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Abstract
In a recent paper (Shukla et al 2013 Phys. Scr. 87 018202) the authors criticized our analysis
of the screened proton potential in dense hydrogen that was based on ab initio density
functional theory (DFT) simulations (Bonitz et al 2013 Phys. Rev. E 87 037102). In particular,
they attributed the absence of the Shukla–Eliasson attractive force between protons in the DFT
simulations to a failure of DFT. Here we discuss in detail their arguments and show that their
conclusions are incorrect.

PACS numbers: 52.30.−q, 71.10.Ca, 63.10.+a, 67.10.Hk

(Some figures may appear in colour only in the online journal)

1. Introduction

Dense plasmas exhibiting quantum degeneracy of the
electrons and Coulomb correlation effects are presently of
high interest in many fields including condensed matter,
astrophysics, warm dense matter and laser plasmas, e.g. [1–5].
Even for the simplest plasma system—hydrogen—interesting
questions remain partly open, including details of the
phase diagram, e.g. [6] or the optical and transport
properties under high compression, e.g. [7]. Therefore,
in recent years substantial efforts have been made to
advance the theoretical description of quantum plasmas.
There are two main lines of research: the first are
analytical approaches such as quantum kinetic theory and
non-equilibrium Green’s functions methods, e.g. [3, 8, 9] and
linear response theory, e.g. [10]. The second line comprises
very successful developments of first-principle computer
simulations—including quantum Monte Carlo, e.g. [11–13],
quantum molecular dynamics, e.g. [14], density functional
theory (DFT) and combinations thereof, e.g. [5]. These
methods are much more challenging than the analogous

numerical approaches for classical plasmas due to the
necessity to accurately include quantum and exchange effects
and are still subject to active developments. We also mention
efficient semiclassical approaches that use effective quantum
pair potentials in classical simulations, e.g. [15, 16] and
references therein or classical–quantum mappings [17–19].

For an understanding of the above mentioned properties
and many-particle effects of dense quantum plasmas a key
question is how the microscopic Coulomb pair interaction
between the ions is modified by the surrounding plasma.
These modifications are due to screening, quantum and spin
effects and lead to a replacement of the familiar Coulomb
potential, φi(r) = Q/r , of an ion observed in vacuo, by an
effective potential. At weak non-ideality (i.e. weak interaction
effects, weak coupling, see below) this gives rise to an
isotropic Yukawa-type potential, φi

s(r) =
Q
r e−r/ ls , where ls

is the screening length. While in the limit of a classical
high-temperature plasma ls is given by the Debye radius, in
a dense quantum plasma, it is given by the Thomas–Fermi
length LTF. More general screened potentials are successfully
computed using linear response theory to obtain the dynamic
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dielectric function, εl(k, ω) (longitudinal density response),
giving rise to1 [20]

φi
s(r) =

Q

2π2

∫
d3k

eik·r

k2εl(k, k · v)
. (1)

The potential (1) typically decays slower than the
exponential Yukawa potential but faster than the Coulomb
potential.

For dense quantum plasmas expressions for the
longitudinal dielectric function were first derived 60 years ago
by Klimontovich and Silin [21] and Bohm and Pines [22] and
correspond to the mean field approximation (quantum Vlasov
or Hartree approximation) or random phase approximation
(RPA), in the condensed matter community this dielectric
function is typically called the Lindhard function. Much more
involved is the dielectric function for a correlated quantum
plasma. Here substantial theoretical efforts are still under way,
e.g. [23] and references therein.

In quantum plasmas the potential (1) is largely
determined by the degenerate electrons surrounding the
ion. While the range of this potential is typically reduced
by many-particle and quantum effects compared to the
Coulomb case, the associated force between two ions—as
a rule—retains its repulsive character. However, in quantum
plasmas in thermodynamic equilibrium [24]2 two effects
are known which can make this force attractive. (i) The
formation of bound states (such as hydrogen molecules
or molecular ions). This evidently corresponds to a net
attractive force between the constituents (hydrogen atoms,
protons) whereby electronic spin effects play a crucial
role. (ii) Oscillatory potentials with (very shallow) negative
parts (Friedel oscillations) emerge in a strongly degenerate
Fermi gas as a consequence of the step character of the
zero-temperature momentum distribution, e.g. [25] and are
well confirmed experimentally, e.g. [26].

