partition function, which belong to permutation
cycles of different parity in standard PIMC. However, since
the blocking is most effective if the thermal wavelength of a
single propagator is of the same order as the mean interparticle
distance, it is crucial to employ a higher order factorization
scheme which allows for sufficient accuracy with only a few
time slices. Therefore, it is the combination of the above three
ingredients that allows us to significantly extend the range of
applicability of standard PIMC towards stronger degeneracy,
see also Fig. 1.

The details of our PB-PIMC scheme, for the UEG, are
described in Section II B, after a brief introduction of the
employed model in Section II A. In Section III A, we present
our simulation results starting with a detailed investigation of
the convergence behavior with respect to the factorization of
the density matrix. We proceed by simulating N = 33 spin-
polarized electrons, which is a commonly used model system
of the UEG, see Section III B. Interestingly, our PB-PIMC
approach allows us to obtain accurate results over the entire
density range and, therefore, to make a comparison with the
pre-existing RPIMC and CPIMC results for the UEG. Finally,
in Section III C we investigate the applicability of our method
with respect to the temperature. We find that PB-PIMC,
in combination with CPIMC, allows for the simulation of

FIG. 1. Density-temperature plain around the warm dense matter (WDM)
regime. PB-PIMC significantly extends the range of applicability of standard
PIMC (qualitatively shown by the red dashed line, see also Figs. 5 and 7)
towards lower temperature and higher density while CPIMC is applicable
to the highly degenerate and weakly nonideal UEG.33 RPIMC data25 are
available for rs ≥ 1. The orange area marks the conditions of WDM and
inertial confinement fusion (ICF).5

the UEG over a broad parameter range, which includes the
physically most interesting regime of warm dense matter, cf.
Fig. 1.

II. THEORY

A. Model Hamiltonian

The uniform electron gas, often referred to as “Jellium,”
is a model description of Coulomb interacting electrons
with a neutralizing background of positive charges which
are uncorrelated and homogeneously distributed. To describe
an infinite system based on a finite number of particles, one
implements periodic boundary conditions and includes the
interaction of the N electrons in the main cell with all their
images via Ewald summation. Following the notation from
Ref. 47, we express the Hamiltonian of the N electron UEG
(in atomic units) as

Ĥ = −1
2

N
i=1

∇2
i +

1
2

N
i=1

N
j,i

e2
Ψ(ri,r j) + Ne2

2
ξ,

with ξ being the Madelung constant and the periodic Ewald
pair potential

Ψ(r,s) = 1
V


G,0

e−π
2G2/κ2

e2πiG(r−s)

πG2

− π

κ2V
+


R

erfc(κ |r − s + R|)
|r − s + R| . (1)

Here, R = n1L and G = n2/L denote the real and reciprocal
space lattice vectors, respectively, with the box length L and
volume V = L3. The specific choice of the Ewald parameter
κ does not influence the outcome of Eq. (1) and, therefore,
can be used to optimize the convergence. PB-PIMC requires
explicit knowledge of all forces in the system, and the force
between the electrons i and j can be obtained from

Fi j = −∇iΨ(ri,r j). (2)

The evaluation of Eq. (2) is relatively straightforward and we
find

Fi j =
2
V


G,0

(
G
G2 sin

�
2πG(ri − r j)� e−π

2G2/κ2
)

+


R

ri − r j + R
α3

(
erfc(κα) + 2κα

√
π

e−κ
2α2

)
,

with the definition α = |ri − r j + R|.

B. Simulation method

To calculate canonical expectation values with the PB-
PIMC approach,39 we write the partition function in coordinate
representation as

Z =
1

N!


σ∈SN

sgn(σ)


dR ⟨R|e−βĤ |π̂σR⟩, (3)

with R = r1, . . . ,rN containing the coordinates of all electrons,
π̂σ denoting the exchange operator which corresponds to
a specific element σ from the permutation group SN and
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β = 1/kBT . For the next step, we make use of the usual group
property of the density matrix in Eq. (3) and arrive at an
expression for Z which requires the evaluation of P density
matrices at P times higher temperature. However, instead of
the primitive approximation e−ϵĤ ≈ e−ϵK̂e−ϵV̂ , with ϵ = β/P
being the imaginary time step of a single propagator and the
kinetic and potential contributions to the Hamiltonian K̂ and
V̂ , respectively, we use the fourth order factorization,44,45

e−ϵĤ ≈ e−v1ϵŴa1e−t1ϵK̂e−v2ϵŴ1−2a1e−t1ϵK̂e−v1ϵŴa1e−2t0ϵK̂ . (4)

