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Attractive forces between ions in quantum plasmas: Failure of linearized quantum hydrodynamics
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In a recent Letter [P. K. Shukla and B. Eliasson, Phys. Rev. Lett. 108, 165007 (2012)] the discovery of a new
attractive force between protons in a hydrogen plasma was reported that would be responsible for the formation
of molecules and of a proton lattice. Here we show, based on ab initio density functional calculations and general
considerations, that these predictions are not correct and caused by using linearized quantum hydrodynamics
beyond the limits of its applicability.
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I. INTRODUCTION

Recently Shukla and Eliasson published [1] a calcula-
tion where they applied linearized quantum hydrodynamics
(LQHD) in a simple way to obtain the effective potential be-
tween classical protons in a dense hydrogen plasma containing
degenerate electrons. Their result indicated a novel attractive
force between two protons. If well founded, this is not only an
interesting result, but the relatively simple calculation method-
ology is also potentially one of considerable importance as
a theorist’s tool. It is, therefore, important to discuss the
implications of these results for real physical systems, such as
dense quantum plasmas, and to rigorously verify the validity
and limitations of the method against some more fundamental
calculation. In this paper we present such results in detail.

Shukla and Eliasson (SE hereafter) claim [1] to have
calculated their potential as that between classical protons in a
dense hydrogen plasma containing degenerate electrons. The
hydrogen plasma is considered in equilibrium (essentially
in the ground state, T = 0), and the authors stress that the
observed “novel attractive force” is different from Friedel
oscillations. Furthermore, from the existence of a “hard core
negative potential,” Eq. (1), they predict the formation of
bound states, a proton lattice, as well as “critical points and
phase transitions at nanoscales.” If correct, these results could
have far-reaching consequences for hydrogen and dense
quantum plasmas, in general.

It is, therefore, of interest to consider the results of
Shukla and Eliasson more in detail, which is the goal of
this paper. We first summarize their approach—linearized
quantum hydrodynamics (LQHD). We then reevaluate their
final formulas, transforming to common lengths and energy
scales. We then compare their screened proton potential to
results from ab initio density functional (DFT) simulations and
observe qualitative deviations. From this, we have to conclude
that the LQHD results of Ref. [1] are not applicable to dense
quantum plasmas and do not provide evidence for attractive
interactions between protons. We conclude by analyzing
the origin of the deviations of the results of Ref. [1] from DFT
which are traced to the violation of the applicability range of
linearized quantum hydrodynamics.

Dense correlated quantum plasmas are presently of high in-
terest in many fields including condensed matter, astrophysics,
and laser plasmas, e.g., Refs. [2,3]. Despite remarkable
theoretical and experimental progress over recent decades,
even for the simplest plasma system—hydrogen— interesting
questions still remain unsolved, including details of the phase
diagram and the behavior under high compression, e.g.,

Refs. [4–7]. The modification of the pair interactions between
the ions by the surrounding plasma is of prime importance
for the theoretical understanding of these systems. In contrast
to the familiar Coulomb potential, φi(r) = Q/r , of an ion
observed in vacuo, in a plasma, correlation and quantum effects
cause screening. At weak nonideality this gives rise to an
isotropic Yukawa-type potential, φi

s(r) = Q

r
e−r/ ls , where ls is

the screening length given, in the limit of a classical high-
temperature plasma, by the Debye radius or, in a high-density
quantum plasma, by the Thomas-Fermi length LTF. More
general screened potentials are successfully computed using
linear response theory to obtain the dynamic dielectric function
εl(k,ω) (longitudinal density response), giving rise to [8]

φi
s(r) = Q

2π2

∫
d3k

eik·r

k2εl(k,0)
, (1)

where the longitudinal dielectric function derives from the
dielectric tensor via εl(k,ω) = ∑

ij kikj εij (k,ω)/k2. The
potential (1) typically decays slower than the exponential
Yukawa potential.

