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The Hubbard model is a prototype for strongly correlated many-particle systems, including electrons in
condensed matter and molecules, as well as for fermions or bosons in optical lattices. While the equilibrium
properties of these systems have been studied in detail, the nonequilibrium dynamics following a strong
nonperturbative excitation only recently came into the focus of experiments and theory. It is of particular
interest how the dynamics depend on the coupling strength and on the particle number and whether there exist
universal features in the time evolution. Here, we present results for the dynamics of finite Hubbard clusters based
on a self-consistent nonequilibrium Green functions (NEGF) approach invoking the generalized Kadanoff-Baym
ansatz (GKBA). We discuss the conserving properties of the GKBA with Hartree-Fock propagators in detail and
present a generalized form of the energy conservation criterion of Baym and Kadanoff for NEGF. Furthermore, we
demonstrate that the HF-GKBA cures some artifacts of prior two-time NEGF simulations. Besides, this approach
substantially speeds up the numerical calculations and thus presents the capability to study comparatively large
systems and to extend the analysis to long times allowing for an accurate computation of the excitation spectrum
via time propagation. Our data obtained within the second Born approximation compare favorably with exact
diagonalization results (available for up to 13 particles) and are expected to have predictive capability for
substantially larger systems in the weak-coupling limit.
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I. INTRODUCTION

Strongly correlated quantum systems and materials, e.g. [1],
are of rapidly growing relevance in many fields of physics and
chemistry. Especially the out-of-equilibrium dynamics are of
great current interest in solid-state, atomic, and molecular
physics, in nanoelectronics, quantum transport, etc. In all
these fields, the availability of intense and coherent radiation,
combined with ultrashort laser pulses, has triggered many
key experiments that allow one to investigate matter under
extreme nonequilibrium conditions where strong correlations
and nonlinear effects occur simultaneously [2]. Examples are
the photoionization of multielectron atoms and molecules,
e.g., [3,4] and references therein. Another example is the
many-body dynamics of particles in lattice systems in con-
densed matter, e.g., [5-7], and optical lattices [8] following a
rapid quench of the interaction strength.

From the theoretical point of view, such systems pose par-
ticular challenges since quantum, spin, and strong correlation
effects have to be treated self-consistently under situations far
from the ground state or from thermodynamic equilibrium.
Here, remarkable progress has been achieved recently using
ab initio methods such as exact diagonalization, density matrix
renormalization group approaches, nonequilibrium dynamical
mean field theory [6], iterative path integral techniques [9],
and others. The common problem of these approaches is an
exponential scaling with the particle number and restrictions
with respect to the duration of the time propagation.

For this reason, alternative approaches that are based on
statistical methods are of high interest. This includes density
operator methods, e.g., [10—12], nonequilibrium Green func-
tion (NEGF) techniques, and a recently developed stochastic
mean field approach [13,14]. Here, we focus on the NEGF
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method which, during the past 15 years, has been successfully
applied to a variety of many-body systems in nonequilibrium,
including the optical excitation of electron-hole plasmas in
semiconductors [15,16], nuclear collisions [17], dynamics of
laser plasmas [18,19], and the problem of baryogenesis in
cosmology [20]. More recently, NEGF methods have also
been used to describe finite spatially inhomogeneous systems,
including the carrier dynamics and carrier-phonon interaction
in quantum dots and quantum wells [24-27], molecular
transport in contact with leads, e.g., [28,29,42], or small atom:s,
e.g., [30-32]. For a recent overview on NEGF applications to
inhomogeneous systems, see Refs. [33,34].

Applications of NEGF methods to small Hubbard clusters
have been presented not long ago [35,36] and showed the
great potential of this method. The physical features that could
be explored include the relaxation dynamics, the excitation
spectrum, and in particular, the relevance of double excita-
tions [37,38]. At the same time, NEGF simulations exhibited
fundamental problems: The first is of conceptual nature and
is related to unphysical damping effects in the case of strong
excitation which are absent in exact calculations [35]. The sec-
ond is the computational difficulty due to the strong increase
of CPU time and memory demand with increased propagation
time which limits the spectral resolution and the duration of
nonequilibrium calculations. We have recently presented an
idea on how to overcome the first and substantially weaken
the second problem: invoking the generalized Kadanoff-Baym
ansatz (GKBA) of Lipavsky et al. [39]. This concept was tested
on the level of second-order Born self-energies for the example
of a one-dimensional (1D) Hubbard cluster containing just
two sites and two electrons because here comparisons with
available exact diagonalization methods are easily possible;
cf. [12,40,41].

Based on these encouraging first results, in this paper, we
present a systematic analysis of the HF-GKBA approach in
application to Hubbard nanoclusters. We discuss fundamental

©2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.90.125111

HERMANNS, SCHLUNZEN, AND BONITZ

Cy #

P 1 PR s
00 T Il
} } 00
! t 4
—oo -} } —_ =

C_ 22

FIG. 1. Schwinger/Keldysh contour C. The C. branch starts from
—oo0 running in positive direction up to 0o; the C_ branch starts from
oo and leads in negative direction to —oco. Note that on the contour
the marked time z, is later than z,, although the corresponding times
on the real-time axis satisfy #; > ;.

questions such as the issue of total energy conservation and
we extend our previous results to larger systems. This issue
has regained importance since the idea to use the GKBA in
NEGF calculations has recently been taken up for charge
dynamics in molecular junctions [42] and the dynamics of
localization in 1D Hubbard chains [43]. While Bar Lev
et al. [43] used Hartree-Fock propagators Stefanucci et al. [42]
used the GKBA in combination with Hartree-Fock as well as
damped propagators. Here, we demonstrate that only the use of
Hartree-Fock propagators (HF-GKBA) retains the conserving
properties of the original self-energy. The constraints on the
propagators are reformulated giving rise to a generalization
and relaxation of the well-known energy conservation criteria
of Baym and Kadanoff [46,47].

We, furthermore, report excellent numerical behavior (long-
time stability of the propagation) of the HF-GKBA and confirm
the advantageous scaling with the propagation time (~T2,
compared to T3 in full two-time NEGF simulations [40]).
Comparing to exact diagonalization results, we conclude that
the HF-GKBA with second Born self-energies is very accurate
for weak coupling, for a time duration substantially larger than
that of time-dependent Hartree-Fock and that this time range
increases with the particle number. Finally, we use the HF-
GKBA to study the short-time dynamics of Hubbard clusters
and present applications to larger systems.

This paper is organized as follows: In Sec. II, we recall
the basics of the nonequilibrium Green functions approach.
The transition to a single-time description with the help of
the GKBA is discussed in Sec. III, where we also discuss
its conserving character, in dependence on the choice of the
propagators. Our numerical results for finite Hubbard clusters
are presented in Sec. IV.

II. NONEQUILIBRIUM GREEN FUNCTIONS

To describe correlation effects and excitations in quantum
many-particle systems, the NEGF approach has proven very
successful, as it allows for a systematical inclusion of cor-
relations by diagrammatic expansions. In contrast to density
matrix based schemes, the Green function method additionally
offers direct access to the spectral information as well as
particle removal and addition energies. The main quantity is
the one-particle Green function, defined as (we set A = 1)

G(z.7) = —i(T [V ()W (2)]), (1

where the brackets denote thermodynamic averaging and
7Tc is the time-ordering operator on the Schwinger-Keldysh
round-trip contour [44] C, on which the times z and 7' are
defined; see Fig. 1. ¥ denotes a one-particle annihilation
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(creation) operator in an arbitrary one-particle basis in second
quantization. To simplify the notation we suppress the orbital
index i regarding WM as vectors W — WM. Correspond-
ingly, the Green function (1) is understood as a matrix with
components G;;.

