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Theoretical description of field-assisted postcollision interaction in Auger decay of atoms
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In a recent publication [Schütte et al., Phys. Rev. Lett. (to be published)] it was demonstrated, both
experimentally and theoretically, that Auger electrons are subject to an energetic chirp if a three-body-interaction
dubbed postcollision interaction (PCI) is involved. Here, we extend previous theoretical work and give a detailed
analysis of field-assisted PCI based on numerical solutions of the time-dependent Schrödinger equation, extensive
Monte Carlo–averaged molecular dynamics simulations, and analytical theory. The dependence on various
streaking and excitation conditions is investigated, and we discuss how these findings may help to improve XUV
pulse characterization as well as understanding of ultrafast atomic processes.
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I. INTRODUCTION

The progress in the creation of phase-stabilized laser
systems and the generation of short and ultrashort pulses in
the UV and XUV regimes [1,2] allows nowadays for the
observation of electronic processes on the femtosecond and
even sub-femtosecond time scale in a time-resolved fashion
[3,4]. Fundamental investigations include the mapping of the
oscillating electrical field of a laser [5], electron tunneling in
strong fields [6], or the direct observation of Auger decay in
the time domain [7]. Recently, processes down to a duration
of several tens of attoseconds have been demonstrated to be
resolvable [8].

The major tool for the observation of fast processes since
early days in physics is the streak camera. Following its
first mechanical realization by Wheatstone in 1834 [9] with
μs resolution, nowadays the sub-picosecond regime can be
accessed with classical optoelectronic setups [10,11]. To
overcome the mechanical and electronic barriers for switching
times, the answer was found in electrodynamics, leading to
a setup called a light-driven streak camera [12,13]: Here, the
temporal deflection of electrons is realized by the time-varying
vector potential of a laser field and the triggering of the
process is done by ultrashort ionization through attosecond
XUV pulses in pump-probe setups. A possibility to reach
the zeptosecond regime in ultrahigh fields has recently been
proposed [14] theoretically.

An important application of the light-field-driven streak
camera is in the characterization of (X)UV pump pulses in
the femtosecond [15] and sub-fs regimes [13]. By means
of photoionization of rare-gas target atoms the XUV pulse
properties, such as duration, substructure, and chirp, are
imprinted on a photoelectron distribution. A time-varying
streaking field deflects these electrons and maps the temporal
properties to a measurable energy spectrum. Therefore, this
procedure strongly relies on the precise knowledge of the
photon-to-electron conversion and, with that, a method to
extract the temporal pulse properties from the streaked kinetic
energy spectra of the electrons. While for solely photoelectrons
this mapping is agreed to be understood for atoms [13,15]
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and atoms on surfaces [16,17], the situation strongly differs if
Auger decay is involved.

The radiationless decay of resonances, first described by
Meitner in 1922 [18] and Auger in 1925 [19], is a fundamental
correlation-driven many-body effect in quantum mechanics,
covering atoms, solids, quantum dots, and molecules. The
photoexcited inner-shell hole is subject to spontaneous decay,
transferring its energy to an outer-shell electron, which leaves
the ion with its excess energy. The result is a doubly charged
ion and two correlated electrons in the continuum. Due to the
spontaneous character of the hole decay, the Auger electron
cannot carry information about the pump pulse. Nevertheless,
in Ref. [20] it was demonstrated, utilizing the THz streak-
camera setup, that the energy of the Auger electron depends
on its release time; that is, it carries an energetic chirp, if the
Auger electron is faster than the preceding photoelectron. This
could be verified using two independent experiments involving
XUV photons from (i) the free electron laser FLASH at DESY
(Hamburg) and (ii) a higher-harmonics generation (HHG)
source [21]. While for (i) the ionizing pulse has a complicated
structure, both in time and in energy, for (ii) chirp-free pulses
with rather well-defined properties are expected. Nevertheless,
it was established experimentally that for both (i) and (ii), the
Auger electron’s chirp is present and has qualitatively the same
properties.

The authors of [20] identified postcollision interaction
(PCI) as the responsible mechanism for the observed chirp,
utilizing extensive molecular dynamics (MD) simulations as
well as an analytically solvable model. PCI is a process where a
fast Auger electron can catch up with the slower photoelectron,
which leads to a drastic change of the screening of the ion’s
charge. This manifests itself in an energy exchange: The pho-
toelectron loses energy (increased binding), whereas the Auger
electron is correspondingly accelerated (the binding potential
becomes shielded). Obviously, the net amount of transferred
energy depends on the distance from the ion; the closer the
overtaking happens, the stronger is the effect. Although widely
discussed in the literature [22–27], the consequences of PCI
for the temporal energy distribution remained unexplored. In
this paper, we extend the theory presented in Ref. [20] and give
a detailed description of field-assisted (FA) PCI using quantum
and classical simulations as well as analytical theory.

The paper is organized as follows. In Sec. II we demonstrate
the presence of a chirp on the Auger-electron energy by solving
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the time-dependent Schrödinger equation (TDSE) for model
systems and support the idea of PCI being the responsible
mechanism. To overcome the model character necessary for
quantum calculations, we develop in Sec. III a classical
simulation technique based on Monte Carlo (MC) averaged
MD. In Sec. IV, extending the model of [20], we present an
analytical theory for the Auger line shape in the presence
of a slowly varying streaking field including PCI effects and
compare to TDSE as well as MC MD simulations. In Sec. V,
we investigate the influence of various pulse parameters and
show how the measurement of the PCI-induced chirp may
help to improve the pulse characterization capabilities of
light-field-driven streak-camera setups. The paper closes with
a comment on recent experiments and an outlook on future
investigations in Sec. VI.

II. QUANTUM THEORY OF LASER-ASSISTED
AUGER DECAY

The starting point for the description of laser-assisted Auger
decay (LAAD) on a quantum mechanical level is the TDSE.
However, full quantum calculations of autoionization involve
two or more electrons, which limit them to model studies
or helium on very short time scales (see, e.g., [28,29]). To
overcome this “brute-force” approach we use a generalization
of Fano’s theory [30] to the time-dependent case developed
in Refs. [31–33] and references therein. The notations follow
[33]; an analogous derivation based on quantum field theory
can be found in Ref. [34]. A similar theoretical approach to
time-resolved Fano resonances is developed in Refs. [35,36].

The time evolution of the outgoing photoelectron after
excitation with an XUV pulse is governed by a set of coupled
TDSEs (throughout atomic units, me = |e| = h̄ = 4πε0 ≡ 1,
are used):

i
∂

∂t
φd (r,t) =

(
Ĥ1(r) − i

�A

2
− zEL(t)

)
φd (r,t)

− zEX(t)φ0(r)e−iε0t , (1)

i
∂

∂t
φε(r,t) =

(
Ĥ2(r) − EA + 1

2
[kA − AL(t)]2 − zEL(t)

)
×φε(r,t) + V φd (r,t). (2)

Equation (1) describes the photoelectron excited from the
initial orbital φ0 with energy ε0 by a laser pulse EX(t). It
moves in a potential of a singly charged ion, included in Ĥ1(r),
and the streaking field EL(t). In other words, φd (t) describes
the photoelectron before decay of the resonance with decay
constant �A. After Auger decay with excess energy EA, being
the energy difference between the outer shell electron and the
core hole, the photoelectron’s movement in the potential of a
doubly charged ion, contained in Ĥ2, is governed by Eq. (2)
coupled to Eq. (1) via the Auger decay matrix element V ,
which is assumed to be constant in energy and space [33].
By setting Ĥ1 = Ĥ2, postcollision effects due to changed
screening of the ion’s charge can be artificially excluded from
the calculations.

