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Ultrafast dynamics of finite Hubbard clusters: A stochastic mean-field approach
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Finite lattice models are a prototype for interacting quantum systems and capture essential properties of
condensed matter systems. With the dramatic progress in ultracold atoms in optical lattices, finite fermionic
Hubbard systems have become directly accessible in experiments, including their ultrafast dynamics far from
equilibrium. Here, we present a theoretical approach that is able to treat these dynamics in any dimension and fully
includes inhomogeneity effects. The method consists in stochastic sampling of mean-field trajectories and is—for
not too large two-body interaction strength—found to be much more accurate than time-dependent mean-field
at the same order of numerical costs. Furthermore, it can well compete with recent nonequilibrium Green
function approaches using second-order Born approximation, which are of substantially larger complexity. The
performance of the stochastic mean-field approach is demonstrated for Hubbard clusters with up to 512 particles
in one, two, and three dimensions.
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I. INTRODUCTION

Experimental progress in the formation and manipulation of
quantum optical lattices from one to three dimensions with the
number of sites ranging from very few to thousands provide a
perfect laboratory [1–4] for the study of nonequilibrium prop-
erties of mesoscopic bosonic and fermionic systems. Exciting
recent observations include the expansions of fermions into an
empty optical lattice [5], formation and expansion of fermionic
pairs (doublons) in a lattice [6,7], e.g., the many-particle
behavior following an interaction quench [8] or the transport
behavior following a quench of the confinement potential [9].
This paves the way towards a fundamental understanding of
interacting quantum systems, which is of prime importance
for many areas of physics and chemistry, including ultracold
atomic and molecular gases in traps and optical lattices,
transport and coherence properties of macromolecules, su-
perconductivity and magnetic properties of condensed matter
systems on the nanoscale, thermodynamics of dense fermionic
matter in compact stars, and so on.

The description of finite correlated quantum lattice systems
out of equilibrium is very challenging. Exact solutions using
direct configuration interaction (CI) methods are possible
only for very small Hubbard clusters [10], and the use of
quantum Monte Carlo methods [11] only slightly increases
the accessible system size. These approaches are hampered
by the exponential increase of the computational effort with
the system size. For this reason, the interest in approximate
nonequilibrium theories that are both reliable and efficient has
recently increased substantially. The simplest approach to treat
particle-particle interactions is via an effective average field,
i.e., via mean-field theory [e.g., time-dependent Hartree-Fock
(TDHF)]. However, with increasing quantum entanglement,
this approximation quickly fails. Moreover, as we will show
below (cf. Fig. 2), TDHF already fails for very small coupling
strength (Hubbard-U ).

To describe the systems and phenomena mentioned above,
one has to resort to methods beyond mean-field, i.e., include

correlation effects. In recent years, there has been remarkable
progress in this direction, in particular, in the application
to strongly out-of-equilibrium lattice systems. Among the
successful approaches, we mention the time-dependent density
matrix renormalization group method (TDDMRG) [8], e.g.,
time-dependent density functional theory (TDDFT) [12], e.g.,
nonequilibrium Green function (NEGF) [13–15], e.g., or
time-dependent density matrix (TDDM) methods [13,16]. All
these methods have various limitations, e.g., with respect to the
correlation strengths (TDDFT, TDDM, NEGF) or the system
dimensionality (TDDMRG). Recent benchmarks for the one-
dimensional (1D) Fermi-Hubbard model indicated fundamen-
tal problems such as unstable behavior of TDDM [10] or
unphysical damping in NEGF simulations [15] that could
recently be overcome in part by applying the generalized
Kadanoff-Baym ansatz (GKBA) [17–20]. At the same time,
going beyond the mean-field level with these approaches is
rather involved and very expensive in terms of computational
resources.

We propose an alternative approach to correlated fermionic
lattice systems where the simplicity of mean-field theory
is combined with efficient stochastic methods that allow
to incorporate correlation effects. This stochastic mean-field
approach (SMF) has been recently developed and applied with
success in nuclear physics [21–24]. We present tests against
exact results for small lattice systems and demonstrate that
SMF is accurate for weak to moderate coupling during the
initial phase of relaxation. Moreover, applying it to large
one-dimensional (1D), and to 3D systems—where no CI data
are available—we demonstrate its impressive capabilities for
extended systems.