For a quantum system of N particles in nonequilibrium, the
generic time-dependent Hamiltonian is given by

b

. N 1. . .
A = hi+2 Y Vi hio) =L+ 0. @
i=l1 i#j

In second quantization, this expression attains the form
H(1) = VOOV + 39 OV OVOYOW@),  G)

where h(¢) denotes the one-particle Hamiltonian including
an external potential, and V(¢) is an arbitrary (possibly
time-dependent) pair-interaction potential (here # and V are
understood as matrices 4;; and V;jy, respectively).

The equations of motion for G are the first equation of the
Martin-Schwinger hierarchy [45] and its adjoint,

[i0, — h(2)]1G(z,Z)

=d8c(z—2)+ f dz W(z,2) GP(zz; 771), 4)
C

G(z,2)[—id" —h(z)]
=8c(z —2)+ f dzW(,2)GP(zz7; 77), (5)
C

where W(z,z') = V(2)8c(z — Z), and 8¢ is a delta function on
the contour C. The Martin-Schwinger hierarchy is equivalent
to the exact many-body problem, describing the coupling of the
evolution of the one-particle Green function to the two-particle
Green function,

GP(2122; 2)75) = —(Te[W (@)W ()W (D)), (6)

which itself is coupled to the three-particle Green function by
a similar equation (the Bethe-Salpeter equation) and so on.
To solve this hierarchy and to make it numerically tractable,
a formal decoupling is performed by introducing the self-
energy 2(z,7') = X[G(z,z')] which is a functional of the
single-particle Green function. This self-energy can be found
from a diagrammatic expansion in terms of Feynman diagrams,
where only some classes of diagrams are chosen according to
the properties of the examined system. With this, the equations
of motion (4) and (5) become formally closed equations for G:

[i0; — h(2)]G(z,2)

ez — )+ / 4z T[G12)GED), (D)
C

G(z,2)[—id% — h(z)]
= ez—)+ / 4z GG, B
C

which are the Keldysh-Kadanoff-Baym equations (KBE). The
KBE are—in principle—exact equations of motion of the
many-body system would the self-energy be exactly known.
This is the case only for a limited number of models. In general,
therefore, one has to resort to many-body approximations for
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FIG. 2. (a) Set of nonequilibrium Feynman diagrams used in
the present work. From left: Hartree, Fock, and second-order Born
(direct and exchange) self-energy. Wiggly lines denote the interaction
potential; full lines are two-time Green functions. (b) When the
HF-GKBA is applied, all full lines are replaced via Hartree-Fock
Green functions, Egs. (17), (18) (thin lines). (c) Nonvanishing
diagrams used in the HF-GKBA calculations for the Hubbard clusters.
The exchange diagrams (gray lines) do not appear.

the self-energy. Baym and Kadanoff have shown how to select
approximations that obey the conservation laws [46,47], which
we will discuss in Sec. III. The simplest approximation is the
Hartree-Fock (HF) approximation where correlations are ne-
glected entirely. It is commonly expected that this is a reason-
able approximation for weak coupling. Nevertheless, we will
see that, even for small coupling strength, in some nonequilib-
rium situations correlation effects may play a crucial role, in
particular, for the long-time behavior. Among the higher order
self-energies, we mention the second(-order) Born (2B), GW,
or T-matrix approximation [10]. In this paper, we will focus
on the second-order Born approximation shown diagrammati-
cally in Fig. 2, as it allows for long-time simulations. Note that,
due to the particular nature of the interaction in the Hubbard
model, the Fock and the 2B-exchange diagrams (gray, second
and fourth) vanish. For the treatment of Hubbard nanoclusters
in higher order approximations, we refer to Ref. [36]. The
remarkable property of the NEGF theory is that, via utilization
of the round-trip contour [44], all approximations known from
ground-state theory and thermodynamic equilibrium situations
remain fully valid in nonequilibrium, including slow and rapid
processes as well as weak and strong excitation.

The direct numerical solution of the KBE (7) and (8) is
now routine, e.g., [10,33,34,48] and references therein. After
preparing a correlated initial state, e.g., [49,50], the system is
propagated in the two-time plane by computing the NEGF as
a function of both time arguments. Due to the time-memory
structure of the collision integral in Egs. (7) and (8), the NEGF
at all times and for all values of the orbital (site and spin)
indices have to be stored in memory [51]. Here, substantial
advances could be recently achieved via a sophisticated
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program structure and parallelization [31,32]. Nevertheless,
the computational requirements for the KBE solutions exhibit
an unfavorable cubic scaling with time [40]. Clearly, this limits
the duration of propagation in nonequilibrium as well as the
accuracy and resolution of the computed energy spectra that
are obtained from a Fourier transform (time integral over the
whole simulation). To overcome these limitations and make the
long-time calculations feasible, we will apply the generalized
Kadanoff-Baym ansatz (GKBA) which leads to a quadratic
scaling with time and also has a number of other attractive
features. This ansatz is discussed in detail in the next section.

III. THE GENERALIZED KADANOFF-BAYM ANSATZ

The one-particle Green functions appearing in Eqs. (4)
and (5) depend on two times z,z’ both of which can be located
on either the upper or lower branch of the contour C; cf.
Fig. 1. We note that we do not use a contour with a third
(vertical imaginary) branch to produce a correlated initial state,
e.g., [33,50]. Instead, we will prepare this state by an initial
real-time propagation during which the interaction is turned
on adiabatically, e.g., [17,40]. Thus G(z,z’) on C represents a
2 x 2 matrix, i.e., 4 functions with two conventional real-time
arguments #,1. Two of these functions are independent. It is
common to use the following definitions for the correlation
(>, <) and retarded (R) and advanced (A) functions:

G50y = ilw]a)wi ), ©)
G5 (1.1 = —i(W;()Wi)), (10)

GYA1) = 201+t — G (1.") — G5.)]. (1)

To make the relations to the field operators clear, we tem-
porarily restored the orbital indices i, j. In the following, these
indices will be suppressed again; i.e., G and ¥ have to be
understood as matrices G;; and X;;. The equations of motion
for the correlation functions GZ and the propagators GR/4
follow directly from the KBE (7) and (8) on the contour C,
applying the Langreth-Wilkins rules, e.g., [33,52]. For the
correlation functions, we have

[id, — h(1)]G=(z,1")

= /df{zR(t,aG<(f,ﬂ)+ T<(t,0)GA 1)),

/ (12)
G=(t,/)[—id" — h@®)]
= /df{GR(z,ﬂ2<(f,t’)+G<(r,f)2A(f,t’)},
[i9, — h(1)]IG™ (1,1")
= /dt'{ER(t,t')G>(t',t’)+ =7 (1,0 G},
(13)

G”(t,/)[—id" — h@®)]

= /dt'{GR(t,t')E>(t',t’)+G>(t,t')EA(t',t/)},
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where the components “R/A” and “2” of X are defined
analogously to those of G. The propagators satisfy

[id, — h(HIGNA(t,1)

=80t —1)+ / di VA1, nHGNAGL ),

(14)
GNAt,H[=id" = h(1)]

=8(t—1)+ / di GMA 1, H=NAG ).