In fact, Eq. (2) represents a set of equations for all possible
energies of the Auger electron ε = k2

A/2. The vector potential

AL(t) associated with the electrical field EL(t),

AL(t) = −
∫ t

−∞
dτEL(τ ), (3)

is chosen to vanish for long times.
Both laser pulses are linearly polarized in the z direction

with Gaussian envelopes and coupled to Eqs. (1) and (2) in
dipole approximation. The streaking pulse with duration τL,
phase shift ϕL, and frequency ωL is centered at zero,

EL(t) = êzE
0
L exp

(
− t2

2τ̃ 2
L

)
cos [ωLt + ϕL] . (4)

The XUV pulse is delayed by tX with photon energy ωX and
duration τX,

EX(t) = êzE
0
X exp

(
− (t − tX)2

2τ̃ 2
X

)
cos [ωX(t − tX)] . (5)

Note that throughout this paper all pulse durations are given as
full width at half maximum (FWHM) and will be denoted by
τX,L = 2

√
2 ln 2τ̃X,L. The model [Eqs. (1) and (2)] has been

successfully applied to the recapture of photoelectrons due
to PCI [37,38] and to (angle-resolved) sideband structures in
LAAD [39,40], which appear if the duration of the pump pulse
is comparable to or longer than the period of the streaking field.
In this work, we use τX � 1/ωL required for streak cameras.

A. Simplifications

Up to now, the above-mentioned previous works considered
short pulses in the (sub-) fs regime involving infrared (IR)
streaking pulses. The characterization of pump pulses longer
than 20 fs, as they are produced, for example, by free electron
lasers, requires deflecting fields based on THz radiation
[15,20] and, therefore, requires the propagation of Eqs. (1)
and (2) over a duration of several picoseconds. In order to
describe the involved processes on a time-dependent quantum
mechanical level drastic simplifications are needed to keep the
computational costs manageable.

As a first step, we restrict our investigations to a one-
dimensional (1D) version, that is, consider wave functions of
the form φd (x,t) and φε(x,t), neglecting any angular momenta
and distributions. This leads to the model Hamiltonians
Ĥ1(x) and Ĥ2(x) which are chosen to account for the
correct asymptotics of the binding potentials of the remaining
ion,

Ĥi(x) = −1

2

∂2

∂x2
+ Zi√

x2 + κ2
, (6)

with Z1 = −1 and Z2 = −2. The Coulomb singularity appear-
ing in 1D systems has been regularized in a standard procedure
by κ (e.g., [28,41,42]), assuring a finite binding potential at
the position of the ion.

Still, to keep track of the photoelectrons traveling with 25
to 80 eV in the continuum, enormous computational grids
are needed. To overcome this point, we introduce a scaling
procedure of all relevant temporal quantities by a factor
γ , which maps the (not-manageable) physical system to a
smaller-sized analog, which can be tackled by the quantum
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simulations:

�∗
A = γ�A, ω∗

L = γωL, τ ∗
X = τX

γ
, τ ∗

L = τL

γ
. (7)

In order to keep the relevant streaking conditions comparable,
the intensity of the streaking field is chosen such that the
ponderomotive potential Up = E2

0/4ω2
L of the streaking field

is kept constant when γ is varied. The influence of this scaling
procedure is discussed in detail below.

B. Solution of Eqs. (1) and (2)

We solve the 1D analogs of Eqs. (1) and (2) employing
a finite-element discrete variable representation (FE-DVR)
[43,44] and an independent finite-difference based method
on large spatial grids allowing for the propagation of several
tens of fs without reflections at the grid edges. All considered
observables have been carefully checked for convergence with
respect to the numerical discretizations.

Throughout this paper, two transitions motivated by the
experiment are considered, the NOO transition in xenon and
the MNN transition in krypton [20]. Let us start with xenon.
For that, the eigenstate of Ĥ1 (κ = 0.1935) with a ground-state
energy of Ep = −66 eV is used for XUV excitation with
a photon energy of wX = 91 eV, which corresponds to a
kinetic energy of wX + Ep = 25 eV for the photoelectron. The
Auger-electron energy is chosen to match EA = 34 eV, being
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FIG. 1. (Color online) Auger line shapes obtained by solving
Eqs. (1) and (2) for a series of time delays tX . Shown is the case
including PCI (blue solid lines, blue area) and the case neglecting
PCI (red dashed lines), that is, Ĥ2 = Ĥ1 in Eqs. (1) and (2) for a
16.9-fs single-cycle (ϕL = π/2) streaking pulse with a frequency of
ωL = 33 THz and Up = 98.8 meV. The 2.83-fs XUV pulse has a
photon energy of 91 eV. The Auger decay constant was set to �A =
950 meV at an Auger energy of EA = 34.27 eV, thus resembling THz
streaking of the Xe NOO transition scaled by a factor of γ = 10 (see
text for details). Note that the lines neglecting PCI have been shifted
toward higher energy by 0.5 eV for better comparison.

faster than the photoelectron wave packet and thus giving rise
to PCI effects. An example of the resulting Auger-electron
line shapes for a full scan of time delays tX is shown in
Fig. 1 for a streaking with 33 THz and Up = 98.8 meV and
a pump pulse duration of 2.83 fs, thus scaled by a factor of
γ = 10 in comparison with the THz streak camera in Ref. [15].
Analogously, the atomic parameters, matching the Xe NOO
transition, are scaled by the same factor according to Eq. (7).

Each individual Auger line is shown for two cases:
including PCI (blue solid lines) and neglecting PCI (red dashed
lines). For both cases, the typical streaking picture of the
time-dependent momentum transfer arises, with a general shift
of the PCI result toward higher energies (0.5 eV), which is
compensated in Fig. 1 for better visibility. Careful inspection
of the line shapes reveals that for a falling slope of A(t)
(tX < 0) the lines are higher and of smaller width than for the
case of rising slope of A(t) (tX > 0) (cf. pci vs nopci curves).
Note that the energy shift is proportional to −A(t). The lines
corresponding to the case without PCI have the same height
and width for positive and negative time delays.

This observation already indicates a chirp in Auger-electron
emission, that is, a time-dependent variation of the energy of
the Auger electron manifesting itself in an asymmetry with
respect to the direction of the slope of A. In the following,
this result is investigated in detail and the underlying physical
mechanism is identified.

C. Analysis of the TDSE results

Let us first discuss the influence of the scaling procedure (7),
shown in Fig. 2. We point out that each value of γ corresponds
to a certain physical system, but our aim is to describe
experiments based on the Xe NOO transition. The width
displayed in Fig. 2 is extracted from line shape data by
interpolation utilizing cubic splines and subsequent finding
of the maximum and the corresponding FWHM. For better
comparison, the x axis is shifted by the Auger decay time �−1
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FIG. 2. (Color online) FWHM of Auger lines (right axis) obtained
by solving Eqs. (1) and (2) for different scaling factors γ [cf. Eq. (7)]
of the Xe NOO transition in a 3.3-THz streaking field keeping Up =
98.8 meV constant. The natural linewidth �A has been subtracted for
each set of parameters for better comparison. The maximum of the
line [proportional to −A(t), gray line with solid circles labeled by
Emax, left axis] and the case neglecting PCI (black dashed line) are
shown for γ = 10. For γ = 10, parameters are the same as in Fig. 1.
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for each data set and the width was modified by
√

σ 2 − �2
A

to account for the different natural linewidth in each set of
parameters. The first observation is a strong asymmetry in the
FWHM for all values of γ with respect to the slope of A(t).
Note that the displayed curve labeled Emax shows the energy
corresponding to the maximum of the Auger line, which is
proportional to −A(t). Approaching the physical system of Xe
NOO (γ = 1), the asymmetry gets smaller, but is still present
for the smallest considered value of γ . For comparison, also
the case neglecting PCI is shown for γ = 10, where no such
asymmetry is observed and the typical chirp-free streaking
behavior [13] is retrieved: Largest width (and corresponding
time resolution of the streak camera) occurs at maximum
slope of A(t). Note that for single-cycle pulses used here,
this does not coincide with zero transitions of A(t) (electrical
field maxima). At the maximum of |A(t)|, as expected, a
pronounced minimum can be observed.