The Ŵ operators in Eq. (4) denote a modified potential, which
combines V̂ with double commutator terms of the form

[[V̂ , K̂],V̂ ] = ~
2

m

N
i=1

|Fi |2 (5)

and, therefore, requires the evaluation of all forces on each
particle, Fi = −∇iV (R). Our final result for the partition
function is given by

Z =
1

(N!)3P


dX
P−1
α=0

e−ϵṼαe−ϵ
3u0
~2
m F̃α

× det(ρα)det(ραA)det(ραB), (6)

with the definition of the potential and force terms

Ṽα = v1V (Rα) + v2V (RαA) + v1V (RαB),

F̃α =

N
i=1

�
a1|Fα, i |2 + (1 − 2a1)|FαA, i |2 + a1|FαB, i |2� ,

(7)

and the diffusion matrices

ρα(i, j) = λ−Dt1ϵ


n
exp *

,
− π

λ2
t1ϵ

(rα, j − rαA, i + nL)2+
-
,

with D being the dimensionality, see, e.g., Ref. 40.
Eq. (6) contains two free coefficients, t0 and a1, which
can be used for optimization, cf. Fig. 2, and the
integration is carried out over 3P sets of coordinates, dX
= dR0 . . . dRP−1dR0A . . . dRP−1AdR0B . . . dRP−1B. Instead of
explicitly sampling each permutation individually, as in
standard PIMC, we combine configuration weights of both

FIG. 2. Influence of the relative interslice spacing t0 for N = 4, rs = 4, and
θ = 0.5 on the convergence of the propagator. The exact result known from
CPIMC (green line) is compared to the PB-PIMC results for P = 2, P = 3,
and P = 4 for the fixed free parameter a1= 0.33 over the entire t0 range. The
optimal value is located around t0= 0.14.

positive and negative signs in the determinants, which leads
to a cancellation of terms and, therefore, an effective blocking
of permutations. When the thermal wavelength of a single
time slice, λt1ϵ =


2πϵt1~2/m, is comparable to the mean

interparticle distance, the effect of the blocking is most
pronounced and the average sign in our simulations is
significantly increased. However, with an increasing number
of propagators P, λt1ϵ decreases and, eventually, the blocking
will have no effect and the sign converges towards the
sign from standard PIMC. Hence, it is crucial to employ
the high order factorization from Eq. (4), which allows for
reasonable accuracy even for only two or three propagators.
We simulate the canonical probability distribution defined by
Eq. (6) using the Metropolis algorithm.48 For this purpose,
we have introduced a set of efficient Monte Carlo updates
that combine the worm algorithm idea21,22 with the temporary
construction of artificial trajectories, see Ref. 39 for a more
detailed description.

C. Energy estimator

The consideration of periodicity in the diffusion matrices
requires minor modifications in the energy estimator presented
in Ref. 39, which can be derived from the partition function
via the familiar relation

E = − 1
Z
∂Z
∂ β

. (8)

Inserting the expression from Eq. (6) into (8) and performing
a lengthy but straightforward calculation leads to

E =
1
P

P−1
k=0

(
Ṽk + 3ϵ2u0

~2

m
F̃k

)
+

3DN
2ϵ

−
P−1
k=0

N
κ=1

N
ξ=1

*
,

πηk
κξ

ϵPλ2
t1ϵ

+
πηk A

κξ

ϵPλ2
t1ϵ

+
πηkB

κξ

ϵPλ2
2t0ϵ

+
-
,

with the definition

ηk
κξ =

�
ρ−1
k

�
κξ

λDt1ϵ


n

exp

− π

λ2
t1ϵ

(rk,κ − rk A,ξ + Ln)2


× (rk,κ − rk A,ξ + Ln)2. (9)

For completeness, we note that the total energy E splits into
the kinetic and potential contributions, K and V , in precisely
the same way as before.39