In a recent letter Shukla and Eliasson (SE) [27] claimed
to have observed a ‘novel attractive force’ between protons
in a dense quantum hydrogen plasma at zero temperature.
This claim was disputed by the present authors [28] on the
basis of ab initio DFT simulations and general considerations.
In [28] we showed that the prediction by SE is incorrect and
is caused by the use of linearized quantum hydrodynamic
theory (QHD) beyond the limits of its validity. Nevertheless,
the idea of the SE attractive potential has been used in
a number of recent papers, despite its contradiction to ab
initio results which underlines the importance of additional
clarification.

One reason for this is that QHD (both, the nonlinear and
linear (denoted ‘LQHD’) versions) has become quite popular
in recent years because it promises a semianalytical approach
to quantum plasmas that avoids the complicated treatment of
quantum and exchange effects in the previous theories and
simulations (see above). A number of authors [29–31] raised
serious concerns against its uncritical use that frequently
disregards the applicability range of QHD. Our analysis
presented in [28, 32] answers just the question about

1 The longitudinal dielectric function follows from the dielectric tensor via
εl(k, ω) =

∑
i j ki k j ε(k, ω)i j /k2.

2 In non-equilibrium situations, such as ions embedded into streaming
electrons, there exist additional attractive forces and wake effects, e.g. [24].

these limitations and is in agreement with the works
[29, 31].

The proponents of the SE-potential responded to this
critique by a number of papers [33, 34]. Another such
response [35] appeared recently in Physica Scripta where
Shukla, Eliasson and Akbari-Moghanjoughi (SEA) claimed
that our DFT results [28] are ‘incomplete’ and lack ‘the
energy associated with the quantum recoil effect in the DFT
Hamiltonian’ (citation from [35, p 3]). According to SEA this
is the reason why the SE attractive force is absent in the DFT
simulations. This statement is wrong. The goal of the present
paper is to respond to that paper and to provide the necessary
clarification.

This paper is organized as follows. In section 2 we
briefly recall the basic parameters of quantum plasmas and the
parameters introduced by SEA (the basic formulae of QHD
and LQHD used in [27] are given in the appendix). In section 3
we recall the recent dispute about the SE attractive force.
Finally, analyzing, in section 4 in detail the arguments of SEA
presented in [35], we show that their conclusions are incorrect
and that our critical analysis of the SE attractive force [28, 32]
remains fully valid.

2. Parameters of quantum plasmas and linearized
quantum hydrodynamics (LQHD)

Dense quantum plasmas in condensed matter, astrophysics
or warm dense matter contain (at least) two charged
components. Ions, due to their large mass, are typically
classical and moderately or strongly coupled. Electrons,
in contrast, are often partially or strongly degenerate but
weakly correlated [4]. For the discussion of [35] we
only need to consider the electrons whereas ions appear
as test charges screened by the electrons. Electrons are
characterized by the following length scales, e.g. [4]: the
mean interparticle distance r̄ , the Bohr radius, aB, the
Thomas–Fermi wavelength, λF = 2π/kF,

r̄ = [3/(4πn)]1/3,

aB = 4πε0h̄2/(me2),

λF = 2π(3π2n)−1/3, (2)

λB = h/
√

2πmkBT , (3)

where n denotes the mean electron number density. At
finite temperature, another important scale is the DeBroglie
wavelength, λB, equation (3). Similarly, important energy
scales are the hydrogen binding energy ER (referring to the
atomic ground state), the plasmon energy h̄ωp with the plasma
frequency ωp = (ne2/ε0 m)1/2, the Fermi energy, EF and the
thermal energy, kBT ,

ER = e2/(4πε02aB),

EF = (h̄kF)
2/2m, (4)

〈U 〉 = e2/(4πε0r̄), (5)
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Figure 1. The SE parameter α (full line, left axis) versus Brueckner
parameter rs (bottom axis) and 0q (upper axis). The potential of a
proton derived by SE from LQHD becomes attractive for α > 0.25,
corresponding to 26.22> rs > 0.61, at zero temperature. The depth
of the SE potential minimum is shown by the dashed curve (right
axis). The two shaded areas denote the range of moderate (weak)
coupling given by (h̄ωpe/kBTF)