Since the PCI effect originates from the changed screening
of the remaining ions’ charge during overtaking of the
photoelectron by the Auger electron, it strongly depends on the
velocity of the photoelectron (cf. Sec. IV C). Therefore, the ob-
served asymmetry should be more pronounced for slow photo-
electrons, where the overtaking happens in close vicinity to the
ion [20], and should vanish for fast ones, where the Auger elec-
tron cannot catch up with the photoelectron. Figure 3 shows the
FWHM of the Auger line of the Xe NOO transition (γ = 10)
for a set of photon energies ωX. As is clearly seen, the strongest
asymmetry is observed for slow photoelectrons (green curve
with triangles), whereas the increase of the photoelectron’s
energy leads to a decrease of the observed asymmetry in the
FWHM and approaches the case neglecting PCI (black dashed
line), thus supporting the idea that PCI is responsible for the
energetic chirp in Auger emission. We note that, although for
ωX = 126 eV rather fast photoelectrons (47 eV in comparison
to 35 eV Auger-electron energy) are emitted (red curve), still
an asymmetry is observed. This originates from a rather broad
distribution of the photoelectron energy.

We can now analyze the dependence of the streaked lines
upon various pulse parameters. Those with most influence on
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FIG. 3. (Color online) FWHM of Auger lines (right axis) for
different photon energies ωX of the XUV pulse of 28 fs duration. All
other parameters are the same as in Fig. 2 for the case γ = 10. The
energy of the maximum of the Auger line and the case neglecting PCI
(black dashed line) are given for ωX = 91 eV. The time dependence
of the electrical field E(t) is sketched by the gray dotted line.
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FIG. 4. (Color online) FWHM of Auger line (right axis) for
different XUV pulse durations τ FW

X . The maximum of the Auger
line [proportional to −A(t), solid circles] is shown for 28 fs. The
time dependence of the electrical field E(t) is sketched by the gray
dotted line. Parameters are the same as in Fig. 2 for γ = 10.

the streaking mechanism are the ponderomotive potential Up

of the streaking field and the duration of the pump pulse, τX.
In Fig. 4 the dependence of the Auger linewidth of the Xe
NOO transition is shown for a set of XUV pulse durations
for a scaling parameter of γ = 10. For larger pulse durations,
a longer period of the slope of the streaking vector potential
is accessible, consequently leading to a larger overall width,
which is in accordance with the typical streaking mechanism.
However, the asymmetry with respect to the sign of the slope
of the vector potential is more pronounced for shorter pulse
durations (2.8 fs). This can be attributed to the fact that
for longer pulse durations the linewidth is dominated by the
streaking part and for shorter pulse durations the chirp becomes
dominant, which is discussed in detail in Sec. V.

For different ponderomotive potentials of the streaking
field, shown in Fig. 5, a similar picture arises: The larger
the ponderomotive potential, the larger is the streaking
contribution leading to a relative decrease of the observed
asymmetry. However, we note that for very small Up the
linewidth asymmetry must vanish because of the vanishing
vector potential.
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FIG. 5. (Color online) The same as Fig. 4 but for different
ponderomotive potentials Up of the streaking field at a fixed XUV
pulse duration of 28 fs (γ = 10). The graph of the maximum of the
line corresponds to Up = 98.8 meV.
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Ȧ P > 0 60fs

FIG. 6. (Color online) Coincidence energy spectra for Auger and
photoelectrons for selected time delays tX calculated by solving
Eqs. (1) and (2). The integrated photoelectron (Auger electron)
distribution is plotted with red dashed (blue solid) lines. Parameters
are the same as in Fig. 1 (Xe NOO with γ = 10).

D. Auger-electron and photoelectron coincidence spectra

In addition to the individual kinetic energy spectra of the
Auger electrons, Eqs. (1) and (2) also allow for the calculation
of coincidence energy spectra of both involved electrons.
This gives more detailed insight into their correlated motion.
An example of the Xe NOO transition (γ = 10) is given
in Fig. 6 for five selected time delays tX. All spectra are
dominated by a diagonal line from top left to bottom right,
which indicates an energy correlation between photoelectron
and Auger electron. This is due to an energy exchange between
both and governed by energy conservation. For the field-free
cases (±144 fs) and the maximum of the vector potential
(0 fs) a rather sharp spectrum is observed, whereas at the
(approximate) zero transitions of the vector potential (±60 fs)
the streaking mechanism gives broad energy distributions for
both the photoelectron and the Auger electron.

In addition to the integrated Auger-electron spectra (blue,
solid lines), the corresponding photoelectron distribution is
plotted with (red) dashed lines. A careful inspection reveals
that the prominent asymmetry with respect to the slope of the
vector potential (±60 fs) observed for the Auger electron is
not present in the photoelectron spectra. This indicates, that the
photoelectron distribution carries no energetic chirp. A more
detailed description and a simple picture for this are given in
Sec. IV G.

III. SEMICLASSICAL SIMULATIONS

To proceed further and compare quantitatively with current
experiments, it is crucial to take into account the 3D geometry
of the atom and the true time scales, that is, to avoid the
scaling procedure by γ . Since this is not possible utilizing
TDSE simulations, it is necessary to turn to a (semi-) classical
description of FA PCI including both electrons, the ion, and
the streaking field. Our classical method describing PCI is
motivated by successful previous models for the field-free case
[22].

The classical dynamics of both electrons is governed by
Newton’s equations (me = 1),

r̈P (t) = FP (rP ,rA,t),
(8)

r̈A(t) = FA(rP ,rA,t),

where the photoelectron (Auger electron) is denoted by index
P (A). The propagation is split into two phases: (i) before
Auger decay (tPi

� t < tAi
) and (ii) after Auger decay (tAi

<

t < td ), where td is the time at the detector, which determines
the corresponding forces in Eq. (8).

Phase (i) [tPi
� t < tAi

]:

FP (t) = −∇V +(rP ) − EL(t). (9)

Phase (ii) [t � tAi
]:

FP (t) = −∇V 2+(rP ) − EL(t) − ∇Ve−e(rA,rP ),
(10)

FA(t) = −∇V 2+(rA) − EL(t) − ∇Ve−e(rP ,rA).

For (i) only the photoelectron is propagated in the combined
field of a singly charged ion, V +(r), and the streaking field,
EL(t). In phase (ii) both electrons experience the potential of
a doubly charged ion, V 2+(r), the streaking field, and their
binary interaction Ve−e(r1,r2). All interaction potentials are of
pure Coulomb type:

V +(r) = − 1

|r| , V 2+(r) = − 2

|r| , (11)

and Ve−e(r1,r2) = 1

|r1 − r2| . (12)

By setting Ve-e ≡ 0 and additionally considering V + ≡ V 2+,
all e-e interactions and PCI effects can be turned off (denoted
by “neglecting e-e interaction” in the following). The set of
Eqs. (8) is completed by associated initial conditions

ṙP

(
tPi

) = pPi
and rP

(
tPi

) = rPi
, (13)

ṙA

(
tAi

) = pAi
and rA

(
tAi

) = rAi
. (14)

A. Initial condition sampling

To reproduce the quantum mechanical nature of photoion-
ization and Auger decay in our classical model, we developed a
MC sampling procedure for the initial conditions (13) and (14).
During the XUV pulse, the photoelectron is released with the
probability (proportional to the instantaneous intensity of the
XUV pulse, ∝E2

X)

PTP
(τi) = 1√

πτX

exp

(
− τ 2

i

τ 2
X

)
, (15)

which creates the core hole at a time τi = tPi
− tX. The

vacancy is filled after the time τA = tAi
− tPi

> 0 by lifting
the Auger electron into the continuum according to the decay
law (probability density; see Fig. 7 for notations)

PTA
(τA) = �Ae−�AτA . (16)

053416-5



S. BAUCH AND M. BONITZ PHYSICAL REVIEW A 85, 053416 (2012)

tX tPi
t A i

td

E
le

ct
ro

n
si

gn
al

time t

electron at
detector

PP(t) PA (t)

τX

τ i τ A

FIG. 7. Temporal parameters and electron distributions: The
XUV pulse is centered at tX with a FWHM duration of τX . At tPi

during the pulse the photoelectron is excited, which triggers Auger
decay at a time instant tAi

. The measurement is performed long after
the pulses and the decay are over, at time td (td → ∞).