III. RESULTS

A. Convergence

We begin the discussion of our simulation results by
investigating the convergence of the energy with the number
of imaginary time propagators P. To enhance the performance,
the free parameters from the propagator, a1 and t0, can be
optimized. In Fig. 2, we choose a1 = 0.33, which corresponds
to equally weighted forces on all time slices, and plot the
potential energy V , calculated with P = 2, P = 3, and P = 4,
versus t0 over the entire possible range for a benchmark
system of N = 4 spin-polarized electrons with θ = 0.5 and
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rs = 4. To assess the accuracy, we compare these results
with the exact energy known from CPIMC (green line).
Evidently, the optimal choice for this free parameter is located
around t0 = 0.14, which is consistent with previous findings
by Sakkos et al.45 and the application of PB-PIMC to electrons
in a quantum dot.39 For completeness, we mention that the
kinetic energy K exhibits the same behavior. Hence, we use
the combination a1 = 0.33 and t0 = 0.14 for all presented
simulations in this work. However, it should be noted that
our method converges for all possible choices of the free
parameters. In Fig. 3, we demonstrate the convergence of the
energy with respect to the number of propagators for the same
system as in Fig. 2. However, since V and K nearly cancel
for this particular combination of rs, θ, and N , we investigate
the convergence of both contributions separately. The top
panel shows the potential energy versus the inverse number of
propagators P−1 ∝ ϵ and we compare the PB-PIMC results to
the exact value (with the corresponding confidence interval)
from CPIMC. We find that as few as two propagators allow
for a relative accuracy ∆V/|V | ∼ 10−4 and with P = 4 the
potential energy is converged within error bars. In the bottom
panel, we show the same information for the kinetic energy K .
The variance of K is one order of magnitude larger than that
of V and, for two propagators, we find the relative time step
error ∆K/K ∼ 10−3. With increasing P, the PB-PIMC results
are fluctuating around the exact value, within error bars.

Finally, we address the rs–dependence of the time step
error by comparing PB-PIMC results for V with P = 2

FIG. 3. Convergence of the potential (top) and kinetic (bottom) energy for
N = 4, rs = 4, and θ = 0.5 with t0= 0.14 and a1= 0.33. In the top panel,
the potential energy V is plotted versus the inverse number of propagators
P−1∝ ϵ and the PB-PIMC results are compared to the exact value known
from CPIMC. The bottom panel shows the same information for the kinetic
energy K .

FIG. 4. Accuracy of two and three propagators over a broad rs range for
N = 4 and θ = 0.5 with t0= 0.14 and a1= 0.33. We show the relative differ-
ence between the potential energy from PB-PIMC and CPIMC, ∆V /|V |, for
the optimal parameters from the fourth order propagator.

(red crosses) and P = 3 (blue squares) to the exact values
from CPIMC. In Fig. 4, the relative error of the potential
energy ∆V/|V | is plotted versus rs for N = 4 spin-polarized
electrons at θ = 0.5. The increased errorbars for larger rs are a
manifestation of the sign problem from CPIMC,32 while for the
rest the statistical uncertainty from PB-PIMC predominates.
The time step error is smaller for three propagators over the
entire rs–range, as it is expected, and adopts a maximum
around rs = 1. This can be understood by recalling the source
of the systematic error in PB-PIMC. For rs → 0, the UEG
approaches an ideal system and the commutator error from K̂
and V̂ vanishes. For rs → ∞, on the other hand, the particles
are more separated and the system becomes more classical.
Therefore, the neglected commutator terms are most important
at intermediate rs, which is the case for the results in Fig. 4.

We conclude that as few as two or three propagators
provide sufficient accuracy to assess the discrepancy between
CPIMC and RPIMC observed in previous studies.33 In
particular, the selected benchmark temperature, θ = 0.5, is
even lower than for all other simulations to be presented in
this work. Hence, the observed time step error constitutes an
upper bound for the accuracy of our results in the remainder
of the paper.

B. Density parameter dependence

Among the most interesting questions regarding the
implementation of PB-PIMC for the UEG is the range
of applicability with respect to the density parameter rs.
To address this issue, we simulate N = 33 spin-polarized
electrons, which corresponds to a closed momentum shell and
is often used as a starting point for finite size corrections.
In Fig. 5, we show the average sign S versus rs for three
different temperatures over a broad density range. All PB-
PIMC data exhibit a qualitatively similar behavior, that is, a
smooth decrease of S towards smaller rs until it saturates.
At large rs, the coupling induced particle separation mostly
exceeds the extension of the single particle wavefunctions
and quantum exchange effects do not play a dominant role.
With decreasing rs, the UEG approaches an ideal system and
the particles begin to overlap, which leads to sign changes in
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FIG. 5. The average sign of PB-PIMC is plotted versus the density parameter
rs for three different temperatures and N = 33 spin-polarized electrons with
P = 2, a1= 0.33, and t0= 0.14. The standard PIMC data (green crosses) are
taken from the supplement of Ref. 25.

the determinants. However, due to the blocking, the average
sign, instead of dropping exponentially, remains finite which
implies that, for the three depicted temperatures, PB-PIMC
is applicable over the entire density range. This is in stark
contrast to standard PIMC (cf. the green curve), which exhibits
a significantly smaller average sign and, for θ = 1, is not
feasible for rs . 3. Nevertheless, with decreasing temperature
the sign of PB-PIMC drops and the FSP makes the simulations
more involved, cf. Section III C.