Lipavsky et al. [39] have shown that the KBE for G< are
equivalent to an integral equation (t > ¢’ > tg),

G=(t,t")y = —=G"(t,t)p(t)

t t
+/ d?/ di GR(t,H==(F,HGA (.1
t Io

t t
N / di f di GR(t.HEREDG=(.1),  (15)
t fo

whereas for g <t < t/,

G=(t,1") = p()G* (1.1

t t
—/ d?/ di GRt, )=, )G (7.1
t 1)

—/ d?/ di G=(t,H=AT,DHGAE, ). (16)

Note that by exchanging (<< >) and replacing the density
matrix p =: f=~ by f~ =1— f= in Egs. (15) and (16), the
analogous expression for G~ is easily obtained. Details of the
derivation can be found in Ref. [40].

A. GKBA

While expressions (15) and (16) are still exact (within the
chosen approximation for X) they contain the unknown two-
time function G= also under the integral on the right-hand
side. Therefore, one can attempt to solve the integral equation
up to second order, approximating G = under the integral just
by the first term:

Gapnt.t) = =GR F2() + FROGA ). (17)

This is the generalized Kadanoff-Baym ansatz (GKBA) of
Lipavsky, Spi¢ka, and Velicky which is exact on the time
diagonal, ¢ = ¢’. The importance of this equation lies in the
fact that it provides a means for the reconstruction—though
approximately—of the off-diagonal Green functions (i.e., for
arguments t # t') from single-time quantities such as the
density matrix f<. Note that the argument of fZ is not
the mean of the two times appearing on the left but always
the earlier of the two times. This means the GKBA retains
the retardation structure (memory) of the collision integrals
and thus obeys causality, which turns out to be crucial for the
conservation properties; see Sec. III C.

Note that Eq. (17) indicates that the GKBA is only formally
closed in terms of p(¢), since it still involves two-time
quantities—the retarded (advanced) propagators GR (G*4).
These functions obey equations of motion of similar com-
plexity as GZ(z,t'); cf. Eq. (14). To make further progress,
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one can use approximate propagators that are not computed
self-consistently with GZ(z,1").

B. Hartree-Fock GKBA

In this paper, we approximate the propagators by Hartree-
Fock propagators, GRA — GR2, that are obtained from the
solution of the KBE (14) with the replacement SRA 5 EEQA,
with the solution (7 is the causal time-ordering operator)

GRA(1) = FiO[£(t — )T [exp (—i / a7 H@ﬂ,
(18)

where H denotes the Hartree-Fock (mean-field) Hamiltonian,

H(t) = h(t) + Zur(t), 19)

=: ho + Znr(?) (20)

that contains the time-dependent external field [via h(f)]
and interaction effects via the Hartree-Fock (mean field)
self-energy Xpyg(7) that self-consistently involves the time—
dependent density matrix. For later purposes, we also in-
troduced the definition ¥yr for the sum of Hartree-Fock
self-energy and external field, with & being just the stationary
single-particle energy (kinetic plus potential energy).

Approximation (18), together with the GKBA, Eq. (17),
will be called Hartree-Fock GKBA (HF-GKBA). One mo-
tivation of this choice is that, in the special case that the
system is treated within the HF approximation (neglecting the
correlation contribution, X, = 0), the HF-GKBA is exact;
i.e., Eqgs. (17) and (18) provide the exact solution for G<
which is readily confirmed by direct solution of the KBE (12)
and (13) in Hartree-Fock. Note that HF-GKBA can be used
for an arbitrary correlation self-energy X.o.. The example of
the T-matrix self-energy will be briefly discussed in Sec. V.

Let us now have a closer look at the HF-GKBA for the
case that correlations are taken into account and discuss its
consequences. The Dyson equation for the full Green function
on the contour C can be written as

G = Gig + Gia(Znr + Zckea + AT)G, 2D

where G4 denotes the ideal Green function of the uncorrelated
and field-free system. As discussed in Ref. [23], this equation
can be decomposed into several coupled integral equations that
allow us to construct the full Green function in steps. Here,
we choose to split off the correlation self-energy and introduce
the HF-Green function according to

Gur = Gia + Gia ZurGr, (22)
Ggkea = Gur + GurXckeaGGkBA» (23)
G = Ggkea + GokBaAZ G. 24)

We defined Xgkpa as the correlation self-energy in which
all two-time functions are reconstructed according to the HF-
GKBA, Egs. (17) and (18); thus, Zgkea = Zeorl f2,GRA].
The deviation of the full self-energy from this approximation
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has been denoted AY = Y., — Xgkpa and contains terms
with one, two, and three full propagators and G®*, respec-
tively. Thus, the Green function computed within the HF-
GKBA is given by Eq. (23), containing renormalizations by
the Hartree-Fock self-energy and the second Born self-energy
with propagators on the Hartree-Fock level. In contrast, the
full Green function G that is computed by a full two-time
calculation (i.e., without the GKBA) has undergone another
renormalization given by Eq. (24). In addition to Ggkga, the
function G contains contributions from AX to all orders, so
the difference of the two is given by the infinite series

G — Ggkea = GgkBaAX Ggkaa
+ GokBaAX GgrkBaAX Ggkea + -+, (25)

where each subsequent term adds contributions with up to
three full (renormalized by correlations) propagators GR/A.

The properties of the GKBA have been studied for
macroscopic spatially homogeneous systems [53]. There, it
was found that the GKBA retains the conservation laws of the
original two-time approximation for the self-energy [10,54].
This will be considered in more detail in Sec. IIIC. As to
the accuracy of the GKBA, it was found that this ansatz is
a very good approximation to the full two-time solution if
the exact propagators GRA(z,t') are being used, indicating
that the additional integral contributions in Egs. (15) and (16)
are often of minor importance. In the case of approximate
propagators, good results were obtained with ideal as well as
Hartree-Fock propagators [15]. In contrast, the use of damped
propagators that include imaginary self-energy contributions
violates total energy conservation and leads to an overall
worse performance [55]. The use of the HF-GKBA for finite
Hubbard clusters [40,41] confirms these results. Details will
be presented in Sec. IV.

C. Conservation of total energy

The issue of conserving approximations is of central
importance for the treatment of correlated many-body systems.
This is, in particular, relevant for the many-body dynamics far
from equilibrium. It is an attractive feature of Green functions
theory that conserving approximations are straightforwardly
selected. Baym and Kadanoff [46,47] have formulated a simple
criterion for a NEGF approximation to be conserving that
consists of two conditions:

(A) the single-particle Green function obeys simultane-
ously the KBE and its adjoint, Egs. (4) and (5), and

(B) the two-particle Green function is symmetric with
respect to both particles; i.e.,

GP(1,2;1',2) = GP2,1;2,1").

These conditions easily allow one to select conserving ap-
proximations for the two-particle Green function and the
self-energy.

We now show that, when a conserving approximation for
3 is being used, the subsequent application of the HF-GKBA
does not change the conservation properties. Application of
the GKBA amounts to solving the KBE only along the time
diagonal, z = 7. The corresponding equation of motion for
G(z,z) is obtained by computing the difference of the KBE
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and its adjoint, Egs. (4) and (5), cf. Ref. [46],
{i(0;, +9:) — [H(z1) — HDNG (21,272, =2

= 4i [Cdzz[V(zl —22) — V() — 22)]

2 —
xGO(z1.25 21,23z =2} (26)

where, in the end, z} =z; is set, and we introduced the

correlation part of the two-particle Green function, G2, =

G? — Gg}l [recall that H contains the Hartree-Fock self-
energy; cf. Eq. (20)]. By construction, the solution G(z,z)
fulfills condition A.