The kinetic energy distribution of the photoelectron follows a
Gaussian distribution,

PEP

(
EPi

) = 1√
2πσX

exp

(
−

(
EPi

− EP0

)2

2σ 2
X

)
, (17)

with the spectral width σX centered around the energy EP0 =
ωX − Ip, with the ionization potential of the core electron Ip.
The (undisturbed) line shape of the Auger electron with mean
energy EA associated with Eq. (16) is a Lorentzian distribution

PEA

(
EAi

) = �A/2π(
EAi

− EA

)2 + 1
4�2

A

. (18)

With that, the absolute values of the initial momenta are set by
Eqs. (17) and (18) to∣∣ pPi

∣∣ = √
2EPi

and
∣∣ pAi

∣∣ = √
2EAi

. (19)

For small initial distances rPi
and rAi

of the electrons from the
ion, it is important to take into account the remaining finite
binding potential at the point of appearance of the electrons,
V +(rPi

) and V 2+(rAi
), to assure their correct asymptotic

momenta on the detector. Entering as a free parameter in our
model, we carefully checked the influence of different values
of rPi

and rAi
ranging from 1 to 20 (in units of the Bohr radius)

and found no significant change of the results.
The directions of rPi

and rAi
as well as of pPi

and pAi
are

given by the quantum mechanical angular distributions of the
associated initial state, approximated by

PP or A(ϕ) = 1

4π
[1 + βP or A(3 cos2 ϕ − 1)], (20)

with the asymmetry parameter, β, being available in the
literature (e.g., [45]). We note as a technical aspect, that sphere
point picking [46] is crucial for the correct MC sampling of
Eq. (20) to maintain the correct uniform distribution of points
on a sphere.

B. Extraction of observables

We propagate Eq. (8) with initial conditions (13) and (14),
randomly distributed according to Eqs. (15)–(20), utilizing
a velocity Verlet algorithm with an adaptive time step size
control (see, e.g., [47]). This method will be called “MC

MD” simulations in the following (MD refers to the classical
propagation of both interacting electrons leaving the atom).

For each run, the final momenta pPf
and pAf

of typically
106–107 trajectories are recorded and sorted in angle- and
energy-resolved histograms until convergence is reached. The
Auger-electron kinetic energy spectra are then obtained by
integrating over a detector angle element of 12.5◦, typical
for experiments, around the field polarization axis êz. Two
opposite detection directions are possible, determined by
the direction of A. We only show results for the detector
with positive energy shift at the maximum of the single-
cycle vector potential; the second detector gives the same
results, but for changed sign in A. In experiments it is often
favorable to consider two opposing detectors to assure the same
streaking conditions [20]. Postprocessing of the Auger line
shapes is performed similar to the TDSE case (cf. Sec. II C).
Additionally, as in the previous part, we restrict ourselves to
the case of Auger electrons; the analysis of the photoelectrons
can be performed in a similar way.

C. MC MD results

We may now drop the scaling procedure (7) introduced for
TDSE simulations and restore the true time constants. The
result for a full scan of time delays for the krypton MNN
transition in a 1-THz streaking field with a ponderomotive
potential of 80 meV is shown in Fig. 8 for the cases (i) including
(blue solid lines) and (ii) neglecting (red dashed lines) e-e
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FIG. 8. (Color online) Auger line shapes of the Kr MNN transition
for a set of time delays tX in a 1-THz single-cycle streaking
field with Up = 80 meV for a XUV pulse duration of 28 fs at a
photon energy of 97 eV. Results are obtained by MC averaging of
MD trajectories. Shown is the case including photoelectron–Auger-
electron interactions (blue solid lines) and neglecting e-e interactions
(red dashed lines). Note that the latter lines are shifted by 100 meV
toward higher energy for clarity.
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FIG. 9. (Color online) FWHM of the Auger lines (right axis)
of the Xe NOO and Kr MNN transitions calculated utilizing MC
MD simulations. For Xe (Kr) the photon energy of 91 eV (97 eV)
leads to a photoelectron kinetic energy of 24 eV (2.6 eV). All other
parameters are the same as in Fig. 8. The position of the maximum
of the line, Emax, for both cases is shown in gray. The case neglecting
e-e interactions for Kr is given by the black dotted line.

interactions. A similar picture as for the TDSE simulations (cf.
Fig. 1) arises. A prominent asymmetry with respect to positive
and negative time delays, that is, Ȧ(t)|t=tX ≡ ȦP > 0 and
ȦP < 0, respectively, can be found for (i), which completely
vanishes for (ii). Note that, again, the lines with PCI effects
excluded are shifted toward higher energy by 100 meV for
better comparison. The shift is smaller compared to Fig. 1 due
to the fact that γ = 10 overestimates PCI in the case of the
TDSE simulations.

The FWHM and position of the line for the Xe NOO
and Kr MNN decays are shown in Fig. 9. At the considered
photon energies of 91 eV for the former and 97 eV for the
latter, photoelectron energies of 24 and 2.6 eV at comparable
Auger electron energies of 34 and 40 eV are observed. Due
to the slow photoelectron, for Kr a dramatic increase of
PCI in comparison to Xe is expected, which is connected
with a stronger chirp on the Auger electron’s energy. This is
confirmed by our calculations (red solid lines vs blue dashed
lines). If e-e interactions are neglected, similar line shapes
and widths are observed for the rising and falling flanks of
the vector potential (black dotted line). These observations
are in qualitative agreement with TDSE simulations discussed
in Fig. 3 and confirm that PCI is the origin for the Auger
electron’s chirp.

D. Comparison with TDSE

By construction, the MD simulations neglect any quantum
effects in the electron dynamics, such as coherence, inter-
ference, and spin. To test the above-introduced technique, a
detailed comparison of the line shapes calculated utilizing
MD and TDSE methods for three different time delays is
presented in Fig. 10. The Auger electron spectrum of the Xe
NOO transition, necessarily scaled by a factor of γ = 10 for
both simulations, is given for ȦP < 0 (left), ȦP > 0 (center),
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FIG. 10. (Color online) Line shapes of the Xe NOO transition
(γ = 10) at three different time delays tX , corresponding to the
FWHM maxima (see curve in Fig. 3 for 91 eV) and tX = 0, for
streaking with Up = 98.8 meV. Results from TDSE simulations (top
row) and MC-averaged MD simulations (bottom row) are given. The
cases including PCI (blue solid lines) and neglecting PCI (red dashed
lines) are compared for falling (left), rising (center), and zero (right)
slope of A(t).

and ȦP = 0 (right) for situations including (solid lines) and
neglecting (dashed lines) PCI. For better comparison, the
Auger spectra obtained from TDSE and MD simulations have
both been renormalized. This rescaling is necessary due to the
small XUV ionization cross section, which has been neglected
in the classical simulations.

As a first observation, the line shapes obtained by MD
simulations (bottom) are slightly broadened in comparison to
the TDSE (top). This can be attributed to the averaging over
the finite detector acceptance angle of 12.5◦ in the 3D MD
calculations. Here, trajectories are collected, which have been
streaked with smaller amplitude due to their initial deviation
(angular distribution) from the field-polarization axis. For
both types of simulations, the line for ȦP > 0 is significantly
broader than for ȦP < 0, which completely vanishes if PCI
is turned off. Furthermore, both methods reproduce a similar
PCI-induced shift of the line to higher energies. Thus, the
general trends as well as the underlying mechanism for the
description of the asymmetry are correctly captured by the MD
model and quantum effects in the electron propagation play
no dominant role for the linewidth in the considered excitation
regimes.

IV. ANALYTICAL MODEL FOR AUGER LINE SHAPES

In the previous sections we have shown, utilizing TDSE
and MD simulations, that Auger emission is chirped if PCI is
involved, which has a prominent impact on the line shapes in
external laser fields. To get deeper insight in the underlying
physics, we derive closed expressions for the line shape of
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the Auger electron in the streaking field including PCI effects
based on a classical 1D model.