Beyond mean-field transport theories

Most approaches going beyond the independent particle
picture start from a generalized one-body equation of motion
(EOM) where the effect of correlations associated to the

1098-0121/2014/90(12)/125112(8) 125112-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.125112


DENIS LACROIX, S. HERMANNS, C. M. HINZ, AND M. BONITZ PHYSICAL REVIEW B 90, 125112 (2014)

correlation matrix C12 is accounted for. For an ensemble of
particles interacting through an (anti)symmetrized two-body
interaction ṽ12, the exact evolution of the one-body density
matrix reads ([·, · ·]− denotes the commutator and � ≡ 1):

i∂tρ = [h(ρ),ρ]− + 1
2 Tr2 [ṽ12,C12]− (1)

=: IMF [ρ] + I cor [C12] , (2)

where h(ρ) = T + V + Tr2(ṽ12ρ2) =: T + V + UHF(ρ) is the
mean-field Hamiltonian containing kinetic (T ) and potential
(V ) energy and the potential UHF that is induced by all
particles. At the mean-field level, correlations are neglected
leading to the TDHF theory. C12, which is defined through the
binary density operator via ρ12 = ρ1ρ2(1 ± P12) + C12 (P12

is the pair permutation operator), is—in general—unknown.
Theories that go beyond mean-field typically introduce ap-
proximations for the correlation matrix, C12 = C12[ρ] (e.g.,
TDDM), or the exchange-correlation potential Vxc (DFT).
Similarly, within NEGF, corrections to TDHF are incorporated
through the correlation self-energy �[G]. The standard strat-
egy to improve mean-field is presented schematically in Fig. 1
(left part). Inclusion of correlation effects via the collision
integral I cor—even in a simplified version—in general leads
to a much harder to solve problem compared to the original
mean-field approximation. This becomes even more severe in
nonequilibrium. Therefore, most standard approaches lead to
a dramatic increase of the computational complexity of the
problem and/or put significant restrictions on the system size
or coupling strength that can be treated.

Dynamics of a correlated
N -particle system with N -particle state |Ψ(t)

1 Ensemble average

2 Many-body approx. (MBA)

beyond mean-field (MF):

Vxc[ρ], ρ12[ρ], Σ[G] etc.

3 ρ(t0)

4 i ρ̇ = IMF[ρ] + Icor[ρ]

1 Specify Gaussian ensemble

ρ̄, δρijδρkl

3 Sample initial state

(M realizations):

n̂(1)(t0) . . . n̂(M)(t0)

4 i ˙̂n(n) = IMF[n̂(n)] ; n = 1 . . . M

5 Ensemble average ∀ t:
1

M
M
n=1 n̂(n)(t)

density matrix ρ(t), observables A(t)

FIG. 1. Comparison of the strategy of typical many-body ap-
proaches (left) to the present stochastic mean-field method (right).
Many-body approximations are specified, e.g., by the exchange-
correlation potential Vxc (DFT), by the functional dependence of the
two-body density matrix ρ12 on ρ or the form of the self-energy �

(NEGF theory). In contrast, for the SMF, only TDHF trajectories are
used and correlations are mimicked by a properly chosen ensemble.

II. STOCHASTIC MEAN-FIELD THEORY

The stochastic mean-field theory presents a fundamentally
different strategy that aims at incorporating correlations (at
least partially) while retaining the simplicity of a mean-field
description.

A. General concept

We consider a stochastic scheme where an ensemble of
single-particle density matrices n(n)(t) is used, where (n) labels
a given realization (trajectory). In the following, we denote by
n(t) = (1/M)

∑
M n(n)(t) the average over the M trajectories

and by δn(n)(t) = n(n)(t) − n(t) the individual fluctuations
around this mean. Each density is assumed to evolve according
to its own mean-field dynamic:

i∂tn
(n) = IMF[n(n)] = [h(n(n)),n(n)]−,

n(n)(t0) = n
(n)
0 . (3)

A straightforward derivation shows that the evolution of the
average density is given by

i∂tn = IMF [n] + [δUHF(n(n)),δn(n)]−, (4)

where δUHF(n(n)) denotes fluctuations of the induced potential
introduced by the density fluctuations. Additional discussions
on Eq. (4) are provided in the Appendix A. Comparing
this average evolution with Eq. (1), we see that evolving a
statistical ensemble of densities can simulate the effect of
correlations [25] provided that n(t) = ρ(t) and

lim
M→∞

1

M

M∑
n=1

[δUHF(n(n)),δn(n)]− = I cor [C12] . (5)