2 < 1 (< 0.1).

where 〈U 〉 characterizes the mean interaction energy of
the electrons. The properties of the electron gas are
then characterized by several dimensionless parameters:
the quantum degeneracy parameter, χ , and the coupling
parameter that measures the interaction strength relative
to the mean kinetic energy. Here the common choice in
atomic physics and condensed matter theory is the Brueckner
parameter, rs . A very similar quantum coupling parameter is
0q involving the plasmon energy, e.g. [31]. The two coupling
parameters have very similar values, as can be seen in figure 1:

χ = nλ3
B, (6)

rs = r̄/aB, (7)

0q = (h̄ωp/EF)
2.

Note that these coupling parameters are relevant for the
ground state of the electron gas, T = 0, which is considered
by QHD. Furthermore, at T = 0, obviously, the electrons are
completely degenerate, χ → ∞.

SEA in their paper [35] use different parameters: a
modified Brueckner parameter which we distinguish by the
notation rSEA

s . Further, they define a characteristic wave
number ks and another coupling parameter α:

rSEA
s = r0/aB, (8)

ks = ωpe/

√
v2

∗
/3 + v2

ex,

α = h̄2ω2
pe/4m2

∗
(v2

∗
/3 + v2

ex)
2, (9)

where r0 = n−1/3, and the definitions of the velocities v∗ and
vex are given in the appendix. Note that the parameter α is, in
fact, not a measure of the coupling strength since it depends
non-monotonically upon the electron density (and on rs and
0q ). This is illustrated in figure 1.

3. The dispute around the Shukla–Eliasson
attractive potential

In a recent letter SE [27] applied the linearized QHD (LQHD)
theory to the problem of the screened potential (1) of a
proton in a quantum degenerate electron gas at T = 0. The
equations of LQHD used by SE in [27] are summarized in
the appendix where we also took into account the corrections
published by SE in two errata to the original paper. SE
found that this potential of a proton in dense hydrogen has a
negative minimum for α > 0.25. In this case they obtained an
explicit expression for the potential given by equation (A.6).
Based on the existence of this negative minimum SE claimed
the discovery of a ‘novel attractive force’ between protons
in a dense hydrogen plasma and, further, the formation of
bound states, a proton lattice, phase transitions and a critical
point [27].

In [28] the present authors studied the predictions of
SE put forward in [27]. We started by relating the condition
α > 0.25 to the parameters of hydrogen and observed
that it corresponds to a density range 0.616 rs 6 26.22,
cf figure 1. This range includes moderate electronic
correlations (observed for 0.1. rs . 1) and strong
correlations (rs & 1). We then analyzed the properties of
the potential and compared it to ab initio DFT results for the
proton potential in dense hydrogen. The conclusions of [28]
are summarized as follows:

1. The maximum depth of the SE potential is about 6 meV
which is negligible compared to relevant energy scales
such as the binding energy of hydrogenic bound states
(which is of the order of ER) and the temperature of dense
hydrogen plasmas in the laboratory or in astrophysical
systems (which is at least several eV).

2. The distance of this minimum from a proton is 3–10 times
larger than the mean interparticle distance in the relevant
density range. Therefore, even if this minimum would be
a real effect, protons in hydrogen could never arrange at
such a distance from each other and, in particular, not
form a lattice. Note that at the mean interparticle distance
the SE potential is strongly repulsive [27].

3. The SE potential does not describe hydrogen at low
density, rs > 1 correctly. One manifestation of this is
that it fails to reproduce the formation of bound states
(rs & 1.5).

4. The SE potential does not describe hydrogen at high
density correctly (rs � 1), where it fails to reproduce the
formation of Friedel oscillations.

5. In the whole range of densities, the SE potential is
qualitatively different from the DFT result and shows the
opposite trends when the density is increased.