A. Time-to-energy mapping

The key mechanism of streaking is the mapping between
a temporal process and the measurable energy or momentum
distribution. For Auger electrons, the temporal distribution fol-
lows the decay law [Eq. (16)]. The corresponding probability
to find the Auger electron in the continuum at a time t is given
by

PA(t) =
∫ t

0
dτAPTA

(τA), (21)

which approaches unity for long times (see Sec. III A and
Fig. 7 for notations). The distribution (21) is translated by
the streaking field to energy; thus, the quantity of interest is
the kinetic energy change of the Auger electron measured
at a remote detector at time td . Its final momentum is
given by pAi

+ �p(tAi
). The field-induced momentum change

evaluates to

�p = −
∫ td

tAi

dt E(t) = −A
(
tAi

)
, (22)

where vanishing of the vector potential for t = td with td → ∞
is assumed. With that, we obtain for the Auger electron energy
change

Ed
kin = 1

2

[
pAi

− A
(
tAi

)]2 + �EPCI − p2
Ai

2
. (23)

A possible energy exchange between photoelectron and Auger
electron due to PCI is accounted for by �EPCI(tX,τA). It
depends on the distance from the ion, that is, on the Auger time
delay τA, and the pump-probe time delay tX. In the following
we consider fixed (sharp) initial momenta of the two electrons,
pPi

and pAi
.

Let us first assume an infinitesimal duration of the pump
pulse (τX → 0), which corresponds to tPi

≡ tX. An extension
of the model to finite XUV pulse durations is presented in
Sec. IV F. Expanding A around tPi

to second order gives for
the τA-dependent energy shift εPCI

S ≡ Ed
kin + pAi

AP

εPCI
S ≈ −pAi

(
ȦP τA + 1

2 ÄP τ 2
A

) + �EPCI(τA). (24)

Here we use the notations AP ≡ A(tPi
), ȦP = ∂/∂tA(t)|t=tPi

,
and ÄP = ∂2/∂t2A(t)|t=tPi

and neglect higher-order terms
O(τ 3

Aω3
L,A2). Equation (24) translates the temporal distribu-

tion of Auger electrons governed by Eq. (21) to the energy
domain through action of the streaking vector potential and
PCI. This procedure was first applied in Ref. [23] for the
time-to-energy transformation due to PCI without external
fields. In the present paper, we demonstrate, extending the
simplified model of Ref. [20], this mapping including PCI and
streaking, which gives direct access to closed expressions for
the Auger line shape of FA PCI.

B. Line shapes neglecting PCI

Let us first consider the case �EPCI = 0 in Eq. (24) and
find the Auger line shapes at characteristic pump-probe time
delays tX for zero transitions and maxima of A(t).

1. Zero transitions of the vector potential

Since ȦP �= 0, the leading contribution to the mapping (24)
is linear in τA and higher-order contributions can be dropped,
which gives

τA = − ε

pAi
ȦP

. (25)

Substituting expression (25) in Eq. (21) gives the Auger line
shapes for increasing ( + ) and decreasing (−) slope of A,

f1±(ε) = �1e
±�1ε, with �1 = �A

pAi
|Ȧi |

, (26)

with the normalization conditions

∫ 0

−∞
dε f1+(ε) = 1, and

∫ ∞

0
dε f1−(ε) = 1. (27)

The comparison with 1D MD simulations for τX → 0, ne-
glecting PCI and without sampling of the initial momentum
pAi

, is shown in Fig. 11 for Xe NOO decay in a 1-THz
streaking field. The streaked lines exhibit the same exponential
decay law as the time dependence of the core hole decay. The
direction of the slope of A only affects the orientation of the
exponential tail. Deviations of Eq. (26) from the numerical
solution are very small and are due to the linearization of A

and are only visible in the logarithmic representation (insets in
Fig. 11).

2. Extrema of the vector potential

For maxima (ÄP < 0) and minima (ÄP > 0) of the vector
potential, ȦP = 0 holds; thus, the second order in τA is the
leading contribution in Eq. (24). Because obviously τA � 0,
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ȦP < 0

ε ε

FIG. 11. (Color online) Analytical model for the Auger line shape
neglecting PCI [Eq. (26)] compared to corresponding MD simulations
(excluding PCI and sampling of pAi

) at zero transitions of the vector
potential for increasing (left) and decreasing (right) slope of A. Shown
is Xe NOO in a 1-THz streaking field with a duration of 1 ps and a
ponderomotive potential of 100 meV. The insets show the same data
semilogarithmically.
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Eq. (29) compared to MD simulations. Parameters are the same as
for Fig. 11.

we obtain only one solution:

τA =
√

− 2ε

ÄP pA

. (28)

The corresponding line shapes for maxima (“−”) and minima
(“ + ”) of A evaluate to

f2±(ε) = �2

2

1√|ε|e
−�2

√|ε|, �2 = �A

√
2

pAi |ÄP |
, (29)

with the normalizations∫ 0

−∞
dε f2+(ε) = 1, and

∫ ∞

0
dε f2−(ε) = 1. (30)

The comparison with MD data is given in Fig. 12. The line is
dominated by a sharp onset at zero and a rather rapid decay.
The second-order expansion of A gives perfect agreement with
the simulation (logarithmic representation given in the insets
in Fig. 12).

C. Analytical model for PCI

We now consider the case �EPCI �= 0 in Eq. (24). To obtain
closed expressions for the line shapes including streaking and
PCI, the (semi-)classical model introduced in Sec. III needs to
be simplified in order to calculate �EPCI. Following [23,24],
we neglect the direct electron-electron interaction and model
the PCI energy exchange by an instantaneous change in the
ionic binding potential of X2+ to X+ for the Auger electron
and X+ to X2+ for the photoelectron. The propagation scheme,
sketched in Fig. 13, then reads as follows.

Phase 1 (t < t∗), propagation of the photoelectron (t > tPi
)

and the Auger electron (t > tAi
) without interaction in the

streaking field EL(t):

r̈P = −EL(t) and r̈A = −EL(t), (31)

with initial conditions

rP

(
tPi

) = rPi
, pP

(
tPi

) = pPi
,

(32)
rA

(
tAi

) = rAi
, pA

(
tAi

) = pAi
.

Ion r∗
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FIG. 13. (Color online) Scheme of simplified 1D propagation
with PCI effects: In phase 1 (t < t∗), the Auger electron (solid circles)
catches up with the slow photoelectron (open circles) and overtakes
it at t = t∗ (phase 2); pA > pP is assumed. The propagation toward
the detector in phase 3 (t > t∗) is similar to phase 1. Figure after
Ref. [20].

Phase 2 (t = t∗), the Auger electron overtakes the photo-
electron, changed screening of the ion’s charge leads to energy
exchange ±�EPCI = 1/r∗ corresponding to a momentum
change of

pP → p−
P = pP + �pP (�EPCI,t∗),

(33)
pA → p+

A = pA + �pA(�EPCI,t∗).

Phase 3 (t > t∗), similar to phase 1 but with initial
conditions

rP (t∗) = rA(t∗) = r∗;

pP (t∗) = p−
P and pA(t∗) = p+

A. (34)

A straightforward integration of Eq. (31) gives the time of
overtaking,

t∗ = tAi
+ τAp̃P − rAP

pAP

, (35)

and the corresponding distance from the ion

r∗ = τApr + δr∗. (36)

Here, we introduced the notations

p̃P ≡ pPi
− A

(
tPi

)
,

p̃A ≡ pAi
− A

(
tAi

)
,

and

rAP ≡ rAi
− rPi

−
∫ tAi

tPi

d t̃A(t̃),

pAP ≡ p̃A − p̃P = pAi
− pPi

+ A
(
tPi

) − A
(
tAi

)
,

pr ≡ pAi
pPi

pAP

,

δr∗ ≈ p̃ArPi
− p̃P rAi

− A
(
tAi

)(
rAi

− rPi

)
pAP

.