Moreover, screening effects are known to give rise to
an attractive region of the potential (“antiscreening”) in
nonequilibrium situations such as a charge embedded into
a streaming flow of oppositely charged particles, which is
well studied theoretically [9–11], and the resulting attractive
force has been confirmed, e.g., in dusty plasma experiments
with streaming ions. No attractive forces have been seen
in simulations in equilibrium plasmas with two exceptions:
(i) The formation of bound states (such as hydrogen molecules
or molecular ions) evidently corresponds to a net attractive
force between the constituents (hydrogen atoms, protons).
(ii) Oscillatory potentials with (very shallow) negative parts
(Friedel oscillations) emerge in a strongly degenerate Fermi
gas as a consequence of the Fermi edge singularity (essentially
due to the step character of the zero-temperature momentum
distribution of an ideal Fermi gas), e.g., Ref. [12]. Friedel
oscillations have been observed in experiments probing surface
states at very low temperature, e.g., Ref. [13].

II. LINEARIZED QUANTUM HYDRODYNAMICS (LQHD)

In Ref. [1] SE compute the potential (1) of a proton in a
hydrogen plasma by

(a) using zero-temperature classical hydrodynamic equa-
tions for the electron density and mean velocity, coupled to
the Poisson equation for the electrostatic potential,
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(b) adding, in the momentum equation, quantum diffraction
effects via the Bohm potential VB [quantum hydrodynamics
(QHD)],

(c) adding the pressure of the ideal Fermi gas at zero
temperature,

(d) adding exchange and correlation effects via an addi-
tional potential Vxc using a simple parametrization, Ref. 33 in
Ref. [1],

(e) neglecting dynamic effects, εl(k,ω) → εl(k,0), and
(f) solving the resulting hydrodynamic equations in linear

response for the dielectric function εl(k,0; rs) (D, in their
notation),
which parametrically depends on the coupling parameter
(Brueckner parameter) rs = r̄/aB which completely defines
the plasma state at zero temperature. (Here we introduced
the mean interparticle distance r̄ which is related to the
unperturbed density by 4πr̄3/3 = n−1.) For the explicit form
of the used LQHD equations we refer to Ref. [1], and for the
discussion of Vxc and earlier related work, see Ref. [14]. In
the following we restrict ourselves to the linearized equations
used by SE, i.e., to the LQHD. The full QHD is beyond the
scope of this paper (for references, see Ref. [1]).

Using LQHD, SE evaluate the static dielectric function
εl(k,0) and screened proton potential φi

s at zero temperature
as a function of a single parameter α. We plot α as a function of
the Brueckner parameter in Fig. 1. SE observe that the screened
potential of a proton, Eq. (1), develops a negative minimum
for α > 0.25. As can be seen in the figure, α exceeds the value
0.25 in a range of coupling parameters 0.61 � rs � 26.22.

Let us now analyze the results for the screened proton
potential in the whole range of rs values where an attractive
hydrogen interaction is observed as done in Ref. [1]. In
Fig. 2 we plot the potential energy corresponding to the
screened proton potential in units of eV for three densities
corresponding to rs = 7,1.5,0.61. At low and high densities
(i.e., for cases where α < 0.25), we confirm that the potential
is purely repulsive. In agreement with Fig. 1, for α > 0.25
a negative minimum develops at a distance of several Bohr
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FIG. 1. Coupling parameter α vs Brueckner parameter rs . An
attractive proton potential is predicted in the density interval 26.22 �
rs � 0.61 at zero temperature. The shaded area denotes the range
of rs where the plasmon energy is smaller than the Fermi energy,
h̄ωpe < kBTF (weak coupling).