Consider now condition B. To this end we use the solution
for the correlation part of G that follows from the Bethe-
Salpeter equation. In what follows, it will be sufficient to con-
sider the screened ladder approximation (SCA), Refs. [21,22],

G(z21,22,2),25) = i / dz1dz:G(2121)G(2222)
C

xV(21,2)GP(Z1,22,2),2).  (27)

This equation can be solved by iteration, start-

ing by replacing G®(z1,22,2},25) — Gﬁf);(zl ,22,21,25) =
G(212))G(z225) £ G(z125)G(z22}) under the integral. This
first iteration corresponds to the dynamically screened second
Born approximation (GW) which, obviously, is symmetric in
the labels of particles 1 and 2, in agreement with condition
B. If we now apply the HF-GKBA to each Green function
under the integral, this symmetry is fully retained. Thus, we
have shown that the HF-GKBA for the GW approximation
is conserving. The same applies to the static limit when
V(z1,220) = V(z1)8.(z1 — 22); i.e., the static second Born
approximation is conserving as well when the HF-GKBA is
applied. The same proof applies to the 7-matrix approximation
and to the SCA. To show this, we only need to proceed further
with the iterative procedure for the solution of Eq. (27), either
with the static or dynamic potential. It is easy to realize that
each term of the iteration series has the needed symmetry
1 < 2, resulting in the fulfillment of condition B.

Thus, we conclude that the application of the GKBA to an
arbitrary conserving approximation of NEGF theory does not
change the exchange symmetry, condition B. This symmetry
is also retained when, in addition, the HF approximation for
the propagators (18) is made, and our numerical results for the
HF-GKBA fully confirm total energy conservation. There is,
however, a serious problem with the previous argument. Let
us consider damped propagators; i.e., replace GEQA(I,I’) —
G}RI{:A(t,t/) exp[—y(¢t — t')]. This approximation is known to
violate energy conservation [53,55], although it also clearly
obeys the symmetry 1 <> 2 and, thus, fulfills conditions A
and B. In order to understand the origin of the violation of
energy conservation for the exponentially damped propagators
we, therefore, now first consider a different approach that is
based on density operator theory. We will then return to the
conditions A and B in Sec. III E and resolve this contradiction.

D. Density operator theory and the GKBA

With the application of the HF-GKBA to the KBE, the
problem becomes a closed non-Markovian equation for the
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time-diagonal element of the Green function, i.e., for the
one-particle density matrix. Such an equation can, of course,
be derived independently from a one-time theory of reduced
density matrices. This was first shown in Ref. [10]; see
also Refs. [12,53]. This equivalence is important to identify
the HF-GKBA with standard approximations from density
operators. At the same time, results from density operator
theory, including conservation laws and long-time behavior,
can be used to analyze the properties of the single-time
solutions of the KBE. Finally, we note recent interest in density
operator methods in the context of the relaxation dynamics of
finite Hubbard clusters [11].

We, therefore, briefly recall the concept of the reduced
nonequilibrium density operators

NI
(N =9t
N
(N =9

Fi s = Trg11. NON,

(28)
Try s F1.5 =

where py is the density operator of the full system which
is normalized to unity and Fj_; is the associated s-particle
operator. The equations of motion for the F;_; (BBGKY-
hierarchy) follow from the von Neumann equation for py by
taking the partial trace,

ihd; Fi — [h1,F1] = Trol Vio, Fi2],
ihd; Fio — [ Hio, Fio ] = Trs[ Viz + Vs, Fiosl,  (29)

where the two-particle Hamiltonian is Hi, = hy + hy + Vo,
and the system (29) has to be complemented by initial condi-
tions for F1, Fy, etc. The equations are coupled and form a hi-
erarchy that eventually stops when the right-hand side involves
Fi..n = pn, in analogy to the two-time Martin-Schwinger
hierarchy of NEGF; see Sec. II. As in the case of NEGF, the
hierarchy is usually decoupled at a low level by replacing the
exact F_; by an approximation Ffl_)_};[Fl,...,Flms_l] that is a
functional of the lower order operators. Key approximations of
NEGEF theory, including the second Born approximation [53],
ladder approximation [56], or GW approximation [10], are
readily identified by proper choices for the three-particle
density operator; see also Ref. [12]. Since the density operator
approach does not involve two-time Green functions, full
agreement with NEGF theory requires, in addition, the time-
diagonal limit as provided by the GKBA, and in fact the
GKBA is directly recovered in the theory of reduced density
operators, e.g., [10]. For the present purpose of analyzing
energy conservation, it is sufficient to note that the HF-GKBA
is directly recovered from the system (29). On the other hand,
the GKBA with correlated propagators containing correlation
self-energy contributions X" (such as exponential damping)
leads to a modification of the second hierarchy equation by the
replacement

7 yeff T SN cor
Hp — H12 =Hp+ 212 ,

[Hp, Fiol — H{Y Fiy — FlefgffT (30)

with all other terms left unchanged compared to the HF-
GKBA.
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It is this renormalization of the two-particle Hamiltonian
that destroys the conservation of total energy in the GKBA
with correlated propagators. To show this, we recall the
derivation of conserving approximations in density operator
theory [10,57]; for related issues of density operator theory,
we refer to Refs. [66,67]. We begin with expressing the mean
kinetic, potential, and interaction energy via the one-particle
and two-particle density operators,

A2
P

Fi, (U)=TnUF, 31
2m

(T) =Tr

(V) = ATrpVis Fa. (32)

We now compute the time derivative of kinetic energy using
the first hierarchy equation,

d A L pi+h o
h—{(T) =Tr;—|[ I F =T Via, F
1 dt< ) rlzm[ | 1]-|-2 j§p) m [ Vi2, F12]

N 1 N A
= —Tr Uil h1, F1] + ETTIZ(HIZ = U — Ul Viz, Frz].
(33)
The time derivative of the potential energy follows similarly,

d

ih—
dt

. AU A
(0) = ihTrla—tlFl + T Uy[ hy, Fi]

1 N N N
~|—§Tr12(U] + U)[ Via, F12]. (34)

Finally, the time derivative of the interaction energy is
transformed using the second hierarchy equation with the
replacement (30)

od o1 T
lhz(V) = ETrIZ(HlétFIZ — Flele;T)

1 N N
+§Tr123V12[ Viz + Va3, Finsl. (35)
Collecting the results (33), (34), (35), we obtain, for the
time derivative of the total energy H = T + U + V minus the
power introduced into the system by the external potential,
d a0,

1 N N
—(H) —Try—F) = —Tr13Vi2[ Vi3 + Va3, F
dt< ) 1=, Fr =57 T 12l Vi3 23, F123]

1 cor
+ —2ihTr12(2fng12 — Fp=h).
(36)

For a conserving approximation, the right-hand side has to
be equal to zero. The first term vanishes if the three-particle
density operator is symmetric with respect to the particle
indices, Fj3(t) = Fi32(t) = F3,1(¢), at all times. This is an
obvious and trivial condition (it is similar to condition B
of NEGF theory for the two-particle Green function; cf.
Sec. III C; here, in the case of single-time operators, it appears
on the three-particle level), and is fulfilled also for the exact
solution.

To verify this symmetry for the second Born approximation,
we first rewrite F,3 in terms of correlation operators (cluster
expansion) and give the corresponding expression for the
pair-correlation operator, details can be found in Refs. [10]
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and [12],
Fioy = A (FIFaFs + Fieas + Facps + Fen),

1
5{1 & Pip & P13 &= Py3 + Pio P13 + Pi3 Pyl

iho, c1p — [Hloz,clz] = VpF F, — Fze‘A/]Tg, 37

+ _
A123 -

where ‘7]2 = (1 + F] + Fz)VIQ, I:I]Oz = I:Ilo + I:Ié) is the two-
particle Hartree-Fock Hamiltonian, and Ali23 is the three-
particle (anti)symmetrization operator. Obviously, this set of
equations assures symmetry of F,3 in the particle indices. This
approximation is equivalent to the HF-GKBA in second Born
approximation; i.e., no renormalization of the two-particle
Hamiltonian (30) is performed.