With that, we obtain from Eq. (24) the τA dependence of the
time-to-energy mapping function including PCI and streaking:

εPCI(τA) = −pAi
ȦpτA + 1

prτA + δr∗ . (37)

The distance δr∗ depends on the initial coordinates of the
two electrons and their field-changed initial momenta. In
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most cases δr∗ will be a small correction to r∗. However,
for situations with slow photoelectrons and relatively fast
Auger electrons, that is, situations with strong PCI, δr∗ may
become large. In the following, we derive generalized Auger
line shapes for FA PCI, improving the results presented in
Ref. [20], where δr∗ = 0 was assumed.

D. FA PCI without streaking

Before using the full mapping, let us neglect the first term
in Eq. (37) linear in τA that is attributed to the streaking
contribution discussed before. Then we have a hyperbolic
mapping function,

εPCI
0 = 1

prτA + δr∗ . (38)

Utilizing Eq. (38), the straightforward transformation of the
time distribution (21) gives for the PCI-induced energy change
of the Auger line shape

f3±(ε) = �3
1

ε2
e�3(δr∗−1/ε), with �3 = �A

pr

, (39)∫ 1/δr∗

0
dε f3(ε) = 1, (40)

where “ + ” (“−”) refers to ȦP > 0 (ȦP < 0) in pr and
δr∗. From Eq. (39) we can immediately read off the energy
distribution for the field-free case (and assuming δr∗ = 0),

f
(0)
3 (ε) = �A

p0
r

1

ε2
e−�A/(p0

r ε), (41)

with p0
r = pPi

pAi
/(pPi

− pAi
), in accordance with the result

given in Ref. [23]. Our result (39) differs in the way that,
although we exclude the explicit streaking contribution in
Eq. (37), the field-changed initial momenta p̃P and p̃A are
included. An example of Xe NOO in a 1-THz streaking field
is shown in Fig. 14. In addition to the case of positive and
negative slope of A, the field-free case [Eq. (41)] is displayed.
For this specific case, no strong influence of the field on the
pure PCI process is visible. However, f3+ has a slightly higher
maximum, corresponding to smaller width, in contrast to the
effect observed in the simulations in the previous section (note
that this asymmetry is not the observed chirp). f

(0)
3 is exactly

in the middle between both.

E. Auger line shapes including FA PCI

Using the full mapping function (37) gives a quadratic
equation for τA,

τ 2
A + τA

(
prε

PCI + δr∗pAi
ȦP

prpAi
ȦP

)
+ δr∗εPCI − 1

prpAi
ȦP

= 0. (42)

For the inversion of Eq. (37), we assume pr (τA) ≡ pr ; hence,
we neglect the additional implicit τA dependence, which enters
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FIG. 14. (Color online) Field-assisted PCI without streaking
contribution at zero transitions of A. Shown is Eq. (39) for Ȧ > 0
(red dashed line) and Ȧ < 0 (blue dotted line) in comparison to the
field-free case [Eq. (41)]. Data is for NOO transition of Xe in a 1-THz
streaking field with Up = 100 meV for δr∗ = 1.

through the vector potential. We define

ε± ≡ ε ± β

4
δr∗; α ≡ 1

2pAi
ȦP

; β ≡ 4pAi
ȦP

pr

(43)

and obtain

τA± = −αε+ ± αk+, (44)

with k± =
√

ε2
− ± |β|. For ȦP > 0, only the positive branch

τA+ can be realized (τA � 0), which gives for the line shape
with �4 = |α|�A:

f+(ε) = �4
k+ − ε−

k+
e−�4(k+−ε+). (45)

For ȦP < 0, both solutions (44), τA+ and τA−, are pos-
sible. Thus, the temporal distribution function (21) is split
into two parts,

∫ τmin

0 e−�AτAdτA + ∫ ∞
τmin

e−�AτAdτA, where τmin

separates both branches, τA+ and τA−, at ε(τmin) = ε0. The
straightforward transformation of both integrals to energy
gives for the joint energy distribution function

f−(ε) = 2�4e
−�4ε+

(
ε−
k−

cosh �4k− − sinh �4k−

)
. (46)

The line shapes of Xe NOO for both cases, ȦP > 0
and ȦP < 0, are given in Fig. 15 for δr∗ = 1. While for
the former the line is broadened by PCI, for the latter the
line is compressed and completely different line shapes for
subsequent zero transitions of A with different sign of the slope
are observed. As in the previous cases, perfect agreement with
simulations based on numerical solutions of Eqs. (31)–(34)
by means of MC-averaged MD simulations (in analogy to
Sec. III, but without momentum averaging) is observed, and
the linearization of A has, in the considered regimes of pulse
duration and ponderomotive potential, no significant influence
on the streaked Auger spectra.
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FIG. 15. (Color online) Auger line shapes at zero transition of A

including streaking and PCI contributions. The analytical line shapes
[Eqs. (45) and (46)] (bold, red lines) are compared to MD simulations
(filled area). The case of ȦP > 0 (ȦP < 0) is shown in the left (right)
panel. Parameters are the same as for Fig. 14.

To explain the strikingly different shape of the Auger lines
in Fig. 15, the mapping functions from time to energy are
shown in Fig. 16 for the same set of parameters. The linear
streaking part contributing to Eq. (37) is plotted with blue
dashed lines, the hyperbolic PCI term with green dotted lines,
and the sum of both results in the red solid lines. By comparing
ȦP > 0 (left) and ȦP < 0 (right), the cause for the different
line shapes becomes visible: Whereas for the former, both
terms add up to a bijective mapping function spanning the
whole energy axis from −∞ to ∞, for the latter one a
forbidden energy region for ε < ε0 = 2

√
pA|ȦP |/pr occurs

(gray line in Fig. 16). This leads to a drastic compression
of the line (right panel in Fig. 15), where Auger electrons
released at two different time moments can be mapped into the
same energy interval. This situation is completely absent for
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FIG. 16. (Color online) Time-to-energy mapping of the Auger
electrons in the streaking field for ȦP > 0 (left) and ȦP < 0 (right).
The mappings without PCI [Eq. (25), blue dashed lines], without
streaking [Eq. (38), green dotted lines], and including PCI and
streaking [Eq. (37) red solid lines] are shown. Different signs of
ȦP lead to a drastic change of the mapping: For ȦP > 0 the whole
energy space is accessible in a bijective way, whereas in contrast for
ȦP < 0 a forbidden region below ε0 occurs and “early” and “late”
Auger electrons are mapped to the same energy.

ȦP > 0, which leads to a broad distribution of Auger electrons
(cf. left panel in Fig. 15). This effect is a direct consequence of
the interplay between the hyperbolic PCI-induced chirp on the
Auger electron energy, �EPCI ∝ 1/r∗ ∝ 1/τA, and the linear
“chirp” introduced by the streaking field, where the sign of
the latter depends on the direction of the streaking field at the
time of the core hole creation. An experimental verification
of this mechanism utilizing XUV pulses from FLASH and
HHG exciting the Xe NOO and Kr MNN transitions has been
presented in Ref. [20]. The comparison of the experimentally
obtained Auger electron spectra with the theoretical results
calculated based on MC MD simulations, as presented in
Sec. III, shows perfect agreement.

