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Kinetic Theory for Quantum Plasmas
M. Bonitz

Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel,
D-24098 Kiel, Germany

Abstract. Quantum plasmas have been studied theoretically for more than four decades. Important
early applications include the electron gas in metals and the electron-hole plasma in semiconductors
and dimensionally reduced nanostructures. Experiments with lasers and ion beams are now making
dense quantum plasmas of electrons and (classical) ions accessible in the laboratory giving rise
to increased theoretical activities. In this article we review the basic concepts of quantum kinetic
theory in the frame of reduced density operators as well as second quantization which have been
very successfully applied to condensed matter systems, nuclear matter and dense plasmas.
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INTRODUCTION

Systems of charged particles – plasmas – are omnipresent in nature. In astrophysical
systems plasmas cover a huge range of temperatures and densities – from low-density
plasmas in the interstellar medium to high density plasmas in the core of giant planets
and in stars. Furthermore, plasmas occur in many laboratory systems and include the
electron gas in metals, the electron-hole plasma in semiconductors or electron ion plas-
mas produced in gas discharges. More recently new types of unconventional charged
particle systems have emerged: strongly correlated ions in traps, highly charged mi-
croparticles (dusty or complex plasmas) or ultracold neutral plasmas. Finally, using in-
tense sources of radiation such as lasers or free electron lasers it is now possible to create
ultradense plasmas by ionizing solid targets and subsequently compressing the material.
As a result, often the electrons may exceed the threshold of quantum degeneracy, when
their DeBroglie wavelength becomes larger than the interparticle distance. Even though
this may be a short-time transient phenomenon in present laser plasmas, it may have a
profound effect on the plasma behavior in many experiments. Therefore a reliable theo-
retical description requires incorporation of quantum effects.

Due to this interest in laser pulse or ion beam created dense matter, quantum plasmas
are attracting increasing attention, for a recent overview see [1, 2]. At the same time
these systems are quite complex since one has to simultaneously take into account many
effects: electronic and ionic correlations, bound state formation and partial ionization,
electronic quantum and spin effects and dynamic effects related to the excitation and
relaxation process initiated by strong electromagnetic fields. There exists a variety of
theoretical approaches used to study these systems – ranging from semiclassical and
first-principle simulations over fluid theory, kinetic theory to quantum field theory – all
of which have their strengths and limitations. Progress in this field, therefore, requires
parallel development of various methods and careful comparison of results.
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In the present paper I review the method of quantum kinetic equations which has the
advantage of being rigorously based upon quantum many-particle physics and thus being
well suited to provide a reliable theoretical description of quantum plasmas. Other more
simple approaches including hydrodynamic models should be derived from this more
fundamental concept by means of controlled approximations, clearly stating the appli-
cability limits. I present two alternative approaches to quantum kinetic theory. The first
is based on the reduced density operators and the second on the field-theoretical concept
of second quantization. Examples include electron-hole plasmas in semiconductors and
laser plasmas. Space limitations do not permit to outline all details of the theory, here
the reader is referred to existing text books, e.g. Ref. [3]. Nevertheless is is hoped that
the presented overview, together with extensive reference to earlier work, will allow the
reader to put different concepts into perspective and apply them successfully in future
work.

DERIVATION OF QUANTUM KINETIC EQUATIONS FROM THE
BBGKY-HIERARCHY

One possible starting point for deriving quantum kinetic equations for a plasma interact-
ing with an electro-magnetic field are the equations of motion for N-particle quantities
such as the wave function or the density operator. Since plasmas always constitute an
open system, the wave function is not suitable and we have to resort to the density op-
erator ρ which is an incoherent superposition of all N−particle wave functions |ψi〉,
ρ = ∑i pi|ψi〉〈ψi|, where the pi are real non-negative probabilities with ∑i pi = 1.

The equation of motion of the density operator is well known – it is the von Neumann
equation [4],

ih̄
∂

∂ t
ρ1...N− [H1...N ,ρ1...N ] = 0, Tr1...N ρ1...N = 1, (1)

where H1...N is the full N-particle hamiltonian. A nonequilibrium many-particle theory
can now be constructed by taking the partial trace over ρ1...N giving rise to the reduced
s-particle density operators (s≤ N, V is the system volume)1,

F1...s = V s Trs+1...N ρ1...N ,
1

V s Tr1...sF1...s = 1, (2)

which obey the quantum version of the BBGKY2-hierarchy,

ih̄
∂

∂ t
F1...s− [H1...s,F1...s] = nTrs+1

s

∑
i=1

[Vi,s+1,F1...s+1], (3)

where n is the density and H1...s the s-particle hamiltonian. Note that the left hand
side has the same form as the von Neumann equation (1), but for the s-particle subset,

1 For notational simplicity we consider a one-component quantum plasma and do not include the exchange
contributions. The proper (anti-)symmetrization of the results will be discussed in a separate section below.
2 Bogolyubov-Born-Green-Kirkwood-Yvon
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whereas the right hand side (r.h.s.) takes into account the coupling to the remaining N−s
particles via the pair potential Vi,s+1. As for classical systems, the hierarchy (3) couples
the reduced density operators of all orders. The advantage of the abstract operator
notation of the system (3) rests in its compactness. Properties and various representations
of the hierarchy, including the coordinate, momentum and Wigner representation, have
been discussed in detail in the text book [3].