In contrast to the SE potential, the DFT was shown to
reproduce the hydrogen molecule with the correct binding
length and the Friedel oscillations, but not to exhibit any
other attractive potential. From this analysis, and based on the
extensive available experience about the accuracy of DFT, we
concluded in [28] that the LQHD results of [27] are incorrect
and that there is no basis for the above mentioned predictions
of SE for a dense hydrogen plasma. As the reason for the
incorrect proton potential we identified that SE used LQHD

3
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outside its range of validity, i.e. beyond the limit of an almost
ideal Fermi gas. While in [28] we gave a conservative estimate
for the validity range: rs < 1, in fact, weak non-ideality of
the electrons at zero temperature require an even stricter
condition, i.e. rs � 1 or, equivalently, 0q � 1. The density
ranges corresponding to weak (rs . 0.1) and moderate (0.1.
rs . 1) coupling are indicated in figure 1 by the two shaded
areas. We will come back to the dispute about the valid range
of LQHD in section 4, cf item ii. Notice, however, that even
the ideal Fermi gas (rs → 0) is not described correctly by
LQHD because this model neglects kinetic effects that are
important to reproduce Friedel oscillations [28, 31].

In response to our analysis in [28] SEA published a
paper [34] where they rejected our conclusions. As the origin
of the discrepancy between LQHD and DFT they put forward
a failure of DFT. Furthermore, SEA objected against the
comparison of LQHD and DFT for strong coupling, rs > 1,
although just such LQHD-data were presented in the original
letter [27]. The present authors had the opportunity to respond
to the statements of SEA [34] in a reply [32] where a
comparison of the accuracy and applicability ranges of DFT
and QHD were given. This fully confirmed our conclusions
presented in [28]. Finally, in their recent paper in Physica
Scripta [35] SEA again massively criticized our analysis given
in [28]. We cannot leave the additional statements of SEA in
favor of QHD and against DFT as well as the new data for
helium presented in [35] unanswered. In section 4 we discuss
these arguments in detail and show that they are incorrect and
do not alter any of our conclusions presented in [28].

4. The arguments of Shukla, Eliasson and
Akbari-Moghanjoughi in [35]

Let us first consider the arguments of SEA in support of the
LQHD approach that was used in the original letter [27].

i. The first objection of SEA against our analysis of the
SE attractive potential is that (citation from [35, p 3])
figures 1 and 2 of [28] ‘are not compatible with our
figures 1 and 2 here, because they have plotted α against
different parameter, rs = r0/aB and eφ (eV) versus r(aB),
respectively, which is different from our α against aB/r0

and φ/ks Q versus ksr ’.
This is not correct. The corresponding figures of α and
the potential in the two papers are trivially translated
into each other by properly rescaling the respective axes.
Furthermore, they give an incorrect definition of the
parameter rs used in [28] using, instead, the parameter
rSEA

s , see the definitions (7) and (8).
ii. SEA underline explicitly (page 3): ‘It is important to

note that, the correct criterion for the QHD equation
validity [9, 10] is n0λ

3
B > 1 and not h̄ωpe/kB TF < 1’.

This is wrong. This statement would mean that QHD
is always valid whenever the electrons are quantum
degenerate, see above. (Note that, since QHD is a theory
for T = 0, λB → ∞, according to equation (3), and QHD
would be always correct, which obviously is impossible.)
However, the condition n0λ

3
B > 1 says nothing about

the coupling strength of the plasma. QHD, in fact, is
a theory for the (nearly) ideal electron gas, i.e. it does

not apply to a plasma with rs > 1 or h̄ωpe/kBTF > 1
[28, 31, 32].
In that context it is interesting what the same authors
write in different papers. In the beginning of their letter
SE [27] themselves formulate the condition h̄ωpe/kBTF <

1, but in the following ignore it and present data for
h̄ωpe/kBTF > 1. Furthermore, in their answer to our
analysis given in [34] the same authors state that it would
be obvious that QHD is valid only for an ideal quantum
plasma, i.e. for rs → 0 and 0q → 0.

iii. On page 3 SEA continue: ‘In fact, the SE model for
the screening of a test charge [2] in quantum plasmas is
analytic and exact, since it includes the most important
quantum electron interference effect’.
This is wrong. Obviously, the QHD is not an exact
theory, due to the existing limitations [28, 31, 32].
Furthermore, QHD is a theory involving only the density
(the absolute value of the electron wave function) and
thus neglects the phase information. Therefore, it cannot
describe coherence effects in principle [32]. Statements
about ‘exactness’ of the SEA potential are repeated
several times on pages 3 and 4. As a justification they
write that this potential is computed ‘directly from first
principle Fourier transformation of Poisson’s equation
without redundant assumptions’.