F. Finite XUV pulse duration

Equations (45) and (46) describe the shape of the Auger
energy distribution for infinitesimal pulse duration of the XUV
excitation. To account for finite pulse durations τX, a similar
transformation of probability distributions from time to energy
as for the case of the decay law (21) needs to be performed. The
temporal distribution of a photoelectron excited by a Gaussian
shaped pulse is described by Eq. (15). At zero transitions of
the vector potential, utilizing the same linearization of A as
was used for Eq. (24), we obtain for the τi-dependent energy
shift (see Fig. 7 for notations),

ε̃(τi) = −pAi
Ȧ(tX)τi + O

(
A2,τ 2

i

)
. (47)

Using this mapping function, a streaked energy spectrum due
to the finite XUV pulse duration can be calculated:

fX(ε̃) = 1√
π�X1

exp

(
− ε̃2

�2
X1

)
, (48)

with the normalization condition∫ ∞

−∞
dε̃ fX(ε̃) = 1, and �X1 = pAi

Ȧ(tX)τX. (49)

At each photoelectron “birth” time tPi
, the Auger “clock”

starts, and with that the energy mapping of the temporal
distribution of Auger electrons. Therefore, the final streaked
Auger energy distribution is given by the convolution

fXA(ε) =
∫ ∞

−∞
dε̃ fX(ε̃)fA(ε − ε̃). (50)

If the PCI contribution is neglected, that is, fA(ε) = f1±(ε)
[cf. Eq. (26)], the integration in Eq. (50) can be carried out
analytically and gives for the line shape

fX1±(ε) = �1

2
e

1
4 �2

X1�
2
1 e±�1εerfc

(
�X1�1

2
± ε

�X1

)
. (51)

The line shape for two subsequent zero transitions of A for
an XUV pulse duration of 20 fs FWHM is shown in Fig. 17
(bold red line). The finite excitation time interval of the core
hole broadens the pure Auger decay line (blue dashed line).
Despite the rather long pulse duration compared to the core
hole lifetime, the exponential decay of the case of infinitesimal
excitation duration is still imprinted on the convoluted line.
Corresponding MD data [blue area, according to method (i)
below] is in perfect agreement with Eq. (51).
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FIG. 17. (Color online) Auger line shapes for zero transitions of
A neglecting PCI contributions for a finite XUV pulse duration of
20 fs FWHM. All parameters refer to THz streaking of the Xe NOO
transition. The convoluted line shape [Eq. (51)] (bold red line) is
plotted against MD simulations (blue area). The case of infinitesimal
XUV pulse duration [Eq. (26)] is shown also for comparison (blue
dashed lines).

Considering the PCI-distorted line shapes, fA(ε) = f±(ε),
the integral

fX±(ε) =
∫ ∞

−∞
dε̃ fX(ε̃)f±(ε − ε̃) (52)

cannot be solved analytically. The result of a numerical
integration of Eq. (52) for a 20-fs FWHM XUV pulse is given
in Fig. 18 for positive and negative slope of A(t). Although
the asymmetry with respect to ȦP > 0 and ȦP < 0 is less
pronounced than for the case of infinitesimal XUV excitation
duration shown in Fig. 15, still a difference between ascending
and descending slope of A is visible, indicating the chirp in
Auger emission. To verify the accuracy of the analytical result,
additionally three different sets of simulations are shown:
(i) numerical solutions according to Eqs. (31)–(34) [(blue)
solid area], (ii) similar to (i) but with proper averaging over
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FIG. 18. (Color online) The same as Fig. 17 but for the case
including PCI. The result of a numerical convolution [Eq. (52)] (red
bold lines) is compared to MD simulations with sharp momenta (blue
area) and with proper sampling over initial momenta pPi

and pAi

(blue dashed lines). Additionally, 3D MD simulations (cf. Sec. III)
are shown (orange dotted lines).

the initial momenta pAi
and ppi

[blue dashed lines], and
(iii) 3D MD simulations according to the scheme in Sec. III,
also including angular distributions [orange dotted lines].
Set (i) resembles the assumptions of the analytical model,
except for the linearization of A, and shows perfect agreement
with Eq. (52). Solutions according to (ii) and (iii) show a
substantial broadening of the Auger line. For (ii) this results
from the natural Auger linewidth and the bandwidth of the
XUV pulse, and for (iii) in addition from the angle integration.
This broadening occurs in a similar way for the rising and
falling flanks of A and does not affect the observed asymmetry
attributed to the PCI-induced chirp. Therefore, the analytical
line shape model (52) catches the important features of FA PCI.
It can be evaluated numerically for a large set of parameters
due to its simple convolution structure. Thus, Eq. (52) is well
suited for the detailed investigation of the properties of FA
PCI and its dependence on the streaking conditions and XUV
parameters.

G. Photoelectron distributions

In the previous sections, we identified the physical mech-
anism for the observed time-dependent chirp on the Auger
electron’s energy: a direct connection between the time instant
of decay and an associated (unique) energy shift mediated
through PCI. At this point, a remark on the consequences for
the corresponding photoelectron distribution is appropriate.
As a matter of fact, the kinetic energy of the photoelectron is
affected in a similar way as it is for the Auger electron, but, by
reason of energy conservation, with an opposite sign. Thus, the
photoelectron is slowed down due to PCI by the same amount
of energy �EPCI the Auger electron has gained.

However, this does not result, as one might guess, in a
chirp on the photoelectron energy distribution with different
sign, as already pointed out in Sec. II D. The results of TDSE
simulations, carried out as described in Sec. II, are shown in
Fig. 19. The FWHM for the photoelectron line is depicted for
the case including PCI (solid line) and neglecting PCI (dashed
line) for a full set of time delays between pump and probe
pulse. For both cases, no asymmetry with respect to the rising
and the falling flanks of the vector potential is observed. Only
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of the Auger electron (dotted) and the photoelectron distribution (PCI,
solid; without PCI, dashed). Shown is the case of Xe NOO scaled by
γ = 10 obtained within TDSE simulations. Parameters are the same
as for Fig. 4.
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a broadening of the line for the PCI-included case is present,
resulting in an equidistant upward shift of the PCI curve in
comparison to the case neglecting PCI, and therefore, no chirp
on the photoelectron energy can be identified. The prominent
asymmetry in the FWHM for the Auger electron is shown for
comparison with dotted lines in Fig. 19.

Returning to Eq. (37), the mapping from the time moment
of Auger decay, τA, to energy, the origin for the absence of a
chirp becomes clear: While for Auger electrons, each decay
time corresponds to a certain amount of energy transfer, for
photoelectrons no such connection can be found. For each
time moment of photoemission, every Auger decay time τA

is possible, and with that any arbitrary energy transfer due
to PCI. Thus, only a PCI broadening of the line is expected,
which is the same for every release time of the photoelectron
and explains the observed delay dependence of the FWHM of
the photoelectron spectrum in Fig. 19.

V. USE OF FA PCI FOR PULSE CHARACTERIZATION

In this last part we ask whether the PCI-induced asymmetry
with respect to the direction of the slope of the vector potential
may help to improve the pulse characterization capabilities of
the streak camera. In Sec. II we commented on the influence of
the ponderomotive potential and the XUV pump pulse duration
on the observed asymmetry. This raises the question of whether
this dependence, especially on the pulse duration τX, can be
used as a sensitive parameter to recover the pulse durations
in experiments. Due to the larger effect of PCI, we choose Kr
MNN decay at a photon energy of 97 eV in the following.

The line shape for different XUV pulse durations at the
zero transitions of the vector potential with Up = 100 meV
is shown in Fig. 20, calculated according to Eq. (52). The
left panel shows the broadened line f +

X for Ȧ > 0 and the
right panel the corresponding compressed line f −

X for Ȧ < 0.
For the shortest pulse durations (3.5 and 7 fs) with τX � �−1

A

the largest asymmetry is observed, whereas for long pulses
(42 fs) no clear distinction between Ȧ > 0 and Ȧ < 0 is
possible. The largest impact on this asymmetry has the
compressed line, which is sharp in the case of very short
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FIG. 20. (Color online) Auger line shape of the Kr MNN transition
in a 3.3-THz streaking field at fixed ponderomotive potential of
100 meV for different XUV pulse durations with a photon energy
of 97 eV. Shown are solutions of the analytical model [Eq. (52)].
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FIG. 21. (Color online) The same as Fig. 20 but for different
ponderomotive potential of the streaking field at fixed XUV pulse
duration of 28 fs.

pump pulses (cf. Fig. 15, right panel). For increasing τX,
the convolution with the Gaussian-shaped time distribution
of the XUV excitation smoothens (broadens) this line, until
the streaking-induced broadening predominates. This result
agrees qualitatively with the TDSE simulations presented
above in Sec. II C (cf. Fig. 4).