A quantum kinetic equation follows from the first hierarchy equation upon use of the
cluster expansion, F12 = F1F2 +g12, where g12 denotes the pair correlation operator,

ih̄
∂

∂ t
F1− [H̄1,F1] = nTr2[V12,g12], (4)

H̄1 = H1 +UH
1 , UH

1 = nTr2V12 F2. (5)

Here H̄1 denotes the effective single-particle hamiltonian that is renormalized by the
mean-field (Hartree) potential UH

1 . The collision term [r.h.s. of Eq. (4)] involves the
pair correlations which obey their own equation of motion following from the hierarchy
(3) which can be found in Ref. [3]. The quality of the resulting kinetic equation is
governed by the decoupling approximation for the hierarchy, i.e. by the approximation
for g12. The simplest one consists in neglecting the r.h.s. of Eq. (4) entirely. This leads
to the mean-field (or Hartree or quantum Vlasov) approximation, e.g. [5, 6]. Including
g12 in lowest order of perturbation theory, i.e. in second Born approximation, leads to
the quantum Landau equation which has been studied in detail in recent years, e.g.
[7, 8, 9]. More advanced decoupling schemes include the ladder approximation (ladder
sum, T-matrix) giving rise to the quantum Boltzmann equation which is crucial for
the description of strong coupling effects and bound state formation, e.g. [10, 11], or
the dynamically screened Born approximation (summing the ring diagrams), leading to
the quantum Balescu-Lenard equation, which is important for systems with long-range
interactions, such as plasmas, e.g. [12, 13, 14], see below. For an overview on different
approximations for g12 and the corresponding quantum kinetic equations, see [3].

QUANTUM VLASOV EQUATION

The mean-field approximation is the simplest many-body approximation in classical and
quantum physics. It entirely neglects correlations and reduces the description of the N-
particle system to an effective single-particle problem. It is energy-conserving and time-
reversible [3] and, thus, cannot provide thermalization to the correct equilibrium state.
Yet, for the description of collective properties of plasmas this approximation is often
sufficient, as long as correlations play a minor role. Starting from the first hierarchy
equation, using the coordinate representation, changing to center of mass and relative
coordinates3, R and r, and Frourier transforming with respect to r yields the Wigner
representation (we perform the obvious generalization to the multi-component case,

3 All coordinates and momenta are vectors.

137

Downloaded 08 Oct 2012 to 134.245.67.147. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



denoting the species by subscripts a,b [3]){
∂

∂ t
+

p
ma

∇R

}
fa(R, p, t)− 1

ih̄

∫ dr
(2π h̄)3 d p̄ exp{−i(p− p̄)r/h̄}

×
(

Ueff
a (R+

r
2
, t)−Ueff

a (R− r
2
, t)
)

fa(R, p̄, t) = 0, (6)

with Ueff
a (R, t) = Ua(R, t)+∑

b

∫
dR̄Vab(R− R̄)nb(R̄, t), (7)

where nb is the density, nb(R, t) = (2s + 1)
∫

d p fb(R, p, t)/(2π h̄)3, and s the particle
spin4.

The simplest solution is obtained in the case of a weak excitation Ua where the
equation (6) can be linearized with respect to fa. The solution for the perturbation
fa1 is then trivially found together with the result for the polarization and dielectric
functions. In fact this result has been obtained nearly 60 years ago by Klimontovich and
Silin [15] as well as Bohm and Pines [16]. Note that the solution procedure requires
a proper analytic continuation of the dielectric function, e.g. [17, 18, 19]. The mean-
field quantum dielectric function (RPA or Lindhard dielectric function) has been studied
in great detail. For one-dimensional plasmas, e.g. in semiconductor quantum wires,
equilibrium and nonequilibrium plasmons were computed in Refs. [19, 20, 21]. For two-
dimensional plasmas the polarization was computed by Stern [22] and frequently used
for semiconductor quantum wells and superlattices. The dielectric function and plasmon
dispersion for three-dimensional quantum plasmas in the limit of zero temperature are
subject of many text books on solid state theory.

While the majority of studies focuses on equilibrium plasmas where the dielectric
function is computed for a Fermi distribution experiments in semiconductor transport
and optics have also allowed to produce electron-hole populations in nonequilibrium
states. This allows to create plasmon instabilities in 1D and 2D systems [23, 19, 20, 21].
In contrast, in isotropic 3D systems a nonequilibrium (non-monotonic) distribution does
not lead to an instability, as proven in Ref. [24], but rather to an undamping of acoustic
modes [25]. This undamping has a profound effect on carrier thermalization as it opens
additional channels for energy and momentum loss of energetic electrons. This could be
proven in accurate pump-probe experiments in semiconductors [26, 27].