iv. In the beginning of their paper SEA write: ‘In
their pioneering PRL paper, SE . . . discovered a novel
short-range attractive force that can bring ions closer at
atomic scales’.
This is wrong since QHD, as any hydrodynamic
theory, uses an averaging procedure over scales of
several inter-particle distances and, therefore cannot, by
construction, resolve effects on the atomic scale [28,
31, 32].

v. On page 2 SEA provide another argument in support of
the QHD based on its description of electronic plasma
oscillations (EPOs): ‘the validity of the LQHD equations
and their applications have been put on a firm footing,
because the frequency spectra of EPOs have indeed been
experimentally verified by Watanabe [15] in metals and
by Glenzer et al [16] in warm dense matter’.
The fact that QHD yields the correct long-wavelength
limit of the plasma oscillation spectrum of an ideal
electron gas, in agreement with the RPA result [21, 22]
(see above) is irrelevant for the small scale behavior
(short wavelengths) where the SE potential is predicted
to be attractive.

In summary, the above statements of SEA about the
QHD are invalid. Furthermore, SEA did not present any
facts against the arguments of [28] that rule out the
attractive potential for dense hydrogen, cf points 1–5 in
section 3. Instead they presented new data for another
material—helium. However, even without knowing any
details of the authors’ calculations or information about the
type of ‘4He-plasma’ they have investigated, a simple estimate
shows that the minimum position of the potential provided
in [35] corresponds to a value of the Brueckner parameter,
rs ≈ 1.43. At such a density and T = 0 helium is practically
completely neutral, e.g. [39] and no helium ions and free
electrons exist, nor is there an attractive ion–ion interaction.

4
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Clearly, this parameter region corresponds to the strongly
coupled plasma state where QHD is invalid (see item ii
above).

Let us now consider the arguments of SEA against the
validity of the density functional simulations of [28]. We use
italics to underline the key points in quotes from [35]. Their
acronym BPS stands for Bonitz, Pehlke, Schoof—the authors
of [32]

a. On page 3 SEA write: ‘henceforth, it is concluded that
the standard DFT simulation results of BPS . . . have to
be discarded since they are incompatible with the newly
discovered SE attractive force that brings ions closer at
atomic scales to form a high density superconducting
plasma state with temperatures of the order of a few
electron volts.’ On page 3 SEA continue: ‘the results
of BPS [1] should be revised to include the energy
associated with the quantum recoil effect in the DFT
Hamiltonian in order to obtain a consistent output,
similar to that of SE . . .’ SEA continue by noting
that ‘the Bohm potential, VB = h̄2/2me1

√
n(r)/

√
n(r)

is missing in the DFT Kohn–Sham Hamiltonian’. On page
3 SEA write that electron ‘tunneling through the quantum
Bohm potential which is absent . . . in the DFT used for
simulations of BPS . . ., completely ignoring the quantum
electron tunneling effect’.
These statements are not correct. DFT starts from the
full many-electron Hamiltonian. The strength of the ab
initio approach of Hohenberg and Kohn [40] and Kohn
and Sham [41] is to map the interacting N -body quantum
problem onto a system of non-interacting particles
in an effective potential. For practical calculations,
just a single approximation is required: the form of
the exchange-correlation potential VXC, see [28] and
references therein. Therefore, no additional potentials,
such as the Bohm potential, can be artificially included
in this scheme. Note that the Bohm potential is derived
in QHD from the quantum kinetic energy (Laplacian
of the wave function) which is fully included in DFT.
In particular, DFT fully describes electron tunneling
effects [32].