0

1

2

3

4

0 5 10

units of

15 20

r ( aB )

eφ
(e

V
)

rs = 0.6134

rs = 1.5

rs = 7

−0.005

0

0.005

0.01

0 5 10 15 20

FIG. 2. Screened proton potential of SE for three densities. A
single negative minimum is observed, shown more clearly in the
inset. The location of the minimum and its depth are shown in Figs. 3
and 4, respectively. Thin vertical lines indicate the equilibrium nearest
neighbor distance of two protons (cf. Fig. 3). The black arrow marks
the range of values of r shown in Fig. 5.

radii from the proton. The position of the minimum is plotted
versus rs in Fig. 3. There exists a minimum of this distance
of about 5aB for rs ≈ 1 with a slow (rapid) increase for
lower (higher) densities. Finally, we analyze the depth of the
attractive potential minimum. These values are plotted in Fig. 4
for rs between 7 and 0.6 below which the minimum vanishes.
The deepest minimum is observed around rs = 3 and amounts
to about 6 meV, corresponding to a temperature of about 65 K.

III. COMPARISON OF LQHD TO AB INITIO DFT RESULTS

We now compare the LQHD results of SE to what is known
about dense hydrogen. There have been numerous studies of
hydrogen plasmas based on analytical approximations and
first-principles simulations as well, e.g., Refs. [2,5,7]. There is
hardly any question that the low-density ground state consists
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FIG. 3. Position of the attractive potential minimum of SE,
Ref. [1], in units of the Bohr radius as a function of rs , compared
to the mean interparticle distance. Note that the ground state nearest
neighbor distance of two protons in the molecular phase (rs � 2–3)
is in the range of 1.5aB–2aB.

033105-2



ATTRACTIVE FORCES BETWEEN IONS IN QUANTUM . . . PHYSICAL REVIEW E 87, 033105 (2013)

−7

−6

−5

−4

−3

−2

−1

0

1 2 3 4 5 6 7

eφ
m

in
(m

eV
)

rs

FIG. 4. Depth of the attractive potential minimum of SE, Ref. [1].
The deepest value is observed for rs ≈ 3 corresponding to α ≈ 0.6
(cf. Fig. 1).

of H2 molecules (either in a gas, liquid, or solid phase). When
the density is increased, the molecular binding is reduced
until, eventually around rs ∼ 2 to 3, molecules break up.
Even though the detailed scenario maybe quite complex, e.g.,
Refs. [5,6], involves intermediate states (including H atoms),
and varies with temperature, it is clear that, around some
critical density nM (Mott density), all bound states will break
up into electrons and protons, e.g., Ref. [15]. This pressure
ionization is a gradual process and a reasonable estimate
for nM corresponds to rs ≈ 1.2 to 1.5. Upon further density
increase one expects formation of a liquid and, eventually, a
solid phase of protons embedded into a Fermi gas of electrons,
e.g., Refs. [15,16]. While there remain interesting questions
about the precise values of the different phase boundaries [17],
the general structure of the hydrogen phase diagram at high
pressures is well understood, e.g., Ref. [4].

As an illustration, and for direct comparison with SE,
we present results for the screened proton potential and for
the interaction of hydrogen atoms embedded in a jellium
background, as obtained from density functional total energy
calculations. The ab initio scheme of DFT rests on firm
theoretical grounds and has been thoroughly tested in recent
decades, in particular, in application to dense plasmas (see,
e.g., Refs. [5,18]). It provides a fully consistent treatment of
quantum effects and uses the fundamental Coulomb interaction
between charged particles as input. The only uncontrolled
approximation contained in DFT total-energy calculations is
the approximation applied to the exchange-correlation energy
functional, but the accuracy and limitations of the different
approximations available have been investigated in detail for
many applications in solid state physics and molecular chem-
istry [19]. Therefore, DFT total-energy calculations can serve
as a benchmark for the linearized quantum hydrodynamic
model of SE. Before proceeding with our own calculations
we point out that detailed DFT calculations have been carried
through for H and H2 in jellium before (see, e.g., the work
by Almbladh et al. [20], by Bonev and Ashcroft [21], and by
Song [22]). Our results concur with their findings. For other
recent DFT results for dense hydrogen, see Refs. [7,18,23] and
references therein.
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FIG. 5. (Color online) Electrostatic potential around an H atom
immersed in jellium. r is the distance from the proton. DFT data
have been calculated in a cubic box (size 15a0) using the Perdew-
Burke-Ernzerhof (PBE)-generalized gradient approximation (GGA)
for the exchange-correlation energy functional, a single k point, and a
plane-wave cutoff energy of 200 Ry (rs = 1.5) or 300 Ry (rs = 4 and
rs = 7). The DFT data (symbols) are compared to the electrostatic
potential from LQHD of Shukla and Eliasson, Ref. [1] (lines). The
black arrow marks the voltage range shown in Fig. 2.