While the linear theory allows to approximately compute the plasmon dispersion and
damping (or growth rate, in case of an instability), it must fail for predicting the long-
time behavior of a quantum plasma in case of an instability. To solve this question
one has to return to the full nonlinear quantum Vlasov equation (6). This equation
was solved numerically in Ref. [5] where the nonlinear stabilization mechanism of a
quantum plasma was found. Another interesting nonlinear effect is the creation of wakes
of a moving particle. This maybe of relevance for a variety of quantum plasmas and is,
therefore, being actively investigated, e.g. [28, 29, 1].

4 Here we have assumed that the distribution function does not explicitly depend on the spin projection
of the particles which is the case if the hamiltonian is spin-independent. The generalization to the spin-
dependent case is straightforward.
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Finally, we mention that reliable results for the dielectric function and plasmon spec-
trum of a nonideal quantum plasma which withstand comparison with experiments re-
quires to take into account correlations, i.e. to go beyond the quantum Vlasov approxi-
mation. This is a rather complicated problem, as one has to guarantee the conservation
laws and sum rules. An early solution within relaxation time approximation has been
given by Mermin [30], for a detailed derivation and discussion see [29]. More accurate
approaches use e.g. the so-called local-field corrections or selfconsistent solutions of
quantum kinetic equations containing a collision term, see [31] and references therein.

SPIN AND EXCHANGE EFFECTS

It has been common in many recent papers on quantum plasmas to derive quantum
kinetic equations from their classial counterpart by replacing the classical distribution
functions by operators, Poisson brackets by commutators and so on. This procedure
is wrong as it violates the symmetry postulate and the indistinguishability of quantum
particles. In fact, this also applies to the kinetic equations written above which, therefore,
have to be properly (anti-)symmetrized for the case of bosons (fermions). The key is that
any wave function or (reduced) density operator used to describe a many-particle system
has to be fully (anti-)symmetric with respect to arbitrary particle exchanges.

There are two ways to assure the correct symmetry. The first5 is to apply “a-posteriori”
an (anti-)symmetrization operator to all quantities and equations of motion [32, 3]. For
example, the two-particle density operator is replaced by

F12→ FS/A
12 = F12Λ

S/A, Λ
S/A = 1±P12, (8)

where we introduced the two-particle (anti-)symmetrization operator ΛS/A which in-
volves the pair permutation operator P12. The meaning of this operator becomes clear in
the matrix representation using an arbitrary complete orthonormal basis of two-particle
states |12〉:

〈12|FS/A
12 |1

′2′〉= 〈12|F12|1′2′〉±〈12|F12|2′1′〉, (9)

where the short notation “1′′ includes all orbital and spin quantum numbers.
Properly (anti-)symmetrized three-particle and higher order operators are defined

analogously [3]. The immediate consequence is that the kinetic equations contain ad-
ditional exchange contributions and lose the simple commutator structure. For example,
the term with the induced potential in the quantum Vlasov equation changes to

nTr2[V12,F1F2] → nTr2[V12,F1F2Λ
S/A
12 ] = UHF

1 F1−F1UHF†
1 , (10)

with UHF
1 = nTr2V S/A

12 F2 = nTr2V12F2Λ
S/A
12 ; V S/A

12 = V12Λ
S/A
12 ,

where UHF
1 is now a (non-hermitean) operator and the Hartree-Fock hamiltonian HHF

1 =
H1 +UHF

1 replaces the mean-field hamiltonian H̄1 which appeared in Eq. (4). Thus, the

5 The second approach of “a priori (anti-)symmetrization” will be discussed below.
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(anti-)symmetrized first hierarchy equation (4) becomes

ih̄
∂

∂ t
F1−

{
HHF

1 F1−F1HHF†
1

}
= nTr2

{
V S/A

12 g12−g12V S/A†
12

}
. (11)

As a result, in addition to the previous mean-field term, in Eq. (4) arises a new “ex-
change” part (the so-called Fock term) of the hamiltonian. The neglect of the r.h.s. again
leads to the mean-field approximation which is the familiar time-dependent Hartree-
Fock (TDHF) approximation that is the proper generalization of the classical Vlasov
equation to quantum systems. Thus it is clear that even the simple mean-field approxi-
mation will exhibit dramatic differences for bosons and fermions, i.e. the different mi-
croscopic nature of the two known particle types leads to entirely different macroscopic
behaviors, including superconductivity – in the case of fermions – or Bose condensation
and superfluidity – in the case of bosons. Some examples can be found in Ref. [33].

