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This is the last of a series of three papers. In the first [Phys. Rev. E 87, 033105 (2013)], the same authors
presented a critical analysis of the prediction of “novel attractive forces” between protons in dense hydrogen put
forward by Shukla and Eliasson in a recent Letter [Phys. Rev. Lett. 108, 165007 (2012)]. Based on ab initio
density functional theory (DFT) calculations and general considerations, it was shown that no such force exists.
In the second of the three papers [Phys. Rev. E 87, 037101 (2013)], Shukla, Eliasson, and Akbari-Moghanjoughi
(SEA) rejected this analysis. SEA did not discuss our arguments but claimed that the discrepancy between their
quantum hydrodynamic model (QHD) and DFT is due to a failure of the latter. It is the purpose of the present
Reply to demonstrate that this claim is incorrect because DFT is more accurate than QHD, by construction.
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In our original paper [1], we tested the predictions of
Shukla et al. [2] for dense hydrogen, and we came to the
following two main conclusions: (1) The prediction of a “novel
attractive proton-proton potential” is wrong and (2) this error
arises from a failure of the linearized quantum hydrodynamics
(LQHD) model applied by the authors outside its applicability
range. This conclusion was based on a comparison with
our density functional (DFT) simulation results. In their
Comment [3], Shukla, Eliasson, and Akbari-Moghanjoughi
(SEA), in fact, have come to very similar conclusions about
the validity of the LQHD. At the same time there appears to
be a misunderstanding about the physical basis of DFT that
apparently has led SEA to misinterpret our results. For the
benefit of the reader we, therefore, give a brief comparison
of the two methods below, critically assessing their respective
strengths and weaknesses.

To begin with, DFT and the Kohn-Sham equations [4]
have been derived rigorously from the N -particle Schrödinger

TABLE I. Comparison of key properties and limitations of standard density functional theory (DFT) and (linearized) quantum
hydrodynamics (L)QHD. Points (8) and (9) apply to LQHD only. EXC: exchange-correlation functional, rs = r̄/aB, is the quantum coupling
(Brueckner) parameter, where r̄ denotes the mean interparticle distance and aB is the Bohr radius. n0 is the unperturbed density and δn is the
induced density response.

Property DFT QHD, LQHD

(1) Quantum diffraction effects Included for Approximate, via Bohm potential
Kohn-Sham states (“quantum recoil”) [3]

(2) Quantum coherence effects, Included for Missing
e.g., quantum interference Kohn Sham states (no phase information)

(3) Spin effects, Pauli principle Approximate Approximate, via ideal equation of state
via EXC (“Fermi pressure”) [3]

(4) Many-particle effects Approximate Missing (standard formulation)
via EXC corrections derived from EXC [2,6]a

(5) Accessible temperature T = 0 b T = 0
(6) Accessible density No restriction Weak coupling, rs � 1

Incomplete: misses Friedel oscillations

(7) Resolvable length scales No restriction l > several r̄

(8) Strength of perturbation No restriction Weak, |δn| < n0 (LQHD)

(9) Computational effort Large Low, semianalytical (LQHD)

aThese references used a simplified version of EXC from DFT.
bExtensions to finite temperature exist.

equation of a system of interacting electrons moving in the
external potential of the nuclei. For practical computations, an
approximation has to be applied to the exchange-correlation
energy functional EXC[n]. As correctly pointed out by SEA,
the development of improved functionals EXC[n] is still a
matter of active current research. The role of EXC[n] is to
account for the exchange-correlation effects of the interacting
electrons. All the single-particle quantum mechanical effects,
however, are fully accounted for by solving the Kohn-Sham
equations, which are formally equivalent to a single-particle
Schrödinger equation for particles moving in an effective
potential veff([n]; r) that is determined self-consistently. Thus,
as denoted in Table I, DFT correctly captures all quantum
effects. It becomes accurate at high densities, i.e., in the weak
coupling limit, when the mean interparticle distance r̄ is much
less than the Bohr radius aB (the scale of the local field) [5],
i.e., the Brueckner parameter rs = r̄/aB is much less than
one. At lower densities its accuracy is determined by the
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exchange-correlation functional EXC. For hydrogen reliable
expressions for EXC[n] exist, which were discussed in Ref. [1],
allowing for accurate calculations of the proton potential in a
dense jellium background. In particular, bound states between
protons and Friedel oscillations are correctly reproduced.

Compared to DFT, QHD and LQHD contain three im-
portant additional approximations [7]: (i) Instead of a set of
general complex wave functions, QHD and LQHD solve for
real-valued hydrodynamic quantities, thereby losing access to
quantum interference effects (2), in contrast to the statements
of SEA [3]; (ii) as any hydrodynamic theory, QHD averages
over a finite volume containing many particles, thereby losing
the capability to resolve scales on the order of the mean
interparticle distance r̄ , cf. point (7), where the relevant length
scale was determined in Ref. [1]; and (iii) SEA correctly note
that QHD is a free electron theory, i.e., it does not contain
electron-electron correlation effects and can only be applied to

high densities, rs � 1 (indicated by the shaded area in Fig. 1 of
Ref. [1]), cf. point (6) in Table I. Surprisingly, in their Letter [2],
Shukla and Eliasson extended their claim of the attractive
potential to the low-density value of rs ∼ 26, supporting it
by numerical data. Comparing their data to DFT simulations
we demonstrated [1] that no “novel” potential minimum other
than that caused by bound states or Friedel oscillations exists.

In conclusion, even though DFT is—obviously—not an
exact theory, as correctly pointed out by SEA, it is nonetheless
generally more accurate than QHD (with or without lineariza-
tion) by construction. Therefore, a “failure of DFT” [3] to
reproduce predictions of linearized quantum hydrodynam-
ics (LQHD) is a serious indication of the failure of the
latter.
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