This correspondence is exact if condition (5) is fulfilled for all
times, however, the correlation function [δUHF(n(n)),δn(n)]−
is of similar complexity as the pair correlation matrix C12.
To overcome this problem, the present stochastic mean-field
approach proposes to map the time-dependent correlations
onto fluctuations at the initial time t0. Furthermore, the
fluctuation spectrum is chosen such that it matches the
quantum expectation value and fluctuations of the one-body
density matrix (OBDM) of the initial state of the system
(Gaussian approximation, details will be explained below
for the Hubbard model). Then, each randomly chosen initial
density is propagated in its own mean-field through Eq. (3)
as is illustrated in the right part of Fig. 1. In this manner, we
anticipate to achieve—at least for weak entanglement—correct
correlated dynamics.

B. Physical interpretation of mean-field dynamics
with fluctuating initial conditions

To get a better physical insight in the SMF approach, we
give here an alternative view of the method based on a classical
mapping of the initial quantum phase space. The heart of
mean-field theory (such as Vlasov, Hartree, or Hartree-Fock)
in the description of an interacting N -particle system is
the reduction to an effective single-particle problem where
interaction effects are condensed in an additional potential
produced by all particles. All the information on the system
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is contained in the expectation value of selected one-particle
degrees of freedom (DOF, denoted by {Âλ}) that evolve
according to a set of coupled nonlinear equations:

∂t 〈Âα(t)〉 = F({〈Âβ(t)〉}). (6)

Two-body (and higher) expectation values 〈ÂαÂβ〉MF =
〈Âα〉〈Âβ〉 + Cαβ → 〈Âα〉〈Âβ〉 are factorized, thereby neglect-
ing correlation contributions Cαβ that are directly related
to fluctuations around the mean values, Cαβ = 〈(Âα − 〈Âα〉)
(Âβ − 〈Âβ〉)〉.

The lack of predictive power of mean-field generally
stems from the inadequacy to describe the time evolution of
quantum fluctuations and most importantly their effects on
relevant DOF. For small mesoscopic systems, finite-size effects
will further enhance the role of quantum zero point motion
and proper treatment of correlations is required. Standard
many-body approaches have developed elaborate many-body
approximations (MBA) for Cαβ in terms of single-particle
expectation values 〈Âα〉 or, more generally, in terms of the
single-particle density matrix ρ or Green’s function G, which
is sketched in the left part of Fig. 1. The practical limitations
of these methods were mentioned in the introduction.

The direct correspondence between correlations and fluc-
tuations gives access to a completely different approach to the
treatment of correlations in many-body systems (right part
of Fig. 1): Let us assume that, at initial time, a complex
system is described by a density operator D̂(t0). From this,
the mean-values 〈Âα(t0)〉 = Tr(ÂαD̂(t0)) and the quantum
variance-covariance matrix, denoted by σ 2

αβ , of the DOF of
interest can be computed. To mimic the initial state, a classical
probabilistic picture is used where a set of classical variables
{aα} is introduced. These variables are associated to a certain
probability P ({aα}) that is chosen to ensure that the mean
value aα and the variance-covariance obtained by the classical
average, �αβ , both equal their quantum counterparts. Using
standard Monte Carlo sampling, a set of initial values {a(n)

α (t0)}
can be constructed, where (n) labels a given event. Each initial
conditions is then evolved in time according to:

∂ta
(n)
α (t) = F

(
a(n)

α (t)
)
. (7)

Such an approach is expected to be valid when the main
source of effects beyond the independent particle picture stems
from the initial correlations. Usually, such a quasiclassical
approach is not expected to be valid for long times due to
the correlations that are built up during the time evolution.
These correlations are anticipated to increase as the interaction
increases. In finite systems, finite-size effects enhance the
effect of quantum fluctuations and SMF turns out to be rather
effective [24]. In addition, SMF also allows to explore large
amplitude dynamics in physical situations near a bifurcation
point where spontaneous symmetry breaking can play a crucial
role [22].

III. APPLICATION TO FERMIONIC HUBBARD CLUSTERS

A proof that the proposed SMF approach is able to describe
correlated quantum lattice systems is challenging because
mean-field per se is a poor approximation, even in the weak
coupling limit (see top panel of Fig. 2 and discussion below).
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FIG. 2. (Color online) Time evolution of the leftmost site occu-
pation n1(t) for Ns = N = 8 and U/J = 0.1. (a) CI (solid line) vs
TDHF (dashes, triangles) and (b) CI vs NEGF (green, dashes) and
SMF (red, diamonds).