Analogously, an exchange contribution appears in the collision integral on the r.h.s.
of Eq. (11). All these exchange contributions are, in a quantum plasma in general,
of the same order as the direct terms and have to be taken into account. Analogous
contributions emerge in all hierarchy equations. Moreover, phase space filling effects
arise, assuring e.g. the Pauli principle (in the case of fermions) in all collision integrals,
i.e. the probability of a scattering event is not only proportional to the number of
particles in the initial state but depends also on the occupation of the final states with
factors 1± f f inal , see below, [3]. The advantage of the discussed so far “post-(anti-
)symmetrization” procedure is that the original [not (anti-)symmetrized] equations have
a rather compact form and physical approximations are readily introduced before dealing
with the spin. At the same time, the subsequent (anti-)symmetrization procedure may
become involved, in particular beyond the two-particle level, see chapter 3 of Ref. [3].

The second (anti-)symmetrization approach, in contrast, uses “a priori” only (an-
ti)symmetric quantities. It is based on the method of “second quantization” where the
basic quantities are creation and annihilation operators of a particle in a certain single-
particle quantum state |k〉6. Action of operator a†

k (of operator ak) on the N-particle
state increases (reduces) the number nk of particles in the k-th orbital by one. These
operators have the spin statistics “built-in” via the (anti-)commutation relations for
bosons (fermions),

[ak,al]∓ = 0, [a†
k ,a

†
l ]∓ = 0, [a†

k ,al]∓ = δkl, (12)

where the commutator (-, bosons) and anti-commutator (+, fermions) are defined by
[A,B]∓ = AB∓ BA. Note that the two operators are not hermitian, but are pairwise
adjoint, i.e. the hermitian adjoint of the creator a†

k is the annihilator ak. It is easy to
show that the relations (12) assure that, for fermions, the number of particles nk cannot
exceed one (thus guaranteeing the Pauli principle) whereas, for bosons, no limitation
exists. This property of the creation and annihiliation operators has made the approach
of second quantization the major method to describe many-particle quantum systems

6 A complete orthonormal basis in N-particle Hilbert space |n1n2 . . .〉 can be constructed as a direct
product of single particle states (orbitals) |k〉.
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in quantum electrodynamics, condensed matter theory, quantum field theory and even
quantum chromodynamics (QCD).

Any many-particle operator is readily transformed into second quantization repre-
sentation. For example, the one-particle reduced density operator is given by a matrix in
single-particle Hilbert space that can be written as the expectation value of the associated
field operator products7. This relation is straightforwardly extended to the two-particle
reduced density operator,

〈l|F1|m〉 = 〈a†
l am〉, (13)

〈kl|F12|mn〉 = 〈a†
ka†

l aman〉, (14)

and so on. As a special case, the number of particles occupying the state |k〉 is given by
the diagonal element

nk = 〈k|F1|k〉= 〈a†
kak〉, (15)

whereas off-diagonal elements are related to transitions between different states. Equa-
tions of motion for the reduced density operators are then readily derived from the well-
known Heisenberg equation of motion for the time-dependent operators ak and a†

k ,

ih̄
∂

∂ t
ak− [H1...N ,ak] = 0. (16)

From this we readily recover the correctly (anti-)symmetrized hierarchy equation for the
one-particle density operator, Eq. (11), and similarly all higher order equations of the
quantum BBGKY hierarchy [3]. For this one simply multiplies Eq. (16) by the necessary
operators, evaluates the commutator term and finally performs the ensemble average.

KINETIC EQUATIONS BEYOND THE MEAN-FIELD LIMIT.
NON-MARKOVIAN EFFECTS

As mentioned above, the simple mean-field kinetic equation (Vlasov or TDHF) does not
provide any relaxation to a stationary state. For a correct kinetic description of transport
and thermodynamic properties, therefore, collisions have to be taken into account even
if the system is only weakly correlated, giving rise to the collision integrals, arising
from the terms on the r.h.s. of Eq. (11). Of special importance for plasmas at moderate
coupling is the Born approximation. Within the polarization approximation for the pair
correlation operator g12 which is modified by quantum effects one obtains the quantum
Balescu-Lenard collision integral [3, 12] which we write for the spatially homogeneous

7 Recall that the symbols 〈...〉 on the r.h.s. stand for a trace with the full density operator. This is not to be
confused with the symbols |...〉 and 〈...| denoting states in Hilbert space.
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case8,

I(p1, t) =
2
h̄

∫ dp2

(2π h̄)3
dp̄1

(2π h̄)3
dp̄2

(2π h̄)3

∣∣∣∣ V (p1− p̄1)
εRPA [p1− p̄1,E(p1)−E(p̄1); t]

∣∣∣∣2
×(2π h̄)3

δ (p1 +p2− p̄1− p̄2) ·2πδ (E1 +E2− Ē1− Ē2)
×
{

f̄1 f̄2(1± f1)(1± f2)− f1 f2(1± f̄1)(1± f̄2)
}∣∣

t . (17)

Here, we introduced the quasiparticle (single-particle) energy and momentum (Wigner)
distributions, Ei = E(pi), Ēi = E(p̄i) and fi = f (pi, t), f̄i = f (p̄i, t). As was mentioned
above, quantum exchange gives rise to the Pauli blocking factors 1± f (p) which reduce
the scattering probability into the momentum state |p〉, in the case of fermions (Pauli
principle). For bosons, in contrast, the scattering probability is enhanced (plus sign). As
for classical plasmas, the collision integral contains the dynamically screened Coulomb
potential, where the dielectric function is now given by the proper quantum expression,
in the simplest case, by the Lindhard (RPA) approximation that was discussed above.
The collision integral (17) conserves momentum and the mean value of the single-
particle energy – which is a result of the corresponding delta functions – and it assures
relaxation towards a Fermi or Bose function, respectively for times longer than the
relaxation time trel , in that case I→ 0, as is easily verified by direct computation.