b. On page 3 SEA write about our simulations: ‘. . . their
DFT theory, which uses the simplified Thomas–Fermi
ionic potential in ground-state density functional, is
unable to capture the essential physics of quantum
density spreading effects at atomic scales in quantum
plasmas’. Further, on page 3 SEA write that the ‘ion
potential calculation follows . . . from the pseudopotential
approximation . . . which takes only the effect of valence
electrons . . .’.
These statements are not correct. The DFT simulations
of [28] have no relation to Thomas–Fermi ionic
potentials, and no such information was given
in [28]. There it has also been clearly stated that no
pseudopotential has been used but the exact Coulomb
potential. Further, as mentioned above, DFT fully
captures quantum diffraction effects (‘quantum density
spreading’), see also [32]. As mentioned above, DFT
includes a single approximation, the choice of the
potential VXC.

c. SEA write that DFT is ‘based on the work by Hohenberg
and Kohn . . ., where it has been assumed that the
ground-state energy of electron is a unique property of the
electron number density’. SEA continue on page 3: ‘DFT
simulations also rely on the Kohn and Sham’s assumption
. . . that the energy functional can be recast by using
electronic orbital as EK S({9i }) . . .’.
We point out that Hohenberg, Kohn and Sham have
proven theorems, not mere assumptions, which constitute
the basis of DFT.

d. SEA write on page 4 about computational aspects:
‘DFT simulations are usually carried out using the
periodic boundary conditions, which are most useful for
crystalline matter band structure calculations and are
hence irrelevant for non-crystalline plasma-like medium.’
SEA write: ‘In a simulation of single-electron plane wave
calculations, yet another approximation is involved which
is called the plane-wave cut-off approximation . . .. By
using symmetry considerations, the computational time
is greatly saved in such simulations. However, for the
case of asymmetric boundless electron–ion plasmas the
simplified DFT calculation becomes uninformative’.
This is not correct. In contrast, real DFT simulations
achieve high accuracy for macroscopic (unbounded
plasmas), e.g. [5, 28]. Furthermore, non-crystalline
systems can be simulated within supercells using periodic
boundary conditions (not only) in DFT.

e. On page 5 SEA write about DFT: ‘nonuniform
electron-distribution . . . and ion/electron collisions . . .

are ignored’.
This is not correct. DFT accurately describes
non-uniform electron distributions in atoms, molecules,
condensed matter systems or plasmas as is demonstrated
in many papers and text books. The treatment of
electron–electron interaction effects is determined by the
quality of the exchange-correlation functional.

f. On page 5, SEA ‘emphasize that BPS . . . overlooked
the free-electron assumption for their simple hydrogen
plasma, since DFT theory does not resolve such boundary
as the electron degeneracy’.
This statement makes no sense. Dense hydrogen is
not describable as a free electron gas nor is such
an assumption included in DFT—in contrast to QHD.
Moreover, electron degeneracy is fully included in DFT.
Note that, in order to adequately compare with the LQHD
results of [27], the present authors in [28] performed DFT
simulations for protons embedded in jellium although this
model is not regarded as the ultimate theoretical approach
to dense hydrogen, as was clearly stated [28].

g. On page 4 SEA claim that the present authors ‘misled the
quantum plasma physics community by mentioning that
Almbladh et al [43] and Bonev and Ashcroft [6] already
have treated the problem of screening of a proton in
an electrons gas, including relevant quantum forces that
are of physical interest’. (The numbers used to refer to
the references have been adjusted to correspond to those
relevant for and used in the present manuscript.)
Readers are encouraged to look up these references and
convince themselves that already more than 35 years ago
accurate DFT simulations of the proton potential have

5
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been performed [43] and clearly demonstrated the crucial
importance of nonlinear effects for this problem.

Summarizing the discussion of SEA on DFT we
conclude that Shukla et al draw a distorted picture
of this well established and highly successful quantum
simulation method. SEA incorrectly assert that DFT neglects
basic quantum effects, such as electron tunneling and
diffraction. At the end of their analysis of DFT SEA write
(page 5) that despite our ‘claim on the exactness of their
DFT-based simulation results, such approaches are under
extensive improvements’. In fact, as many theoretical and
computational methods for non-ideal quantum systems, DFT
is under active development. Yet this does not mean that
the presently available DFT simulations are unreliable. For
further details on DFT the reader is referred to the references
listed in [28].