It is the aim of this article to provide numerical evidence and
to map out the parameter range where this approach works.
In fact, we demonstrate that our SMF approach performs
surprisingly well. Most importantly, since only standard mean-
field evolution is needed, SMF does not face the catastrophic
explosion of computational effort with system size as standard
many-body theories.

A. Hubbard Hamiltonian

As an illustration of the capabilities of the SMF approach,
a d-dimensional Hubbard nanocluster consisting of Ns doubly
degenerate sites is considered. The time-independent part of
the Hamiltonian in the canonical Hubbard basis reads:

H = −J

Ns∑
i,j

∑
σ

δ〈i,j〉c
†
iσ cjσ + U

Ns∑
i

c
†
i↑ci↑c

†
i↓ci↓, (8)

where δ〈i,j〉 = 1 for nearest-neighbor sites and equals zero
otherwise. Note that the dimensionality—and any boundary
conditions—enter the Hamiltonian only via specifying which
sites are nearest neighbors. This idealized Hamiltonian de-
scribes the interplay between strong localization and fast
tunneling and was placed on the front of the stage by recent
progress in cold atoms in optical lattices [28,29]. Mean-field
dynamics provide a set of coupled equations for the OBDM
ρij,σ = 〈c†jσ ciσ 〉, where σ denotes the spin orientation.

B. Implementation of the SMF approach

Within the SMF scheme, the initial OBDM is replaced
by an ensemble of initial realizations, i.e., ρ(t0) → {n(n)(t0)},
each of which evolves according to Eq. (3) with the mean-field
Hamiltonian

h(n(n))ij,σ = −Jδ〈i,j〉 + Uδijn
(n)
ii,σ̄ , (9)

where σ =↑ (↓) implies σ̄ =↓ (↑). The (random) initial
configurations {n(n)(t0)} in the Hubbard basis are determined
by demanding that the matrix elements ñ

(n)
ij,σ (t0) of n(n)(t0)
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satisfy

ñ
(n)
ij,σ (t0) = δij ñi,σ (t0), (10)

δñ
(n)
ij,σ (t0)δñ(n)

kl,σ (t0) = 1
2δjkδil ñj,σ (t0)[1 − ñi,σ (t0)] (11)

in the natural orbital basis of ρ(t0) with δñ
(n)
ij,σ = ñ

(n)
ij,σ − ñ

(n)
ij,σ ,

where ñi,σ (t0) denote the eigenvalues of ρ(t0). Here, only the
first two moments of the density are constrained corresponding
to a Gaussian ensemble (constraining higher moments as
well may provide additional flexibility). At any time t , the
expectation values of an arbitrary one-body observable can
simply be computed as

〈O(t)〉 =
∑
ij,σ

O
ij,σ

n
(n)
ij,σ (t), (12)

whereas the expectation value of a two-body observable T is
given by

〈T (t)〉 =
∑

ijkl,σ τ

T
ijkl,στ

(
n

(n)
ij,σ (t) n

(n)
kl,τ (t) + δn

(n)
ij,σ (t)δn(n)

kl,τ (t)
)
.

(13)

It is worth mentioning that some flexibility exists in the
mean-field evolution that is performed. For instance, in many
situations, it might be advantageous to explicitly break a
symmetry that is not broken in the exact evolution. This is for
instance the case close to a bifurcation point or if a symmetry
might spontaneously be broken at the mean-field level [22].
In the present Hubbard case, we might or not respect the spin
symmetry in the dynamics. Spin symmetry is automatically
included if the initial fluctuations of the density in the spin-up
sector equal those in the spin-down sector. While the resulting
densities look very similar in both cases, we observed that only
by not imposing a spin symmetry (unrestricted case) we arrive
at meaningful results for the different energy contributions
to the total energy (see Sec. III D). For completeness, in
Appendix B, we give the mean-field equation used in the
unrestricted simulations as well as detail the choice of initial
noise in the one-body density.