A similar behavior is observed upon change of the
ponderomotive potential of the streaking pulse at a fixed
pump pulse duration of 28 fs, see Fig. 21. Here, the largest
asymmetry is observed for small Up, whereas the asymmetry
gradually decreases upon increase of Up. This effect can be as
well explained by a domination of the streaking contribution
for large Up, where the broadening of the line due to the
larger momentum transfer from the streaking field exceeds
the PCI contribution. Again, a similar picture arises in TDSE
calculations (cf. Fig. 5).

In a further step, we want to evaluate the asymmetry in more
detail. To this end, we introduce a classification parameter ξ ,
defined as

ξ = |w− − w+|
w− + w+ , (53)

where w± is the FWHM of the Auger line at Ȧ > 0 and Ȧ < 0,
respectively. This parameter ξ ∈ [0,1] describes the relative
asymmetry and is zero for vanishing asymmetry and attains
finite positive values smaller than one in any other case.

A. Effect of XUV pump pulse duration

A key property for successful pulse characterization is
the existence of observables sensitive to the XUV pulse
duration. In Fig. 22 several properties of the Auger line shapes
are plotted depending on the XUV pulse duration at fixed
Up = 100 meV: the position of the maximum of the line, ε±

m ,
the FWHM of the line, w±, and the corresponding asymmetry
parameter ξ . Let us first consider the energetic position
of the line. For Ȧ < 0, ε−

m is positive, stemming directly from
the positive tail of the decay law. For small pulse durations, the
forbidden region ε < ε0, discussed in Sec. IV E, is observed
with the sharp onset of the line at ε0. With increasing pulse
duration, the position of the maximum shifts toward higher
energies, a clear consequence of the convolution with the
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The forbidden region for Ȧp < 0 at infinitesimal short XUV pulse
duration is marked by ε0. The superscript “ + ” (“−”) refers to Ȧp > 0
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Gaussian-shaped temporal distribution of the XUV pulse. This
shift saturates for large pulse durations, τX 
 �−1

A , due to
the broad convolution function. For Ȧ > 0 and ε+

m , a similar
trend is observed for ε+

m , but with decreasing energy of the
maximum. Due to the PCI-induced broadening of the line, the
effect is here less pronounced than for the compressed line.

The width of the line, w±, shows the typical strong influence
on the XUV pump pulse duration: The larger the τX, the
larger is w±. This phenomenon is the basic principle of the
streak camera utilized for the estimation of pulse lengths. Here,
the observed asymmetry due to the PCI-induced chirp on the
Auger electron’s energy manifests itself in two branches for
the width: one for Ȧ > 0 labeled by w+ and one for Ȧ < 0
indicated by w− (cf. dashed lines in Fig. 22). For conventional
chirp-free situations both branches coincide (no asymmetry
with respect to Ȧ > 0 and Ȧ < 0).

Since with two opposing detectors, both situations Ȧ > 0
and Ȧ < 0 can be recorded simultaneously, also the asymmetry
parameter ξ carries valuable information about the single-shot
pulse properties. Its pulse-duration dependence is plotted by
the (green) dotted line: For short pulses a large asymmetry
of about 0.75 is observed with a rapid decrease down to
about 0.1 at pulse durations of 20 fs. The largest variation
is found for pulses below 10 fs, where τX is comparable to
the Auger decay time �−1

A . Thus, from measuring the width
of the Auger lines at opposite slopes of the streaking vector
potential simultaneously, a reconstruction of the pulse duration
is possible, even if PCI effects are present.

B. Ponderomotive potential of streaking pulse

An important question is the dependence of the asymmetry
on the streaking conditions and, in particular, the pondero-
motive potential Up of the streaking field. This parameter is,
in principle, easily tunable in experiments, either through the
frequency ωL (limited by the pulse duration τX � ω−1

L ) or
the intensity E2

L. In Fig. 23 the position of the maximum,
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FIG. 23. (Color online) The same as Fig. 22 but for varied
ponderomotive potential Up of the streaking field at a fixed pump
pulse duration of 28 fs.

the FWHM, and the asymmetry parameter for a scan of Up,
by variation of EL, at a fixed XUV pulse duration of 28 fs
are shown. For vanishing Up, no streaking occurs, which gives
vanishing energy shifts ε±

m and widths w±. [Note that no natural
linewidths are included in Eq. (52).]

For increasing Up, the position of the maximum of the line
shifts toward higher energies for the case of Ȧ < 0 (ε−

m ) and
toward smaller energies for Ȧ > 0 (ε+

m ). This effect is similar
to the behavior observed upon variation of τX. Also, as in the
previous case, two branches of the width can be identified,
originating from the asymmetry (dashed lines in Fig. 23). For
larger Up, the momentum transfer from the probing field to
the electron increases and, with that, the streaking, resulting in
broader lines. Again for the case of chirp-free XUV excitation
without PCI effects the “ + ” and the “−” branches would
coincide.

Additionally, the asymmetry parameter ξ is plotted in
Fig. 23. Starting from a rather high value at very small Up,
it exhibits a rapid drop when Up increases to about 10 meV,
followed by a slow convergence with only a weak dependence
on Up over a wide range of approximately 100 meV.

Figure 24 summarizes the possibilities for pulse character-
ization using FA PCI. The asymmetry parameter ξ is shown
as a function of τX for different Up of the streaking pulse.
For all considered values of Up a monotonic behavior with
large asymmetry for small pulse durations and vice versa
is observed. The larger the Up, the faster is the drop of ξ

at small pulse durations and, with the corresponding strong
variation with τX, a high sensitivity of ξ in the range of
pulse durations below 10 to 20 fs occurs. Thus, increasing
Up makes it possible to extend the region of sensitivity to
slightly larger XUV pulse durations. In conclusion, measuring
ξ at a given ponderomotive potential of the streaking field for
Ȧ > 0 and Ȧ < 0 simultaneously utilizing opposite detectors,
an estimation of the XUV pulse duration based on (time-
resolved) Auger electron spectroscopy is possible. The highest
sensitivity is reached for XUV pulse durations below 10 fs
with a rather strong variation of the measured parameter ξ by
a factor of four.
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VI. CONCLUSIONS AND OUTLOOK

In this paper, we gave a detailed theoretical explanation
of the experimental observations in Ref. [20], which show
evidence of an energetic chirp in Auger emission. Based on
solutions of the TDSE we could reproduce the chirp for model
systems and explain its origin by PCI. This formed the basis for
classical modeling of the photoelectron and the Auger electron
in the continuum, including all electron-electron and electron-
ion interactions. Using MC-averaged MD simulations for the
electrons, we were able to verify this chirp. The quantitative
comparison with experiments including detector resolutions
and acceptance geometries using the Xe NOO and the Kr MNN
transitions presented in Ref. [20] shows perfect agreement
between our approach and the light-field-driven streak camera

in the considered range of parameters. For deeper insight and
to obtain a more flexible tool, we derived a classical, analytical
line shape model for the Auger electron that fully includes the
XUV pulse shape, streaking, and PCI effects and thus captures
all important properties. We further showed, how our results
may be used as a tool for estimating the length of XUV pump
pulses if PCI effects are involved.

In the present work, we focused on the Auger electrons,
which was motivated by currently available experiments.
The corresponding photoelectron distribution was briefly
discussed, and we explained why no energetic chirp is present
there. A detailed analysis will be part of a future work.
Worthwhile considerations include the influence of additional
XUV pulse parameters such as chirp and substructures, for
example, spikes as present in the case of free electron laser
sources. Additionally, it will be advantageous to extend our
purely classical model for the FA PCI line shape to account
for quantum effects in order to describe interference and spin
effects.

Finally, it would be very interesting to investigate in
experiments with either Kr MNN or Xe NOO the behavior
when the XUV photon energy is increased. If the proposed FA
PCI scenario is correct, then the chirp of the Auger spectra
should vanish when the photoelectron energy starts to exceed
the Auger electron energy.
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[20] B. Schütte, S. Bauch, U. Frühling, M. Wieland, M. Gensch,
E. Plönjes, T. Gaumnitz, A. Azima, M. Bonitz, and M. Drescher,
Phys. Rev. Lett. (in press).
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