In conclusion, we have given a detailed analysis of
the arguments of SEA presented in their Physica Scripta
paper [35] providing a list of central statements. Our analysis
revealed that, in this paper, there is not a single scientifically
valid argument that would strengthen the validity of the
LQHD result for the SE attractive potential, nor is there any
valid argument that challenges our DFT results. Further, the
new data presented by SEA for helium do not support the
SE potential or the formation of an ionic crystal [42, 44].
Therefore, our conclusions presented in [28, 32] about the
non-existence of the SE attractive potential of protons in dense
hydrogen remain fully valid. For a recent overview on QHD,
its limitations and applications, see [45].
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Appendix. Summary of the Shukla–Eliasson
potential

The purpose of this abstract is to summarize the formulae
leading to the SE attractive potential. First we briefly
summarize LQHD, including the particular approximations
used by SE, and then list the predictions given by SE for dense
hydrogen in [27]. While in the main text we have used SI
units, here we retain the notation and Gauss units used by SE
in [27].

QHD [37, 38] is obtained from the zero temperature
classical hydrodynamic equations for the electron density n
and electron fluid velocity Eu, coupled to the electrostatic
potential φ (where a positive point charge Q is assumed to
be at r = 0):

∂n

∂t
+ ∇ · (nEu) = 0,

m∗

(
∂Eu

∂t
+ Eu · ∇Eu

)
= e∇φ − n−1

∇ P + ∇Vxc + ∇VB,

∇
2φ =

4πe

ε
(n − n0) − 4π Qδ(Er).

Quantum effects are taken into account approximately,
by adding the Bohm potential VB (which can be derived

from the Schrödinger equation and approximately accounts
for quantum diffraction effects [36]), the pressure P of the
ideal Fermi gas at zero temperature (instead of the classical
pressure) and an exchange-correlation potential Vxc that was
introduced in [38] to account for exchange and correlation
effects,

VB = (h̄2/2m∗)(1/
√

n)∇2√n,

P = (n0m∗v
2
∗
/5)(n/n0)

5/3,

Vxc = 0.985(e2/ε)n1/3

× [1 + (0.034/aBn1/3) ln(1 + 18.37aBn1/3)]

with the definitions v∗ = h̄(3π2)1/3/m∗r0 and r0 = n−1/3
0 .

Further, v∗ is the electron Fermi velocity, aB the effective
Bohr radius, m∗ denotes the electron effective mass and ε

the relative dielectric permeability of the material. In the
calculations of [27] the authors used m∗ = me and ε = 1.

Linearization of LQHD. The equations of LQHD
follow from the above nonlinear QHD equations in the
linear approximation, where n = n0 + n1 and |n1| � n0. If
one further neglects dynamic effects, ε(Ek, ω) = ε(Ek, 0), the
electrostatic potential is given by [27]

φ(Er) =
Q

2π2

∫
exp(iEk ·Er)

k2ε(Ek)
d3k (A.1)

with the result for the inverse dielectric function

1

ε(k)
=

(k2/k2
s ) + αk4/k4

s

1 + (k2/k2
s ) + αk4/k4

s

(A.2)

with the definitions

α = h̄2ω2
pe/4m2

∗
(v2

∗
/3 + v2

ex)
2, (A.3)

ks = ωpe/

√
v2

∗
/3 + v2

ex, (A.4)

vex = (0.328e2/m∗εr0)
1/2

× [1 + 0.62/(1 + 18.36aBn0
1/3)]1/2 (A.5)

kr = (ks/
√

4α)(
√

4α + 1)1/2,

ki = (ks/
√

4α)(
√

4α − 1)1/2

and the plasma frequency ωpe =
√

4πn0e2/εm∗. The
parameter α is shown in figure 1.

Predictions of LQHD. While for α < 0.25 the
potential (A.1) is always positive, for α > 0.25 it develops a
negative (attractive) minimum. In the latter case it is given by

φ(Er) =
Q

r
[cos(kir) + b∗ sin(kir)] exp(−krr), (A.6)
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where b∗ = 1/
√

4α − 1. The maximum value of α is
approximately 0.64. Inserting all parameters in the definition
of α, existence of a negative potential can be related to a finite
density interval where 0.616 rs 6 26.22, that corresponds to
moderate to strong coupling where QHD is not applicable, see
figure 1. For weak coupling, rs � 1, LQHD does not predict
a negative potential.
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