C. Application to a one-dimensional Hubbard lattice
with half-filling

A first illustration is shown in Fig. 2 for a half-filled eight-
site 1D chain without periodic boundary conditions at weak
two-body interaction (U/J = 0.1) where we compare the
exact solution and approximations. The initial state is chosen
such that all eight electrons reside on the leftmost four sites.
We see that even in the weak coupling regime, the mean-field
result [TDHF, Fig. 2(a)] deviates very fast from the exact case
and is, in particular, unable to describe the damping of the
site occupation. In Fig. 2(b), we also show the NEGF-GKBA
result obtained in second-order Born approximation [20],
which performs much better (green, dashes). Finally, the SMF
result obtained by using 104 fluctuating initial conditions is
shown (red, diamonds). Obviously, SMF provides a dramatic
improvement over TDHF, properly describes the short-time
damping but also reasonably well describes the long-time
dynamics until about t = 75[J−1]. Note that, the considered
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FIG. 3. (Color online) Time evolution of the leftmost site occu-
pation n1(t) for Ns = N = 8, for U/J = 0.25 (top) and U/J = 0.5
(bottom). The exact solution (black solid line), NEGF (green, dashes)
and SMF (red, diamonds) are shown. The SMF calculation are done
using 104 initial conditions.

number of trajectories is already enough to have very small
statistical error bars (not shown in Fig. 2). Increasing the
number of trajectories would further reduce these error bars
but does not change the average evolution in all figures shown
below.

In particular, the revival observed at long times in the NEGF
result (t ∼ 80,90,95[J−1]), is absent, in agreement with the
exact case. For all particle numbers where CI data are available,
in the weak coupling regime, we observe a similar accuracy
of SMF, and, in most cases, the results are—apart from a
different damping behavior—equally good compared to the
NEGF ones.1 When the interaction U/J increases, the overall
behavior of the density is still correctly reproduced by SMF, in
contrast to TDHF. At the same time, a quantitative agreement
with CI is restricted to shorter times, cf. Fig. 3, comparable
to the accuracy time observed in NEGF. Interestingly, in both
NEGF and SMF, the validity range seems to be bounded by the
correlation time of the system [20], t � τcor ∼ 1/U . In contrast
to NEGF, for U/J = 0.1, the strength of the damping is well
reproduced in SMF. When U/J is increased, it is observed that
the damping is overestimated by SMF compared to the exact
results.

D. Energy evolution

The SMF approach can give not only access to one-body
observables but can also give interesting insight in quantities
related to two-body effects. An illustration is given in Fig. 4
where the kinetic energy (Ekin), Hartree-Fock (EHF) and
correlation energies (Efor) are shown as a function of time in
the SMF, NEGF, and exact case. In the latter two cases, these
quantities are obtained by taking the quantum expectation

1For larger U , more accurate results can be achieved within the
NEGF framework by choosing, e.g., the T-matrix approximation
instead of second-order Born approximation [20].
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FIG. 4. (Color online) Evolution of the kinetic, HF and corre-
lation energy obtained using the SMF approach (red dashed lines)
for half-filling with Ns = 4 and U/J = 0.1. The three energies are
compared to the exact case (black solid lines) and to the NEGF
simulation of Ref. [20] (green dotted line). The SMF calculation are
done using 104 initial conditions.

value:

Ekin = −J

Ns∑
ij

δ〈i,j〉(〈c†i↑cj↑〉 + 〈c†i↓cj↓〉),

EHF = +U

Ns∑
i

〈c†i↑ci↑〉〈c†i↓ci↓〉,

Ecor = +U

2

Ns∑
i

〈c†i↑c
†
i↓ci↓ci↑〉 − EHF.

Analogous expression are used in the SMF theory except that
quantum averages are replaced by classical ones, giving the
definitions of the different energies:

ESMF
kin = −J

Ns∑
ij

δ〈i,j〉(nij↑ + nij↓)

ESMF
HF = +U

Ns∑
i

nii↑ nii↓, ESMF
cor = +U

Ns∑
i

δnii↑δnii↓.

As discussed in Sec. II B, a classical mapping of the ini-
tial quantum phase space is made in the SMF approach.
Accordingly, quantum fluctuations that are associated to
correlation are obtained by performing classical averaging
of the fluctuations. Here, this is illustrated in the estimate
of the correlation energy. Figure 4 shows that, while not
perfect, the SMF approach gives a very reasonable evolution
of the different energy components and provides a good
reproduction of the average trend. Both SMF and NEGF
using the GKBA approach of Ref. [20] give reasonable results
up to a time t ∼ 60 J−1, although they miss some of the
oscillations of kinetic and correlation energy of the exact
case. After this time (which corresponds to its validity range),
the NEGF approach starts to deviate systematically from the
exact evolution especially for the HF and correlation energy
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FIG. 5. (Color online) Leftmost occupation probabilities ob-
tained with SMF (red dashed line) using 104 trajectories for the
one-dimensional Hubbard systems with U/J = 0.1 and Ns = 8.
From top to bottom, the case of N = 2, N = 4, and N = 6 particles
positioned initially on the left side of the lattice are show. The SMF
results are compared to the exact case (black solid line) and the NEGF
approach of Ref. [20] (green dotted line).

whereas the one-body part (kinetic energy) remains very good
(for a more detailed analysis of this approximation we refer
to Ref. [20]). Most surprisingly, the SMF method continues
to give a very reasonable average evolution of all quantities,
including those related to correlations, even for longer time
even though it does not capture the oscillations.