As noted above, for the HF-GKBA, the second term on the
right-hand side in Eq. (36) is absent and energy conservation
is confirmed for any conserving approximation of two-time
NEGF theory. In contrast, for the GKBA with propagators that
contain correlation self-energies, X, even for a conserving
approximation (with a properly symmetric Fj,3) energy con-
servation is destroyed. In fact, just the anti-Hermitian part of
3" which governs the damping behavior of the propagators,
contributes to the second term on the right-hand side. This
is particularly evident in the Born approximation where
2050 = X7 + X35, and each single-particle propagator Glf/ A
is renormalized by a single-particle correlation self-energy
contribution %7

E. Energy conservation of the GKBA revisited: Relaxing
the conservation criteria of Baym and Kadanoff

After having confirmed energy conservation for the HF-
GKBA and violation thereof for damped propagators within an
independent density operator approach, it remains to establish
how this result can be obtained within NEGF theory. In
particular, the question arises whether conditions A and B
of Baym and Kadanoff are indeed sufficient and necessary for
energy conservation.

We first find out why the symmetry of G, alone (condition
B) does not imply energy conservation of the GKBA for
arbitrary choice of the propagators as it appeared in Sec. III C.
Let us go back to condition A. The strict meaning of the
statement (implied by Baym and Kadanoff) that the Green
function G(z,z’) obeys simultaneously the KBE and its adjoint,
Egs. (4) and (5), is that each of the real-time Keldysh
components G~,G<,G®,G* simultaneously fulfills these
equations. Since only two of these functions are independent
it is sufficient to consider G= and G® which obey the pairs
of equations (12) and (14), respectively. In these equations,
the two-particle Green function is eliminated in favor of the
self-energy Keldysh matrix with the same components £<
and X R/4 and the same link between them:

M) = £O[£E — OIZ;.0) — T5.1)]. (38)

In our argument in Sec. IIIC we used the condition that
G~ fulfills its pair of KBE. But what about GX? In standard
two-time NEGF theory, of course, also GR fulfills its pair. But
this is no longer the case when we apply the GKBA. In this
approximation, the standard relation between GZ and G*/4
is altered and replaced by Eq. (17). This means, G*/4 do not
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follow from the result for G= and G = but obey an independent
equation. In other words, the equation of motion for GR/A
if written again in the standard form (14), will contain a
self-energy L®/A that is independent of ¥ and not given
by Eq. (38). In fact, the GKBA just uses this independence
in favor of a simpler choice for X®A to simplify the calcu-
lations. For example, the HF-GKBA uses just SRA — s HF
whereas the approximation with the exponentially damped
propagators is associated with ¥4 = XHF _ iy where y
is time-independent. Finally, we can establish a connection
with the corresponding approximation for the two-particle
Green function from the standard mapping 2(1,1)G(1,1') <
Tr, W(1,2)G®(12; 12). While the Hartree-Fock self-energy
corresponds to Gg% which is obviously symmetric in the
particle indices, the term y G is associated with a nonsym-
metric function G, This explains the preservation of energy
conservation for the HF-GKBA and its violation for the GKBA
with exponentially damped propagators where both statements
are independent of the original choice of X provided it was
conserving.

We may now use this result to revise the conditions A
and B such that they apply to the GKBA. In fact we can
relax the conditions of the theorem of Baym and Kadanoff
(BKT) such that they cover not only the GKBA but a broader
class of conserving approximations than envisaged originally
in Refs. [46,47].

Theorem. The time dynamics of a system described by the
single-particle Green functions G= and G® connected via a
functional relation G= = G, [G®], with

(A1) GR obeying simultaneously the real-time KBE in-
volving the self-energy ¥;, Eq. (39), and its adjoint,

[i9, — h(DIGVA () = 81t — ')+ / dr A, HGNAT L),
(39)

(A2) G~ obeying simultaneously the real-time KBE in-
volving the self-energy ¥;;, Eq. (40), and its adjoint,

[i8, — h()IG=(t,t)) = /df{z}‘,(t,f)aﬂf,t’)
+I50.DGAE),  (40)

(B) and the two-particle Green functions associated with
Y, and X;; being symmetric with respect to both particles,

ie.,
(@) 1y — D YRV

e e
e te)=byle 2, 1),

is conserving.

Proof. Consider first Eq. (39). This equation is decoupled
from G=. Thus, the symmetry condition B for G; guarantees,
according to the BKT, that Ef/ 4 and hence the dynamics of
G* are conserving. Consider now Eq. (40). It contains %,
which, according to condition B, is conserving. Equation (40),
in addition, contains G® and G*. Since the dynamics of
G®/4 is conserving and the functional relation G, [G*]
is a single-particle relation having the same form for G=(1,1")
and G<(2,2'), we conclude that the coupling to G*/4 does not

destroy the conservation properties of ¥;;. Thus, the problem
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is reduced to the original BKT, and the dynamics of G= is
conserving as well what proves the theorem.

Thus, instead of one self-energy there are now two self-
energies that have to be conserving simultaneously. Obviously,
this version of the theorem reduces to the BKT if the
connection between G = and G X is given by the standard NEGF
relation, Eq. (11) and, consequently, ¥; = ¥;. If the relation
G .,|GR1is given by Eq. (17) we recover the GKBA where
the choice of the retarded propagators is given by X;. Finally,
there exists a whole set of new conserving approximations
(X;,%;;) where the functional relation (17) is replaced by a
different one, G=_ _[GX].

ansatz

IV. RESULTS FOR FINITE HUBBARD CLUSTERS

Let us now apply the NEGF formalism with the HF-GKBA
to the dynamics of standard finite lattice systems described by
the Hubbard model. The purpose of this section is threefold:

(a) to test conceptual questions of the GKBA and the
numerical performance. It has been reported before that two-
time NEGF simulations for small Hubbard clusters exhibit un-
physical damping behavior [58]. Furthermore, approximations
based on density matrices have shown numerical instabilities
in the long-time regime [11]. We will show in Sec. IV B that
these problems do not occur with the HF-GKBA,

(b) to extend the simulations to larger systems where no
exact diagonalization data are available, cf. Sec. IV B, and

(c) to investigate the dynamical relaxation behavior of
small Hubbard clusters at different coupling strengths, cf.
Sec. IVC.

A. Hubbard model and second Born approximation

We consider a finite Hubbard model with N, sites at half
filling (particle number N = N,) with hopping amplitude J
and on-site interaction U. The initial Hamiltonian, for times
t < 0, reads

Ho=—1) 3 &l oo+ 0> agpiy,
(s,s")

s,s") o=, s
+ > firap®) llip, (41)

ij.ap

where s and s’ label the discrete sites, and {s,s") indicates
nearest-neighbor sites. Further, 7i;, = EI,(,EM denotes the
density operator. The last term in Eq. (41) incorporates an
external time-dependent excitation that drives the system out of
equilibrium. Several cases for the choice of the function f will
be specified below. In the following, we will use dimensionless
parameters where energy (time) is measured in units of J (the
inverse hopping amplitude J ~!) and the coupling strength and
field amplitude will be given by U = U/J and f = f/J,
respectively.