In the following we restrict ourselves to spin-unpolarized
simulations. It is a well-known artifact of the usually applied
approximations to the exchange-correlation energy functional
that in vacuo the hydrogen molecule undergoes a transition
from a spin-unpolarized to a spin-polarized ground state when
the separation of the two protons is increased [24,25]. How-
ever, in their spin-polarized DFT calculations for hydrogen
atoms immersed in jellium, Nazarov et al. [26] have found
a spin-unpolarized ground state for 3 < rs < 14. For this
reason, and as no spin polarization is to be expected at
even higher electron densities, we have carried through only
spin-unpolarized relaxations for rs = 1.5 and rs = 7. This is
consistent with Ref. [21].

The data in Figs. 5 and 6 have been computed with the
FHIMD code [27]. A 1/r Coulomb potential (i.e., no pseudopo-
tential) has been taken for the proton-electron interaction. The
cutoff energy of the plane-wave basis set has been chosen
at 100 Ry for the calculation of the H-H interaction energy,
while larger values have been used for the calculation of
the screened potential of an H atom, or proton, in jellium.
The two hydrogen atoms forming the H2 molecule are put
into a cubic supercell with the length of the edge equal to
25 bohrs (15 bohrs), in case of rs = 7 (rs = 1.5). The supercell
is repeated periodically in all three directions. Calculations
have been carried through using only a single special k point.
Additional computations with six special k points derived from
a 4 × 4 × 4 backfolding [27,28] allow an error estimate, as can
be seen in Fig. 6. The smearing of the Fermi distribution is
small, kBT = 0.025 or 0.1 eV, and the total energy has been
extrapolated to zero temperature under the usual assumption
of a linear heat capacity [27]. The generalized gradient
approximation by Perdew and Ernzerhof (PBE96) [29] and,
for comparison, the local-density approximation (LDA), have
been applied to the exchange-correlation energy functional.
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FIG. 6. (Color online) Interaction energy of two H atoms im-
mersed in jellium for two densities. While for rs = 7 a minimum
around the hydrogen molecule bond length in vacuo (1.4 bohrs) is
observed, for rs = 1.5 the molecular bound state is unstable. The
DFT data have been calculated in a cubic box (with a size as noted
in the inset) using PBE-GGA or LDA for the exchange-correlation
energy functional, a single or six k points in the irreducible part of
the Brillouin zone, and a plane-wave cutoff energy of 100 Ry.

Let us now consider the results. As a typical low-density
case, we show in Fig. 5 the electrostatic potential around
a proton in jellium for rs = 7. It exhibits a clear negative
minimum around a distance of rmin ≈ 2aB. The minimum
becomes shallower with increasing electron density (cf. curve
for rs = 4) and vanishes for rs = 1.5. There are further Friedel
oscillations at larger distances, which, however, are often not
well resolved due to computational limitations and the small
size of the supercell, but they are of no relevance for hydrogen
at these conditions (see below). Our data can now be directly
compared to the LQHD results of SE, shown by lines in Fig. 5.

In transferring the Shukla-Eliasson results from Fig. 2 to
Fig. 5 one should note the large changes in scale and range.
The horizontal axis in Fig. 5 extends out only to 6aB, while
that of Fig. 2 extends more than three times further. Also
the vertical scale of the potential energy in Fig. 2 is roughly
six times smaller than that of Fig. 5. Thus, on the scale
of Fig. 5, the LQHD minima, which only appear clearly in
the inset of Fig. 2, involve such small potential changes on
the scale of Fig. 5 that they cannot be seen. The small dip
in the LQHD potential for rs = 1.5 is at about 5.4aB near the
right hand edge of the r axis, while the dip for rs = 7 is even
further away, far beyond the right hand edge. In any case,
in the region of the DFT minimum, the LQHD potential is
monotonically decreasing, i.e., without minima, and far from
that of the full calculation as denoted by the symbols.