E. Application to the 1D Hubbard model away from half-filling

As a further illustration of the ability of SMF to grasp
the dominant part of the correlations, we consider the same
Hubbard setup with Ns = 8 sites but with less particles, N =
2, 4, or 6, initially occupying the left sites. Results of the
dynamical evolution are shown in Fig. 5.

In all cases, the SMF approach gives almost perfect results
for short times and starts to slightly deviate from the exact
evolution for later times. The amplitude of oscillations around
the average asymptotic limit is usually smaller than in the
exact case but still remains reasonable. In particular, we do not
see the revival of oscillations observed in the NEGF-GKBA
approximation (see, e.g., the case N = 6).

In the extreme cases of two particles (two and four
particles), we observe slightly negative occupation proba-
bilities in the SMF (NEGF) simulations. However, these
negative probabilities only occur at later times, i.e., beyond the
validity range of the simulations, where we observe systematic
deviations from the exact results in the N = 6 and N = 8
case. It is worth mentioning that such nonphysical behavior
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has been already observed in theories based on the truncation
of the one- and two-body density matrices evolution (see
for instance Refs. [30] and [16]) when the allowed range
of parameters is not explicitly built into the approximation.
Therefore, it is not really surprising to observe them in the
NEGF using the GKBA approximation since it is based on a
similar hierarchy decoupling. In the case of two particles, we
also observe the appearance of negative occupation numbers in
SMF. While a dedicated study of this issue might be of interest
in the near future, we anticipate that such nonphysical values
stem from the Gaussian assumption made for sampling the
initial density matrix components. In particular, unrestricted
Gaussian sampling can lead to occupancies above 1 and/or
below 0 for some events. A possible solution to this problem
would be to assume a different initial sampling distribution that
properly respects the density matrix boundary conditions. This
would however significantly add complexity in the method,
while we observe here that the bare Gaussian assumption
already gives very good results in most cases.

F. Application to large systems

Since only mean-field evolutions are required, the numer-
ical effort for SMF along each trajectory is the same as for
TDHF. The main difference is that instead of a single trajectory,
a set of mean-field trajectories is evolved in time. The number
of trajectories is given by the number of initial conditions
used to sample the initial quantum phase space. An additional
simplification compared to other approaches like CI is that
in SMF each trajectory is independent from all others. This
makes the approach particularly suited for a massively parallel
computation. As a consequence of these interesting features,
the SMF can be applied to cases where other methods cannot
be applied at all.

We illustrate this point in Fig. 6 where we apply SMF to long
Hubbard chains of Ns = 64, 256 and 512 sites, respectively
(U/J = 0.1) and where no exact solutions are available.
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FIG. 6. (Color online) SMF result for large one-dimensional
Hubbard systems with U/J = 0.1 and half filling for Ns = 64
(green), Ns = 256 (red), and Ns = 512 (black). The dynamics of
the site occupation nNs/4(t) are shown and compared to Hartree-Fock
results (thin dashed lines). The SMF calculation are done using 104

initial conditions.

Starting from the same initial state as above (all N particles
occupy the leftmost sites 1 . . . Ns/2) the occupation of the left
sites first remains constant and then displays a rather complex
evolution (Fig. 6 displays the initially occupied site Ns/4).
The increase of the time before site depletion is due to the
Pauli principle that prevents hopping until surrounding sites
become at least partially empty. This time increases almost
linearly with Ns indicating that, here, correlation effects are
of minor importance. Also, the decrease of the population
nNs/4 is strongly reduced with increasing Ns since—with the
delay of depletion—particles initially located to the right have
already undergone reflections at the right boundary and affect
the originally occupied sites.