The quantum Balescu-Lenard equation was numerically solved for optically excited
electron-hole plasmas in semiconductors by Binder et al. [12] who selfconsistently
computed the RPA dielectric function with the nonequilibrium distribution functions
f (t). To their surprise, they observed that the relaxation of electrons and holes towards a
Fermi function can be extremely fast – within times on the order of a few femtoseconds –
which they could trace to the appearance of nonequilibrium collective excitations in the
plasma [25]. However, this result was in contrast to experiments, where the relaxation
time was typically found to be not below 100 fs9. The solution of this contradiction
was found to be the limited applicability range of the Balescu-Lenard collision integral
(17). In fact, in a rapidly evolving plasma, the use of the RPA dielectric function
that adiabatically follows the evolution of the distribution functions, i.e. εRPA(p,ω)→
εRPA(p,ω, t) ≈ εRPA(p,ω, [ f (t)]) must fail10. Here one has to take into account that
binary correlations (and with them the plasmon spectrum) build up on a finite time scale
that is of the order of the correlation time τcor – in a plasma it is of the order of one
over the plasma frequency [35]. These observations have stimulated work towards an
extension of quantum kinetic theory to finite correlation times leading to generalized
non-Markovian collision integrals that take into account a finite collision duration and
memory effects (the scattering probability depends on the distribution function at the
same time and at its values at earlier moments as well). This has been studied in detail
by various groups, e.g. [8, 35, 7], and generalized Balescu integrals have been derived
by Haug and Ell [36] and others [13, 3].

8 For simplicity, we also leave out the exchange contribution and sum over the different spin projections.
9 Note that in semiconductors the Coulomb interaction is screened by the lattice. The reduction is given
by the square of the background dielectric function εb which is typically in the range of 5 . . .20.
10 This means the Bogolyubov hypothesis, τcor� trel , fails, see [3, 8].
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A second development to solve this time-scale problem started in the frame of quan-
tum field theory where the basic quantities are two-time correlation functions. Their
equations of motion are the Keldysh-Kadanoff-Baym equations (KBE), see below. These
equations have been successfully solved for semiconductors and plasmas [7, 37, 38, 31]
and led to substantially longer relaxation times, in reasonable agreement with the ex-
periments. Moreover, these non-Markovian quantum kinetic equations have solved two
other problems: they correctly take into account correlation effects in the dynamics. Thus
instead of the conservation of kinetic energy they conserve the total energy (kinetic plus
interaction energy) of the plasma [8] and furthermore, the relaxation terminates not in
the equilibrium momentum distribution of an ideal Fermi or Bose gas but in a correlated
Wigner distribution function which is consistent with the thermodynamic properties of
a nonideal plasma. Finally, we mention that also the gradual build-up of screening could
be directly computed [39, 3] and was even directly demonstrated in experiments [40].

RELATIVISTIC FIELD THEORY FOR QUANTUM PLASMAS

As was discussed above, the method of second quantization has a number of advantages
for treating quantum many-body systems in nonequilibrium. This concerns not only the
selfconsistent inclusion of the spin properties of the microparticles but also the easy
incorporation of non-Markovian and memory effects. Even more importantly, using
second quantization, it is fairly straightforward to extend the kinetic theory to the
relativistic regime and to include the interaction of the plasma with an electromagnetic
field of arbitrary strength and temporal structure. Here we briefly sketch the main ideas,
outline recent progress and give further references.

The second quantization description of a system of charged particles11 interacting
with an electromagnetic field is rigorously given by the coupled Dirac and Maxwell
fields Ψ̂(1), Âµ(1), where Ψ̂ is a four-spinor12 of spin 1/2-particles, the four-vector
Âµ = (cφ̂ , Â) comprises the quantized scalar and vector field, and 1 = xµ

1 = (ct,r),
µ = 0,1,2,3. The Dirac field operator obeys the usual fermionic anti-commutation
relations, Eq. (12), where as the photon field satisfies bosonic commutation relations,
e.g. [3], guaranteeing the correct spin statistics of the resulting theory. The coupled
equations of motion for the two fields are Dirac’s and Maxwell’s equations and have
been discussed already by J. Schwinger [41] in the early 1950s (for a historic overview

11 To simplify the notation we consider a one-component plasma.
12 Apart from the spinor structure Ψ̂(1), is fully analogous to the annhilation operator ak discussed above,
the main difference being that the former acts on N-particle states in continuous configuration space and
annihilates a particle at space point r. Similarly, the creation operator a†

k has its correspondence in the

adjoint spinor Ψ̂.
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see the article of P.C. Martin [42]),{
γ