In our simulations, we start from a noninteracting initial
state and adiabatically turn on the interactions to reach a fully
correlated state. After this, the external excitation is turned
on. Details on the procedure can be found in Refs. [12,17,41].
We have verified in advance that the switching is slow enough
to avoid any artifacts in the dynamics. In practice, we use a

PHYSICAL REVIEW B 90, 125111 (2014)

Fermi-like switching function

—1
F=1- [1 + exp (#)] 42)

with a switching duration ¢, = 50 and a switching constant
T = 3, which yields sufficiently converged results.

B. Testing the GKBA for small clusters

We start by considering small one-dimensional Hubbard
clusters where exact diagonalization results are available. This
allows for a rigorous test of the HF-GKBA results in its
full time dependence and for a broad variety of excitation
conditions.

Let us first investigate the problem of artificial damping
of the dynamics of Hubbard clusters that was observed in full
two-time KBE simulations when the system was driven far out
of equilibrium [35]. In that reference, at time # > 0, a two-site
Hubbard cluster at half filling is strongly perturbed by a rapid
change of the energy of site “1”, which leads to the following
choice for the last term in the Hamiltonian (41), cf. Ref. [2],
fijap(®) = w0d;18;,184,0(t), where wo = 5.0. The results
are shown in Fig. 3. One clearly sees the rapid damping of

= 2IB]

[ — HF-GKBA  ~— Exact

1

density on site i

1.0 — HF-GKBA  «— Exact  --= Full 2B| |

1

density on site 7

time t [J 1]

FIG. 3. (Color online) Top: Time evolution of the density on site
1 for a 2-site Hubbard model at half filling and U = 1.0 within
HF-GKBA (full red line), compared to the exact result (full black
line with dots) and a two-time second Born calculation (green dashed
line). The HF-GKBA does not exhibit artificial damping, in contrast
to the two-time result. Bottom: The same for a cluster of N, = 8 sites.
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2.0 —— HF-GKBA
} ~— Exact
L o T |l| J
A 1l
LS “
o~ 1
Q 1 :
1
g 1.0 +
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g Y '
< 05+t 1"' ,l{ f" ":I: Il
B W
]
00 ¥, L L L .
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time t [J ']
—— HF-GKBA — Exact —-- Full 2B

1

density on site i

time t [J!]

FIG. 4. (Color online) Top: Density evolution on the leftmost site
for an 8-site Hubbard model at half filling and coupling strength
U = 0.1. Initially all particles were on the leftmost four sites. The
HF-GKBA result (full red line) is compared to the exact one (full
black line with dots) and to Hartree-Fock (dashed blue line with
crosses). Bottom: Same as above, but for a reduced time interval.
Instead of time-dependent HF, a two-time second Born calculation
(green dashed line) is included.

the density on the perturbed site, in the two-time simulation in
the second Born approximation, while the exact result exhibits
a nondecaying dynamics. The HF-GKBA, interestingly, does
not exhibit the damping of the two-time result. Since the
many-body approximations are in both cases identical, the
difference is solely due to the HF-GKBA and the broken
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self-consistency, as was discussed in Sec. III B; cf. Fig. 2. We
note that we observe quantitative deviations from the exact
result which, however, become substantially smaller when the
particle number increases; cf. the figures below. The removal
of the artificial damping is an important generic feature of
the HF-GKBA and was confirmed in all our simulations. The
same behavior is observed when the T-matrix self-energy
is used; see Sec. V. This gives us confidence for applying
this approximation to Hubbard clusters in nonequilibrium, in
particular to larger systems where no exact diagonalization
data are available.

Let us now turn to larger clusters and a more quantitative
comparison with exact data. Figure 4 shows the dynamics of
8 electrons in an §-site Hubbard chain at weak coupling, U =
0.1, starting from a strong nonequilibrium situation where all
particles are confined to the four leftmost sites by applying a
strong confinement potential. At time ¢ = 0, this potential is
removed instantaneously and the dynamics are followed (this
scenario was studied in Ref. [11]). One observes very strong
oscillations of the site occupations as particles move to the
right, towards the originally empty four sites. After about four
periods, these oscillations become anharmonic and continue
with a reduced amplitude. A Hartree-Fock calculation fails
already after about two periods (compare the blue dashed curve
to the exact result), indicating that the dynamics are strongly
influenced by correlation effects. In contrast, our HF-GKBA
approach yields very good agreement with the exact data for
about 7 periods (¢ ~ 60) after which deviations are increasing,
but still most of the features are reproduced qualitatively. In
particular, the dominant frequencies and peak positions are
still captured. Comparing the HF-GKBA to full two-time 2B
results (green dashed line), we even see a better agreement
with the exact solution throughout the whole simulation.

Next, we consider the energy spectrum for this system,
again at weak coupling, U = 0.1 (Fig. 5). This is done by
applying a weak very short external field pulse to site 1,
Jij.ap(t) = w0d;18;;8056(1), wy = 0.01, that excites all pos-
sible transitions. The HF-GKBA allows us to propagate the
system for a long time, until # = 1000, and to compute the
time dependence of all observables. The energy spectrum
is obtained via Fourier transform of the occupation of the
perturbed site, n;(¢), and the results resolve about seven
orders of magnitude. There are two main energy regions.
For frequencies below w =4, all three approximations,
including the Hartree-Fock simulation, show overall very

10*12 IIIII I " """ A ..
= 'a : ’, | A
5 1073 8 /1 -I | | ‘ 3
) YAV TATpI
EI AN Mo/ ;
Sl M \.l/\ LA A g
O b e L . ' A ‘“\'
0.0 05 10 15 20 25 30 35 40 45 50 5.5

frequency o [J]

FIG. 5. (Color online) Energy spectrum for an 8-site Hubbard model at half filling and coupling strength U = 0.1. The HF-GKBA result
(full red line) is compared to the exact one (full black line with dots) and to Hartree-Fock (dashed blue line with crosses).
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FIG. 6. (Color online) Long-time dynamics of a 4-site Hubbard
model at half filling and U = 0.1, following strong excitation, within
HF-GKBA (red), compared to the exact result (black with dots).
Initially all electrons occupy the two leftmost sites. The figures shows
the time evolution of the occupation of the leftmost site.

good agreement. Only a few smaller features—the small side
peaks of the peaks around 1.3 and 2.2 and the little peaks
around w ~ 2.7,3.2,3.6—are missing in the HF calculation,
indicating that these are correlation effects (most likely double
excitations [37]). For frequencies w > 4, the picture changes
completely. Evidently, HF misses all peaks. In contrast, the
HF-GKBA performs impressively well, taking into account
the very low height of the peaks in that range.

After having tested the long-time behavior of the HF-GKBA
in the linear response regime, let us now consider the long-time
behavior in the case of a strong nonperturbative excitation.
The results for a four-site chain at half filling and U = 0.1 are
shown in Fig. 6. The first observation is that the simulations
run stable for the entire duration of t < 500. This is confirmed
by additional tests that are several times longer (not shown)
indicating that previously reported stability problems [11] do
not occur within the HF-GKBA. Further, the comparison with
the exact result shows that the main frequencies are well
reproduced, and even the phase of the oscillations is correct
up to t ~ 180. Yet even at longer times the overall behavior is
well captured, despite the dephasing, and deviations decrease
again strongly; cf., e.g., the behavior around ¢ = 450. At the
same time, quantitative deviations are observed (amplitude of
the oscillations), starting around ¢ ~ 90.