In Fig. 6, we compare the corresponding energies with
RPIMC49 and CPIMC,33 where they are available. The top
row displays the relative difference in the potential energy
towards PB-PIMC with two propagators. For θ = 4 and θ = 2,
we find excellent agreement with CPIMC. For the lowest
temperature, θ = 1, the CPIMC values are systematically
lower by ∆V/|V | . 10−3. However, this discrepancy can be

FIG. 6. Comparison of PB-PIMC with CPIMC and RPIMC for N = 33 spin-polarized electrons and three temperatures. In the top row, the relative deviation of
the potential energy from PB-PIMC with P = 2, t0= 0.14 and a1= 0.33 is plotted versus rs. The center and bottom rows display the same information for the
kinetic and total energy, respectively. The black dot in the bottom left panel (∆E/E for θ = 1) corresponds to standard PIMC and is taken from the supplement
of Ref. 25.
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explained by the convergence behavior of the propagator, cf.
Fig. 4, since the potential (and kinetic) energy is expected
to converge from above towards the exact result. To confirm
this assumption, we also plot results for P = 3 and θ = 1,
visualized by the grey triangles. Evidently, these points
coincide with the CPIMC data everywhere within the errorbars
and, thus, can be regarded as quasi-exact. The RPIMC data for
V , on the other hand, exhibit a systematic discrepancy with
respect to PB-PIMC and CPIMC.33 At rs = 1, the energies
approximately differ by ∆V/|V | ∼ 0.02, but the difference
decreases with increasing rs. In the center row, we display the
relative difference in the kinetic energy. Again, all PB-PIMC
results are in good agreement with CPIMC. On the other hand,
there is no clear systematic deviation between the PB-PIMC
and RPIMC data, although most RPIMC-values for θ = 1 are
lower while the opposite holds for most values for θ = 4.
Finally, the bottom row displays the relative difference in the
total energy. Interestingly, for θ = 1 the difference of RPIMC
in V and K towards PB-PIMC nearly cancels, so that E appears
to be in good agreement. In particular, even the value for θ = 1
and rs = 4, where the potential energy is an outlier, and both
V and K exhibit a maximum deviation, is almost within single
error bars. For completeness, we have also included the total
energy for θ = 1 and rs = 40 from standard PIMC,49 cf. the
black circle, which is in excellent agreement with PB-PIMC
as well. For θ = 2 and θ = 4, most RPIMC values for E are
higher than PB-PIMC, although the deviation hardly exceeds
twice the error bars.

C. Temperature dependence

Finally, we investigate the performance of PB-PIMC
with respect to the temperature. In Fig. 7, the average sign
of PB-PIMC is plotted versus θ for N = 33 spin-polarized
electrons at rs = 10, rs = 1, and rs = 0.1. All three curves
exhibit a similar behavior, that is, a large sign S at high
temperature and a monotonous decay for T → 0. However,
for rs = 10, the system is significantly less degenerate than
for both other density parameters, and even at θ = 0.5, the

FIG. 7. The average sign of PB-PIMC is plotted versus the temperature θ
for rs = 10, rs = 1, and rs = 0.1 and N = 33 spin-polarized electrons with
P = 2 and the free parameters t0= 0.14 and a1= 0.33. The standard PIMC
data (green crosses) are taken from the supplement of Ref. 25.

average sign of S ≈ 0.056 indicates that the simulations are
feasible. For rs = 1 and rs = 0.1, the decay of S is more rapid
and, at low temperature, the simulations are more involved.
In particular, half the Fermi temperature seems to constitute
the current limit down to which reasonable results can be
achieved for such rs–values (and this particle number) and,
for rs = 0.1, the sign is zero within error bars, cf. the dashed
line. For completeness, we also show the average sign of
standard PIMC for rs = 1, cf. the green curve. Evidently,
these simulations are significantly more severely affected by
the FSP and simulations are feasible only for θ & 2. Finally,
we note that the average signs of PB-PIMC for the two
smaller depicted rs parameters are more similar to each other
than to rs = 10. We characterize the temperature in units
of the ideal Fermi temperature, which is appropriate for
weak coupling. However, for large rs, the system becomes
increasingly nonideal and, therefore, θ does not constitute an
adequate measure for the degeneracy.