µ

(
p̂µ −

e
c

Âµ

)
−mc

}
Ψ̂ = 0, (18)

Dµ

ν(1)Âν(1) =
4π

c

{
ĵµ(1)+ jµ ext(1)

}
, (19)

ĵµ = ecΨ̂γµΨ̂, (20)

where we also defined the 4-momentum, p̂µ = ih̄∂ µ = ih̄(1
c ∂t ,−∇), and the current

density operator ĵµ , which guarantees the charge conservation law, ∂µ ĵµ = 0, and
positiveness of the number density 〈n̂〉 = 〈 ĵ0〉/e ≥ 0. Note that the explicit form of
the Maxwell operator is gauge-dependent13. Furthermore, γµ comprises the four Dirac
matrices14 and we use Einstein’s convention of summation over repeated matrix indices.

The system (18,19) has the structure of a relativistic single-particle problem in an
electromagnetic field, yet the field operator structure generates the full N-particle prob-
lem. To compute observables a suitable statistical averaging has to be performed using,
as a weight, the density operator ρ1...N of the system, see above. The expectation value
of the photon field is then A(1) ≡ 〈Â(1)〉 = Tr{ρÂ(1)} which is related to the classical
value of the vector potential (not an operator), whereas the Dirac field has usually a zero
mean value, 〈Ψ̂(1)〉 = 0. Thus, the central quantities of the theory are the second mo-
ments (fluctuations) which are the nonequilibrium Greens functions of photons, Dµν ,
and fermions G,

Dµν(1,1′) ∼ −i
{
〈Âµ(1)Âν(1′)〉−Aµ(1)Aν(1′)

}
, (21)

G(1,1′) ∼ −i〈Ψ̂(1)Ψ̂(1′)〉, (22)

where we skipped the constant prefactors. Both Greens functions have a four by four
matrix structure due to the dimensionality of the 4-vector potential and the 4-spinor
structure of Ψ, respectively. The equal-time elements of the Greens functions are directly
related to the one-particle density operators, cf. Eq. (13), and thus give access to all
relevant observables of the quantum system. Besides, the availability of the time-off-
diagonal elements provides important additional information that is related to spectral
properties and correlations. Notice that the time arguments of the Greens functions are

13 For example in the Feynman gauge, the operator is given by a diagonal matrix, with the standard
D’Alambert operator on the diagonal, Dµ

ν = ∂ γ ∂γ δ
µ

ν , and ∂µ Aµ = 0, cf. [3].
14 Recall the four-vector of the Dirac matrices:

γ
0 =

(
~0 1
1 ~0

)
, ~γ =

(
~0 −~σ
~σ ~0

)
, where ~σ = (σx,σy,σz) are the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, and 1 =

(
1 0
0 1

)
.
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quite complicated, but we skip these details as they are not important for the final kinetic
equations15.

The equations of motion for the two Greens functions are derived in a similar manner
as for the reduced density operators, using the Heisenberg equation of motion (16), but
now taking into account the two-time dependencies. The result is16{

γµ

(
pµ

1 −
e
c

Aµ(1)
)
−mc

}
G(1,1′)−

∫
d2Σ(1,2)G(2,1′) = δ (1−1′), (23)

Dµ

ν(1)Dνλ (1,1′)−
∫

d2Π
µ

ν(1,2)Dνλ (2,1′) = δ
µλ (1−1′), (24)

Dµ

ν(1)Aν(1) =
4π

c
jµ ext(1), (25)

which provides a closed system of coupled equations. The first terms on the left hand
sides of Eqs. (23,24) have the structure of the usual Dirac and Maxwell’s equations,
as equations (18,19) for the field operators, except for the appearance of the ensemble
average Aµ . This classical field acts as source for the particle dynamics and obeys its own
Maxwell’s equations (25) driven by the external currents alone (the ensemble average
of the induced current vanishes). Many-particle effects enter the two Greens functions
equations via the integral terms which have the form of an additionl energy contribution.
In fact, the central quantities entering these expressions are the “selfenergies” of the
fermions, Σ, and of the photons, Π, which are defined as follows

Σ(1,2) = −iech̄γµ

∫
d3d4G(1,3)

δG−1(3,2)
δAν(4)

4π

c
Dνµ(4,1), (26)

Π
µ

ν(1,2) =
4π

c
δ jµ(1)
δAν(2)

, (27)

involving the inverse Greens function G−1 and the functional derivative of the mean
induced current. The evaluation of these quantities is the main task in developing a
quantum kinetic theory for fermions coupled to photons and in deriving approximations.
Here one takes advantage of the powerful Feynman diagram technique which was
generalized to nonequilibrium by L.V. Keldysh and G. Baym and L. Kadanoff17 [43, 44].
A version of the above equations suitable for further theoretical and computational
analysis is given by the Keldysh-Kadanoff-Baym equations which will be discussed
below for the non-relativistic limit.