IV. APPLICATION TO TWO- AND THREE-DIMENSIONAL
HUBBARD LATTICES

As a final illustration, we demonstrate that the SMF method
can be directly applied to clusters of higher dimensions. In
Fig. 7, we show, as an example, a cubic arrangement of 64
sites for half filling and weak coupling U/J = 0.1. As the
initial configuration, we place all particles to the left half.
Comparison of SMF to TDHF shows, as before, that mean-
field is not adequate and strongly underestimates the damping,
although the dominant frequency is correctly captured. We
now try to understand the effect of the dimensionality. To
this end, we compare to a 2D cluster of 16 sites (similar to
a cut through the original cube) as well as to a linear chain
of size Ns = 4 (see inset of Fig. 7). In all cases, the site
occupations oscillate with almost the same main frequency.
The most striking effect of dimensionality is that the damping
of the oscillations grows when going from 3D to 1D.

This behavior is explained by the increasing number of
particles, when going from 1D to 3D, undergoing the collective
expansion. Dephasing effects that arise on the system boundary
and lead to the damping are, thereby, systematically reduced.
We mention that the expansion of one-dimensional fermionic
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FIG. 7. (Color online) SMF result for a three-dimensional
Hubbard cluster of size 4×4×4, compared to a 2D (4×4) and 1D
(Ns = 4) cluster (see inset for the initial state). The dynamics of the
leftmost site (bold dot) occupation are shown and compared to the
TDHF result (3D case, dashed line). The SMF calculation are done
using 104 initial conditions.
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systems into an empty optical lattice has been studied before
for various setups, see, e.g., Ref. [5] and references therein.
While our results are performed for a closed system, they
indicate that details of the expansion with free boundaries
might also vary with the system dimensionality.

V. CONCLUSION

In summary, we studied the ultrafast dynamics of finite
spatially inhomogeneous fermionic Hubbard clusters with up
to 512 sites in one, two, and three dimensions driven far from
equilibrium. The results should be of interest for experiments
and simulations of fermions in optical lattices, in particular for
time-dependent expansion processes or quenches. Aside from
these experimental situations our method should also allow
to contribute to the understanding of fundamental theoretical
questions such as the occurrence of thermalization [33] and
its dependence on the systems size [34]. These studies were
restricted to one-dimensional systems, and our approach brings
the question of the dependence on the dimensionality within
reach.

In this paper, we applied a stochastic mean-field approach
where first a phase-space sampling of collective degrees
of freedom is performed, followed by a set of simple
time-dependent mean-field evolutions. We demonstrated that
SMF significantly improves the mean-field dynamics—which
rapidly fail already at weak coupling—by incorporating the
effect of initial fluctuations of one-body degrees of freedom.
Despite the fact that only a mean-field evolution is required,
SMF can treat correlations and works very well, especially
in the weak coupling regime. The main advantage is the
very efficient inclusion of correlation effects via Monte
Carlo sampling, which overcomes the unfavorable exponential
scaling of wave function based approaches and allows to
access large systems of arbitrary dimensionality. Here, the
approach is implemented in its simplest form, i.e., starting
from an uncorrelated state, where correlations are incorporated
via Gaussian fluctuations of the initial site occupations. This,
naturally, limits the method to the initial time stage, t � τcor ∼
1/U , yet this regime is particularly interesting and difficult to
treat since here correlations are being built up dynamically and
Markovian approximations fail [31,32]. Extensions to longer
times or/and stronger couplings seem to be straightforward,
e.g., by inclusion of pairing correlations [23] or via time-
dependent fluctuations. Finally, it is straightforward to extend
the method to two-time fluctuations paving the way towards a
stochastic approach to nonequilibrium Green function.

APPENDIX A: DETAILED DISCUSSION ON EQ. (4)

In the main text, we discuss two approaches to the time
evolution of the one-body density matrix (see also Fig. 1): The
first is for the density matrix ρ, Eq. (1). Here, ρ is associated
to the reduced one-particle density operator that is derived
from the full N -particle density operator of the system [13],
ρ̂ = NTr2...N ρ̂1...N . Equation (1) is standard text book material
(see Eq. (3.20) of Ref. [13]). The second approach is to express
the correlation terms via fluctuations. Here, we outline the
main steps leading to Eq. (4).

We start with the one-particle density matrix operator n̂ij ≡
â
†
i âj defined in terms of standard bosonic or fermionic creation

and annihilation operators with respect to an arbitrary single-
particle basis. Note that no ensemble averaging is applied yet.