In Fig. 8, we compare the energies of the N = 33 electrons
at rs = 1 from PB-PIMC both to RPIMC49 and CPIMC. The
top panel displays the relative difference in the potential energy
versus θ. The CPIMC results for V are in good agreement
with PB-PIMC, while the RPIMC data are systematically
higher, by about 2%. Interestingly, this behavior appears to
be almost independent of the temperature. In the bottom
panel, the same information is shown for the kinetic energy
and, again, PB-PIMC agrees with CPIMC over the entire

FIG. 8. Comparison with CPIMC and RPIMC as a function of tempera-
ture. In the top panel, the relative deviation of the potential energy from
the PB-PIMC result is plotted versus θ for N = 33 spin-polarized electrons
and rs = 1. The bottom panel displays the same information for the kinetic
contribution.
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temperature range. The large statistical uncertainty at θ = 0.5
is a manifestation of the FSP in PB-PIMC, which prevents
us from obtaining more precise kinetic energies with feasible
computational effort. The RPIMC data for K are slightly
lower, at low temperature, which confirms the trend observed
by Schoof et al.,33 and seems to converge towards the other
methods for large θ.

IV. DISCUSSION

In summary, we have successfully extended the PB-PIMC
approach39 to the uniform electron gas at finite temperature.
We have started the discussion with a brief introduction
of our simulation scheme, which combines a fourth-order
factorization of the density matrix with the application of
antisymmetric imaginary time propagators, i.e., determinants.
This allows us to combine permutations, which appear as
individual configurations with positive and negative sign in
standard PIMC, into a single configuration weight (hence
the label permutation blocking). Furthermore, we employ an
efficient set of Monte Carlo updates which is based on the
temporary construction of artificial trajectories. Due to the
combination of these three concepts, the average sign in our
simulations is significantly increased.

To assert the quality of our numerical results, we have
investigated the optimization of the free parameters of our
propagator and demonstrated the convergence of both the
potential and kinetic energies with respect to the number of
imaginary time steps. We have found that even for the lowest
considered temperature, θ = 0.5, as few as two propagators
allow for a relative accuracy of 0.1% and 0.01% in the kinetic
and potential energies, respectively. After this preparatory
work, we have shown results for N = 33 spin-polarized
electrons, which is a commonly used model system as it
is well suited to be a starting point for the extrapolation to the
macroscopic limit (finite size corrections). In striking contrast
to previous implementations of standard PIMC, PB-PIMC is
feasible over the entire density range and, therefore, allows us
to compare our results to both CPIMC and RPIMC data, where
they are available. Our PB-PIMC data exhibit a very good
agreement with CPIMC, for both the potential and kinetic
energies, for all three investigated temperatures. On the other
hand, we observe deviations between PB-PIMC and RPIMC
of up to 3% in the potential energy, which decrease towards
strong coupling. For the kinetic energy, we find no systematic
trend although, for θ = 1, most of the RPIMC-values are
smaller while, for θ = 4, most are larger than the PB-PIMC
results. However, for both temperatures this deviation hardly
exceeds twice the RPIMC errorbars.

Finally, we have investigated the applicability of PB-
PIMC to the N = 33 spin-polarized electrons with respect to
the temperature. With decreasing θ, exchange effects lead to
more negative determinants in the configuration weights and,
therefore, a smaller average sign. For the physically most
interesting density regime, rs ∼ 1, simulations are feasible
above θ = 0.5 while for larger rs even lower temperatures
are possible. Therefore, it has once more been demonstrated
that the range of applicability of standard PIMC has been
significantly extended. A comparison of the energies for

rs = 1 over the entire applicable temperature range has again
revealed an excellent agreement with CPIMC. On the other
hand, we observe a nearly θ-independent relative deviation
between PB-PIMC and RPIMC in the potential energy of
approximately 2%, whereas differences in the kinetic energy
are observed only towards low temperature.

We conclude that our permutation blocking PIMC
approach is capable to provide accurate results for the UEG
over a broad parameter range. This approach is efficient
above a minimum temperature of about 0.5TF and, thus,
complements CPIMC. Even though PB-PIMC carries a small
systematic error (which is controllable and depends only on
the number of time slices), we expect it to be useful for
the development and test of other new techniques such as
DMQMC34,35 and other novel versions of fermionic PIMC,
such as the approximate treatment of exchange cycles by
DuBois et al.50 or a variational approach to the RPIMC nodes,
e.g., Ref. 51.

A natural follow-up of this work will be the extension
of PB-PIMC to unpolarized systems which, in combination
with CPIMC, should allow for a nearly complete description
of the finite temperature UEG over the entire density range.
In addition, we aim for the application or derivation of finite
size corrections in order to extrapolate our results to the
macroscopic limit47,52,53 which could be followed by the
construction of a new analytical fit formula for the UEG
at finite temperature, e.g., Refs. 54 and 55. Finally, since
PB-PIMC allows for efficient simulations in the warm dense
matter regime, applications to two-component plasmas, such
as dense hydrogen,56–58 are within reach.
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