15 The times run over the Schwinger-Keldysh time contour, and a contour-ordering of the field operators
is implied, see e.g. Ref. [3].
16 Again the time arguments and integrals run along the Schwinger-Keldysh contour. Also, in the equation
for G we omitted a contribution arising from initial field-matter correlations, for details see Ref. [3].
17 For an overview on the historial developments of the powerful nonequilibrium Greens functions
technique in the U.S. and in the Soviet Union in the early 1960s, see the recent reviews by G. Baym
[45] and L.V. Keldysh [46].

145

Downloaded 08 Oct 2012 to 134.245.67.147. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



KELDYSH-KADANOFF-BAYM EQUATIONS FOR FERMIONS,
PLASMONS AND PHOTONS

The quantum kinetic equations in the non-relativistic limit are derived from the relativis-
tic theory in standard manner. Then the Dirac equation for the fermion field goes over
into the Pauli equation for the field operator ψ̂s that is a two-spinor and decouples from
the antiparticles (s now denotes the particle type) [3]

ih̄
∂ψ̂s

∂ t
=

[
1

2ms

(
p̂− es

c
Â
)2

+ esφ̂ −~µs ·∇× Â
]

ψ̂s, (28)

where Â and φ̂ are the field operators of the electromagnetic and scalar component of
the electromagnetic field and ~µs = esh̄

2msc
~σ denotes the magnetic moment due to the spin

of the fermions containing the vector of the Pauli matrices. The following procedure
is analogous to the relativistic case. One introduces single-particle Greens functions
as fluctuations of ensemble averages of two field operators, but now the scalar and
transverse part of the electromagnetic field are separated18 into a scalar “plasmon” Green
function D00 and a 3×3 matrix “photon” function Dik, where i, j = 1,2,3,

Dik(1,1′) ∼ −i
{
〈Âi(1)Âk(1′)〉−Ai(1)Ak(1′)

}
, (29)

D00(1,1′) ∼ V (1−1′)− i
{
〈φ̂(1)φ̂(1′)〉−φ(1)φ(1′)

}
, (30)

Gs(1,1′) ∼ −i〈ψ̂s(1)ψ̂†
s (1′)〉, (31)

where again constant factors have been dropped19. Note that the leading term in the
plasmon function is the Coulomb potential V . Furthermore, the fermion function has
now the structure of a 2×2 spinor matrix.

As in the relativistic case, we obtain coupled equations of motion for the Greens
functions, but now of fermion, plasmons and photons which involve the expectation

18 We use this decomposition to illustrate how the Coulomb interaction among charged particles emerges
from the interaction with the photon field. Strictly speaking, this separation is only possible in an isotropic
system. In the general case one has to work with a single 4×4 photon Green function.
19 Again the complex time structure is not explicitly indicated and time ordering on the Schwinger-
Keldysh contour is implied.
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values of the electromagnetic field (classical fields) φ = 〈φ̂〉 and A = 〈Â〉,

∆1d≷(11′) =
∫ t1

t0
d1̄
[
π

>(11̄)−π
<(11̄)

]
d≷(1̄1′)

−
∫ t ′1

t0
d1̄π

≷(11̄)
[
d>(1̄1′)−d<(1̄1′)

]
, (32)

�1d≷i j (11′) =
∫ t1

t0
d1̄
[
π

>
ik (11̄)−π

<
ik (11̄)

]
d≷k j(1̄1′)

−
∫ t ′1

t0
d1̄π

≷
ik (11̄)

[
d>

k j(1̄1′)−d<
k j(1̄1′)

]
, (33){

ih̄
∂

∂ t1
− 1

2ma

(
p1−

ea

c
A1

)2
− eaφ1−~µa∇×A1

}
g≷a (11′) =∫ t1

t0
d1̄
[
σ

>
ab(11̄)−σ

<
ab(11̄)

]
g≷b (1̄1′) −

∫ t ′1

t0
d1̄σ

≷
ab(11̄)

[
g>

b (1̄1′)−g<
b (1̄1′)

]
, (34)

where contributions from initial correlations have been omitted, e.g. [3] and φ and
A obey the ensemble averaged Maxwell’s equations (contributions from the induced
charge and current densities arising from the fermion field operators vanish since the
latter have a zero expectation value),

∆1φ(1) = −4πρ
ext(1), (35)

�1A(1) =
4π

c
jext(1). (36)

The equations for the Greens functions have to be solved together with the adjoint equa-
tions assuring the symmetry with respect to the two arguments of the functions. As
in the relativistic case, the equations of motion contain a single-particle contribution
(l.h.s. of the equations) and correlation and exchange corrections arising from the in-
tegral terms. The latter contain additional (complex) energy contributions expressed by
the selfenergies π,πik,σab of plasmons, photons and fermions, respectively. Note that
the superscripts > and < of the Green functions and selfenergies distinguish two differ-
ent correlation functions that arise naturally from the two possible orderings of the field
operators in the definitions (30, 29, 31): the function g<∼〈ψ̂†ψ̂〉 is related to the density
of particles whereas the function g> ∼ 〈ψ̂ψ̂†〉 relates to the density of hole excitations
(and similarly for plasmons and photons)20.