The dynamics of n̂ij is given by the Heisenberg equation

i∂t n̂ij (t) = −Û †(t,t0)[Ĥ (t),n̂ij ]−Û (t,t0),

n̂ij := n̂ij (t0), (A1)

where Û is the time evolution operator and Ĥ (t) the system
Hamiltonian written in second quantization as

Ĥ = T̂ + V̂ + Ŵ , (A2)

T̂ + V̂ =
∑
ij

â
†
i (tij + vij (t))âj , (A3)

Ŵ = 1

2

∑
ijkl

â
†
i â

†
j wijkl âl âk. (A4)

Using these expressions and the (anti)commutation relations
of the operators â

†
i and âj , the commutator in (A1) is

straightforwardly evaluated, with the result

i∂t n̂(t) = [n̂(t),{t∗ + v∗
H(t) + Û±

H(t)}]−. (A5)

Here, we introduced bold notation for matrices of one-
body operators, n̂ ≡ n̂ij , and the subscript H designates a
Heisenberg operator, i.e., ÂH ≡ Û †(t,t0)Â Û (t,t0). Further-
more, the (antisymmetrized) induced potential appearing
in (A5) is given by

Û±
kj =

∑
ln

wjnkl ± wjnlk

2
{n̂nl ∓ δ̂ln}. (A6)

The final step is to perform an ensemble average of Eq. (A5),
where we denote the average of an operator by 〈Â〉 ≡ A and
express the two-operator average via the fluctuations 〈ÂB̂〉 =
AB + 〈δÂδB̂〉, where δÂ = Â − A. With these definitions,
the ensemble average of Eq. (A5) is given by

i∂tn(t) − [n(t),t∗ + v∗
H(t) + U±

H(t)]−

= 〈[δn̂(t),δÛ±
H(t)]−〉 ≡ Icor(t). (A7)

The commutator on the left describes the mean-field dynamics
(denoted IMF in the main text), the term on the right is related
to all contributions beyond mean field, i.e., to correlations.

Equation (A7) corresponds to Eq. (4) in the main text,
where the short operator notation UHF is being used for the
Heisenberg matrix U±

H, and ρ is being used for the Heisenberg
matrix n. While Eq. (A7) is an equation for ensemble averaged
quantities (corresponding to the left part of Fig. 1), Eq. (4)
replaces the ensemble average by a classical average n over
random realizations n(n), as is illustrated by the right part
of Fig. 1.

APPENDIX B: EQUATION OF MOTION
FOR THE UNRESTRICTED DYNAMICS

First, we write the TDHF equation allowing for a possible
spin symmetry break by introducing the density matrix
components in both spin sectors. The up and down components
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of the density matrix read

nij↑ = 〈c†j↑ci↑〉, nij↓ = 〈c†j↓ci↓〉. (B1)

Starting from the Hubbard Hamiltonian for Ns = M , the two
coupled mean-field equations of motion in the unrestricted
case are given by:

i∂tnij↑ = −J {n(i+1)j↑(1 − δiM ) − ni(j−1)↑(1 − δj1)

+ n(i−1)j↑(1 − δi1) − ni(j+1)↑(1 − δjM )}
+U (nii↓ − njj↓)nij↑,

and

i∂tnij↓ = −J {n(i+1)j↓(1 − δiM ) − ni(j−1)↓(1 − δj1)

+ n(i−1)j↓(1 − δi1) − ni(j+1)↓(1 − δjM )}
+U (nii↑ − njj↑)nij↓.

It can be checked that the mean-field energy, given by

EMF = −J
∑

i,σ=↑,↓
[n(i+1)iσ (1 − δiM ) + n(i−1)iσ (1 − δi1)]

+U
∑

i

nii↑nii↓, (B2)

is a constant of motion. For the unrestricted dynamics, the
SMF is implemented using the initial fluctuations:

δnij↑δnkl↓ = 0,

δnij↑δnkl↑ = 1
2δilδjk[ñi↑(1 − ñj↑) + ñj↑(1 − ñi↑)],

δnij↓δnkl↓ = 1
2δilδjk[ñi↓(1 − ñj↓) + ñj↓(1 − ñi↓)].

These fluctuations are complemented by

nij↑ = δij ñi↑,nij↓ = δij ñi↓.
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Nature (London) 415, 39 (2002).
[30] K.-J. Schmitt, P.-G. Reinhard, and C. Toepffer, Z. Phys. A 336,

123 (1990).
[31] M. Bonitz and D. Kremp, Phys. Lett. A 212, 83 (1996),
[32] M. Bonitz, D. Kremp, D. C. Scott, R. Binder, W. D. Kraeft, and
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