These observations encourage us to extend our simulations
also to larger systems where no exact results are available. In
all cases we confirm that the HF-GKBA is completely stable.
As an example, in Fig. 7, we show the dynamics of a 16-site
system at half filling and U = 0.1 with the same type of strong
nonequilibrium initial conditions (all 16 particles occupy the
8 leftmost sites). The behavior is similar to the dynamics of
the previously studied analogous systems of four and eight
particles; cf. Figs. 6 and 4, respectively. The site occupations
undergo a rapid and violent evolution which is strongly
influenced by correlation effects. Hartree-Fock simulations
reproduce only the first 1.5 periods of the main oscillation
(t < 25). Based on our HF-GKBA results, we can deduce a
number of trends when the particle number is increased: first,
the main oscillation period increases proportionally with N
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FIG. 7. (Color online) Time evolution of the density on the
leftmost site for a 16-site Hubbard model at half filling and U = 0.1
within HF-GKBA (full red line), compared to the HF-result (blue
dashed line with crosses). Initially all particles were at the 8 leftmost
sites.

and, second, the oscillations become increasingly nonlinear.
Since the energy spectrum becomes much more complex
when the system size increases it is presently not possible
to relate this oscillation to a characteristic energy transition.
To shed more light onto the physical processes involved in the
dynamics and the dependence on the coupling strength and
particle number, we will consider an increased set of quantities
below, in Sec. IV C.

Summarizing this first part of the numerical results, we
may conclude that the HF-GKBA is very well suited to study
the dynamics of finite Hubbard clusters in the weak-coupling
regime, thereby (at least partially) overcoming problems of
previous approaches. No unphysical damping and instabilities
are observed. Since the present results are derived from
self-energies in the second-order Born approximation we
have restricted the analysis to weak coupling, U = 0.1. For
moderately larger values of the coupling parameter, still
acceptable results can be obtained, as will be shown below
for U = 0.25.

C. Short-time dynamics: Correlation buildup
and relaxation of site occupations

In the following, we consider the dynamics in the same
strong nonequilibrium situation that was discussed above,
where all N particles are initially placed on the leftmost N /2
sites (half filling). We now look at the behavior of additional
observables. In particular, we follow the time dependence
of the occupations n;(¢) of all initially occupied sites [the
occupations of the N /2 rightmost sites follow by symmetry;
e.g.,ny(t)=1—n),ny_1(t) =1 — ny(t), and so on].

The typical dynamics can be seen in the bottom panel of
Fig. 8 displaying exact diagonalization results for the N = 8
site chain at weak coupling, U = 0.1. Due to Pauli blocking,
initially, only electrons from site 4 can move to the right
whereas electrons from site 3 (2) can only follow when site 4
(3) is being depopulated. This time delay in the depopulation
is clearly visible. Interestingly, the rightmost site (4) is only
depopulated half and sites 3 and 2 even less. Depopulation
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FIG. 8. (Color online) Time evolution of the 8-site Hubbard
model at half filling and U = 0.1. Initially, all particles were at the
4 leftmost sites. Top figure: Exact diagonalization. Bottom figure:
HF-GKBA result. Upper panels of both figures show the dynamics of
kinetic, Hartree-Fock, and correlation energy; bottom panels of both
figures show the occupation of the four leftmost sites.

of the leftmost site (1) sets in last but proceeds to the lowest
value of all sites (close to zero). This is easy to understand:
while the population of sites 2—4 is increased again by newly
incoming particles from the left, no such incoming flux exists
at the boundary of the chain (site 1). After a very short time,
t & 4, the rightmost site (8) is almost fully occupied; i.e., the
electron wave has reached the right border after which it is
being reflected. Subsequently, a strongly nonlinear oscillatory
dynamics of the site occupations occurs that is damped until
the occupations reach the stationary values of a homogeneous
system (n; = 0.5,i = 1...8),around ¢ = 50. This, however, is
not a true stationary system, as our finite system has a reversible
dynamics and, consequently, we clearly observe, at later times,
a strong departure from the homogeneous configuration.

Itis interesting to consider, besides the occupations, also the
different contributions to the total energy (note that total energy
is conserved to very high accuracy) of the system which are
shown in the top panel of Fig. 8. In the initial state, the system
has only mean-field (Hartree-Fock) energy. Both kinetic and
correlation energy are exactly zero. When the occupied sites
get depopulated, we observe a rapid increase of kinetic energy
which is almost completely compensated by a loss of HF
energy. Kinetic energy reaches its maximum (the particle
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FIG. 9. (Color online) Same as Fig. 8 but for U = 0.25. Top
figure: Exact diagonalization calculation. Bottom figure: HF-GKBA.

current is largest) around ¢ = # ~ 3 after which it decreases
again and continues to oscillate. It is interesting to note that
this (first) maximum of kinetic energy is reached when the
population of the leftmost is decreased to 0.5. This is observed
in all simulations, independent of the coupling strength. Thus,
this is a propagation effect resulting from the nonequilibrium
inhomogeneous initial condition and constitutes the shortest
time scale we observe in our simulations (‘“phase 1”).

The second time scale that is apparent from the energy
relaxation (“phase II) is characterized by a formation of
correlation energy and a decay and saturation of Hartree-
Fock energy which is reached around ¢ = f; ~ 25. After
this time, no qualitative changes of the energy dynamics are
observed, aside from nonlinear oscillations of kinetic and
correlation energy that occur with almost exactly opposite
time derivatives. More characteristic for this phase III is the
relaxation of the site occupations which terminates around
t = 1 & 50, followed by a longer phase IV of occupation
revivals, as mentioned above. In the following, we will analyze
whether these four phases are visible also for other values of
the coupling.

Consider now Fig. 9, where the dynamics for the same
conditions are shown, but for the larger coupling strength U =
0.25. Again, we observe the rapid depopulation of the sites
(phase I) and associated relaxation of kinetic and Hartree-Fock
energy, with the same characteristic time # ~ 3. The main
difference, compared to the case U = 0.1, is the more rapid
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FIG. 10. (Color online) Same as Fig. 8 but for U = 1. Exact
diagonalization calculation.

saturation of HF energy and buildup of correlation energy
(phase II) terminating around #; ~ 15. The relaxation of the
occupations (phase III) lasts again until + = #; ~ 50.

Finally, we consider the case U = 1.0; cf. Fig. 10. As
before, phase I has a duration of # = 3. The relaxation of
the occupations now takes slightly longer, until ¢ = fiy &~ 75.
The most striking difference to the previous cases, however,
is in the dynamics of the correlation energy. Here, buildup
of correlations is essentially over around ¢ = 5 whereas the
Hartree-Fock energy saturates only around #; ~ 15.

We now turn to larger particle numbers. Here, no exact
diagonalization results are available and we have to resort to the
HF-GKBA approximation. Based on the analysis of Sec. IV B,
we expect that this approximation is reliable in the case of
weak coupling. This can be verified directly for the presently
computed quantities by comparing the HF-GKBA dynamics
for an 8-particle Hubbard chain with the exact diagonalization
results. To this end, the HF-GKBA results for U = 0.1 and
U = 0.25 are also shown in Figs. 8 and 9; cf. the lower figure
parts. For U = 0.1, the exact behavior of the occupations and
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FIG. 11. (Color online) Time evolution of the 16-site Hubbard
model at half filling and U = 0.1. Initially all particles were at the
8 leftmost sites. Top panel: Dynamics of total energy (conserved),
as well as of kinetic, Hartree-Fock, and correlation energy. Bottom
panels: Occupation of the four leftmost sites. HF-GKBA result.
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FIG. 12. (Color online) Time evolution of the 16-site Hubbard
model at half filling and U = 0.25. Initially all particles were at the
8 leftmost sites. Top panel: Dynamics of total energy (conserved),
as well as of kinetic, Hartree-Fock, and correlation energy. Bottom
panels: Four leftmost sites. HF-GKBA result.

energy contributions during phases I and 1II is very accurately
reproduced. At the later stages deviations occur. Starting
around ¢ = 20 the kinetic and correlation energy evolve much
more smoothly than in the exact calculation. At the same time,
the evolution of the site occupations is correct also during
phase III, until ¢ ~ 60, after which the GKBA occupations
become significantly more violent than in the exact case.
At U = 0.25, the GKBA shows the correct behavior only
until # ~ 25; i.e., with increasing coupling, deviations between
exact diagonalization and HF-GKBA grow more rapidly.