In part we ascribe the minimum of the electrostatic potential
from the DFT calculation in Fig. 5 to the formation of an H−
ion, i.e., a bound state which Almbladh et al. [20] have found
for rs > 1.9. As pointed out by Bonev and Ashcroft [21], this
formation of a negative ion sheds doubts on the adequateness
of jellium-type (or one-component plasma) models for the
description of a nonideal hydrogen plasma. The recent ab
initio simulations of hydrogen by Morales et al. [5] and Bonev
et al. [7] are in fact based on DFT-Born-Oppenheimer molec-

ular dynamics simulations of ensembles or Monte Carlo simu-
lations and thus fully account for the dynamics of the protons.

The interaction energy of two hydrogen atoms immersed in
a jellium background with rs = 7 or rs = 1.5 is displayed in
Fig. 6. In fact, the H-H interaction energy has been computed
by Bonev and Ashcroft [21] before, using the DFT total-energy
program VASP. They point out that linear response theory
would be inadequate for this purpose. Furthermore, they
describe the fate of the hydrogen bond when the electron
density is increased: For rs > 3 a local energy minimum at
a H-H separation larger, but still close to, the bond length
of the hydrogen molecule in vacuum, and an energy barrier
towards H2 association are observed [21]. Our DFT results
summarized in Fig. 6 show the same behavior: For rs = 7 we
obtain a stable H2 bond at a bond length comparable to the
bond length of a hydrogen molecule in vacuo, but with a much
smaller binding energy. This result is not sensitive with respect
to the approximation applied to the exchange-correlation
functional. Also the more technical effect of the restricted
k-point sampling can be read from the figure. Comparing
again to the LQHD results of Shukla and Eliasson, it is
obvious that the interaction energy minimum found in the
ab initio data is not included in their approach. Thus, the SE
screened proton potential has, for small densities (e.g., rs = 7),
a qualitatively incorrect shape, in particular, it completely
misses the molecular bound state.

For larger density, i.e., for rs = 1.5, Fig. 6 shows that the
minimum in our simulations becomes very shallow or vanishes
at all, within the accuracy of the numerical DFT computa-
tions. Similarly, we do not resolve extremely shallow (below
100 meV) binding potentials at larger distances from the pro-
ton, such as the ones related to Friedel oscillations. These oscil-
lations could be reproduced by DFT using a substantial com-
putational effort. However, there is no need for this since such
extremely small features of the potential are expected to be of
no relevance for all dense plasma applications since they al-
ways encounter a finite electron temperature of at least one eV.

IV. DISCUSSION: FAILURE OF LQHD

The approach by SE in Ref. [1] starts from the assumption
that the ions are immobile and embedded into a neutralizing
background [see Eq. (3) in Ref. [1]]. We have thus used
DFT, together with the LDA or the PBE-GGA [24] applied
to the exchange-correlation energy functional, to calculate
the interaction energy of two protons immersed in a jellium
background, without any further approximation applied to the
quantum-mechanical problem. For the reliability of the DFT as
compared to quantum Monte Carlo simulations we refer, e.g.,
to Ref. [18]. Thus the DFT results can serve as a reference
to evaluate the accuracy of the interaction potential as derived
from the LQHD approach by SE [30].

As shown from the comparison to ab initio DFT simu-
lations, the SE potential completely misses the bound states
of protons in low-temperature hydrogen. When the density is
increased, the deviations between LQHD and DFT potentials
become smaller but are still noticeable.

Yet even at higher densities where no molecules exist the SE
potential is qualitatively wrong because it does not show an at-
tractive minimum for rs < 0.61 at all. Dielectric theories of the
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electron gas and electron liquid including correlations in the
frame of local field corrections, however, confirm that Friedel
oscillations persist up to high densities, e.g., Refs. [31,32].
The present LQHD model of SE also misses the Friedel
oscillations, as the authors themselves underline.