Based on these observations, we can now study the case
of N = 16 particles, where we limit ourselves to U = 0.1
and U = 0.25; the results are shown in Figs. 11 and 12,
respectively. The general observation is that the dynamics
for N = 16 are much less violent than for N = 8, and the
different stages are longer. In particular, the decay of n; to 0.5
and the associated increase of kinetic energy take substantially
longer, until # & 5. The reason is that now 8 sites have to be
depopulated (essentially sequentially), which takes longer than
for four sites. Also, the buildup of correlation energy and the
saturation of the Hartree-Fock energy (phase II) takes longer,
approximately until #; = 40. In contrast, the first relaxation
of the populations to the homogeneous value 0.5 takes until
tin ~ 50, as in the case of 8 particles.

For N =16 and U = 0.25, we again observe a slower
increase of kinetic energy (phase I, f1 & 5) in agreement with
the case U = 0.1. Again, correlation energy builds up slower
than for eight particles (phase II), but here the time scale
appears to be shorter than for U = 0.1 (¢ =~ 25), although
this result is less reliable.

V. SUMMARY AND DISCUSSION

In this paper, we have applied nonequilibrium Green
functions simulations to the dynamics of small Hubbard
clusters following strong excitations. In order to access larger
times on the order of several 100 to 1000 inverse hopping
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amplitudes, we applied the generalized Kadanoff-Baym ansatz
with Hartree-Fock propagators (HF-GKBA). This ansatz
reduced the dynamics to a single-time dynamics while at
the same time fully retaining conservation laws and memory
effects. This was demonstrated explicitly using a density
operator approach. In contrast, the use of the GKBA with
propagators that contain correlation self-energy contributions
(non-Hermitian self-energy with a nonvanishing imaginary
part) leads to a violation of the conservation laws, even if
the original self-energy in the two-time NEGF theory was
conserving.

The question of total energy conservation in the GKBA was
reconsidered in an NEGF framework in Sec. III E. It was shown
that the theorem of Baym and Kadanoff does not directly
apply to this approximation and we demonstrated how the
condition of this theorem can be relaxed. As a result, a new
class of conserving approximations where the retarded and the
lesser Green functions evolve with different self-energies is
introduced of which the GKBA is just one representative.

The HF-GKBA not only increases the computational
efficiency of the calculations; it even shows a qualitatively
improved behavior: artificial damping effects observed previ-
ously in two-time simulations of strongly driven Hubbard clus-
ters [58] do not occur within the HF-GKBA. This was traced
to the reduced degree of self-consistency in the computation
of the Green functions, compared to the full two-time case;
cf. Fig. 2. While in macroscopic systems this is a minor issue
and single-time and two-time calculations show comparable
accuracy [15,53,59], the present results indicate that, for finite
systems, reduction of the self-consistency appears to be an
important issue, in agreement with earlier analysis [12,58].

Comparisons with exact diagonalization results for N = 4
and N = 8 allow us to conclude that the HF-GKBA is a
reliable approach to the dynamics of weakly coupled (U =
0.1...0.25) Hubbard clusters during the initial relaxation
period of 0 < ¢t < 25...40. An exception is the case N = 2
where quantitative agreement is limited to ¢ < 2 (which is not
surprising since any continuum-type approximation exhibits
the strongest inaccuracies for small N). The accuracy of the
HF-GKBA systematically improves for increasing N.

We, therefore, expect that our HF-GKBA simulations also
provide reliable results for N > 16. This will also allow us to
study 2D or 3D systems since the computational effort of the
HF-GKBA depends only on the basis size, but is independent
of the particle number and dimensionality.

From the relaxation dynamics we can draw the following
conclusions. For the studied inhomogeneous initial state, there
are four distinct stages:

(D) Buildup of kinetic energy and decay of n; to 0.5. This
phase is a consequence of the particular inhomogeneous initial
state and corresponds to a ballistic motion of the particles into
the previously empty part of the cluster. This phase appears
to be independent of the coupling strength U, but increases
almost proportional with N.

(Il) Buildup of correlation energy and saturation of
Hartree-Fock energy. This phase becomes shorter when U
increases, but it extends with N.

(II) Relaxation of the site occupations to the homogeneous
values of 0.5. This scale grows with U and is independent
of N.
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FIG. 13. (Color online) Same as Fig. 3 (top), N = 2, but using
T-matrix instead of 2B self-energies. The exact result (full black line)
is compared to a full two-time 7-matrix calculation (this result exactly
matches the one of von Friesen et al. [35]) and the 7 matrix with the
HF-GKBA [68].

(IV) The fourth stage is characterized by revivals of the
occupations. With increasing U and N these oscillation are
more weakly pronounced.

It is interesting to compare these dynamics with earlier
investigations. In fact, the short-time dynamics of interacting
many-body and few-body systems have been analyzed for
a variety of systems before. For the homogeneous electron
gas or a dense plasma, studies of interaction quenches were
performed in Refs. [53,54,60]. Here, the observation was
that there exist two distinct phases: the first is characterized
by the buildup of correlations—manifest by the increase of
(minus) the correlation energy and kinetic energy, i.e., by
heating of the system. This effect has been termed correlation-
induced heating [60] or disorder-induced heating [61]. The
duration of this stage is given by the correlation time .o
which, in a homogeneous charged-particle system, is of the
order of the inverse of the plasma frequency. The second
stage is characterized by a relaxation of the single-particle
distribution function (occupations) and has a duration #,;—the
relaxation time. Furthermore, negative quenches have been
studied, where the interaction strength is rapidly reduced
[49,60,62-64]. In this case, kinetic energy is reduced suggest-
ing that the system can be cooled after it has been prepared in
an “overcorrelated” initial state. Finally, we note that in various
studies of moderately correlated macroscopic systems another
kind of two-stage dynamics was observed where, preceding the
final thermalization, a “prethermalization” plateau was found,
e.g., [6,7,65].

It remains an interesting question for future studies to
analyze how these different scenarios are related to each
other and how they depend on the coupling strength, system
size, and dimensionality. NEGF simulations connected with
the HF-GKBA appear to be a powerful approach to this
problem. This requires extending these simulations into the
strong-coupling range by using 7-matrix self-energies. A first
result using T-matrix self-energies, in combination with the
HF-GKBA, is shown in Fig. 13 which is the same setup as
Fig. 3(a) (except for the choice of the self-energies). The
two-time calculations in the 7T-matrix approximation exhibit
again artificial damping, as in the case of the second Born
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approximation. Again this damping is removed when the
HF-GKBA is applied, and the overall accuracy increases. This
gives further support for the concept of single-time NEGF
calculations in the framework of the HF-GKBA. Details of the
approximation and its implementation are work in progress
and will be reported elsewhere [68].
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