Furthermore, we consider two limiting cases of the LQHD
potential discussed by SE [1]: First, in the limit α → 0, SE
recover a Yukawa potential with the screening length LTF.
This is correct for high densities, rs → 0, but not for low
densities, rs � 1, where α → 0 as well (cf. Fig. 1). Second, SE
recover, for α � 1, the exponential cosine-screened Coulomb
potential [1]. This limit is questionable since α cannot exceed
0.65 (cf. Fig. 1). These failures rule out any reliable predictions
such as novel potential minima. Besides, the extremely low
value of the associated binding energy (cf. Fig. 4) would
require a particularly accurate theory and careful verification.

Finally, let us analyze possible reasons for the failure of the
linearized QHD model in application to dense two-component
plasmas. (i) As any fluid theory, LQHD cannot resolve
distances below some cutoff r∗. This has been pointed out
by Manfredi and co-workers [14] who performed a test of
a one-dimensional (1D) version of nonlinear QHD for thin
metal films [14]. (ii) Shukla and Eliasson note [1] that QHD
is valid only for h̄ωpe < kBTF, i.e., for weak coupling. This
range is indicated by the shaded area in Fig. 1. Since the
present model of LQHD contains exchange and correlation
contributions, this range may actually be larger [14]. (iii)
Linearized QHD fails when the linearization conditions are
violated, i.e., when the perturbed density is comparable with
the unperturbed density, which is common in the description
of strong attractive interactions.

While item (ii) is presently open and requires further
analysis, our DFT simulation results allow us to directly
verify (i). In a hydrodynamic description of classical plasmas
the smallest length scale that can be resolved is the Debye
length. Similarly, in the quantum case, this cutoff is expected
to be of the order of the Thomas-Fermi length, LTF =
h̄kF/(

√
3meωpe) = (π/12)1/3r

1/2
s aB. In fact, reexamining the

DFT and LQHD data for the screened proton potential in
Fig. 5, we observe that the most dramatic deviations occur
on length scales smaller than r∗ ≈ 3LTF to 4LTF. Thus we
confirm that LQHD cannot, by construction, yield potentials
with atomic-scale resolution in a dense quantum plasma [33].

Yet the most severe limitation is, apparently, related to
the linearization of the QHD equations, item (iii). In fact,
similar linear response calculations for a proton in a degenerate
electron gas have been done long ago. Almbladh et al. [20]
have performed density functional calculations and compared
them to a linearized version of DFT (which, by construction, is
essentially more accurate than any hydrodynamic approach).
They observed a complete failure of the linear theory in the
prediction of the electron density screening the proton. Not
only is the electron density at the proton a factor 2 to 33 (for
rs = 1 and rs = 6, respectively) too small, but linear theory
generally predicted Friedel oscillations to occur at much too
high distances from the proton. Thus, a possible explanation
for the potential minimum observed in the present linearized
QHD (cf. Fig. 2) is that it is a trace of the Friedel oscillations
(the first minimum) that is displaced to higher distances from
the proton due to the linearization (cf. also Fig. 3). It would,
therefore, be interesting to test this hypothesis by comparing
the LQHD results of SE to full nonlinear QHD.

Let us assume for a moment that the attractive potential
of SE would be a real effect and consider its implications for
proton crystallization [1]. To this end, we plot in Fig. 3 the
location of the potential minimum and compare it to the mean
interparticle distance for a given density. It is obvious that there
is a striking mismatch. Even if the system would be at zero
temperature, protons could not occupy the minimum locations
simply because their density is several orders of magnitude too
high (see also Fig. 2, where the mean interparticle distance is
marked on the SE potential), making such a state energetically
impossible. We thus have to conclude, based on ab initio DFT
simulations and general considerations about the location and
low depth of the potential minimum, that the predictions of SE
of novel attractive forces, novel ion lattices, atoms, molecules,
critical points, and phase transitions in dense hydrogen are
invalid.
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