The above system are the Keldysh-Kadanoff-Baym Equations (KBE) for fermions,
plasmons and photons and provide the most general starting point for the development of
a selfconsistent non-relativistic quantum kinetic theory for plasmas. These equations can
either be used to analytically derive simpler quantum kinetic euqations for the Wigner
distribution (or density matrix), see below, or they can be solved numerically directly.
This has become possible in recent years for numerous special cases, although a full

20 The two functions are, in general, independent because the two field operators do not commute, cf. the
(anti-)commuation rules (12).

147

Downloaded 08 Oct 2012 to 134.245.67.147. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



selfconsistent solution of the entire system (32,33,34) has not yet been achieved. The
numerical solutions mostly considered the particle dynamics assuming a stationary (re-
laxed) photon and plasmon field. Among them we mention applications to nuclear mat-
ter, e.g. [49, 50], electron-hole plasmas in semiconductors, e.g. [7, 37, 38, 39], dense
quantum plasmas [51, 52], the electron gas in metals, e.g. [31] and even the quark-
gluon plasma, e.g. [53], and references therein. While most of these applications did
concentrate on macroscopic systems that are nearly spatially homogeneous, in recent
years new applications to strongly inhomogeneous systems, including electrons in quan-
tum dots [54, 55, 56] and electrons in atoms and molecules have become possible, e.g.
[57, 58, 59, 60]. This broad variety of treatable systems underlines the strength and
generality of this field-theoretical approach.

QUANTUM KINETIC EQUATIONS

Besides direct solutions of the two-time KBE this theory is perfectly suited for a sys-
tematic derivation of more approximate quantum kinetic equations. Most importantly, it
allows one to derive equations for the Wigner distribution function that in a selfconsis-
tent manner include correlations, quantum and spin effects, as well as the effect of an
arbitrary electromagnetic field. To come to a closed equation for the single-time quan-
tities, such as the Wigner distribution or the single-particle density matrix the two-time
correlation functions g≷ have to be eliminated.

We illustrate the procedure for the simplest case. We assume that the photons and
plasmons have already reached equilibrium, so their distributions are stationary. The
consequence is that the Coulomb interaction between the fermions is screened and the
electromagnetic field is purley classical, given by the ensemble averaged quantities φ

and A. We further assume that the plasma is not in a magnetic field, so the term with
the magnetic moments in Eq. (34) vanishes. Next, we restrict ourselves to the equation
(34) for g< and specify the time arguments to be equal, t1 = t ′1 = t. Thus we obtain the
equation for the single-particle density matrix, f1(r1,s1,r′1,s

′
1, t) = ∓ig<(1,1′)|t1=t ′1=t ,

the Fourier transform of which (with respect to the relative coordinate r = r− r′) yields
the Wigner distribution21 f (R,p, t) that, in general, also depends on the macroscopic
(center of mass) coordinate, R = (r+ r′)/2.

We illustrate the further derivations for a spatially homogeneous fully ionized
electron-ion plasma (a = e, i) in a strong time-dependent laser field22 [61, 14] where we
choose the field in the form φ ext = 0 and A(t) = −c

∫ t
−∞

dt̄ E(t̄), where E(t) denotes
the electric field strength. To avoid ambiguities arising from the gauge freedom, in
the resulting kinetic equation, we use an explicitly gauge-invariant form, resulting in a

21 From now on we will not explicitly write the spin variables. Their inclusion would be important in an
external magnetic field, and this generalization presents no problem.
22 For extension to a weakly inhomogeneous plasma, see Ref. [67].
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Greens function depending on the total momentum k which follows according to

ga(k,ω; t) =
∫

dτdr exp
[

iωτ− i
h̄

r
(

k+
ea

c

∫ t1

t ′1

dt̄
τ

A(t̄)
)]

ga(r,τ; t), (37)

where r = r1−r′1, τ = t1−t ′1 and t = (t1 +t ′1)/2. The resulting quantum kinetic equations
are given by [61]

∂

∂ t
fa(ka, t)+ eaE(t) ·∇k fa(ka, t) =−2Re

∫ t

t0
dt̄
{

σ
>
a g<

a −σ
<
a g>

a

}
= Ia(ka, t), (38)

where the full arguments of the functions on the r.h.s. have a non-trivial time and
momentum dependence,

σ
≷
a g≶a ≡ σ

≷
a

[
ka +KA

a (t, t̄); t, t̄
]

g≶a
[
ka +KA

a (t, t̄); t̄, t
]
, (39)

with KA
a (t, t ′) ≡ ea

c

∫ t

t ′
dt ′′

A(t)−A(t ′′)
t− t ′

.

What remains to do is to transform the collision integrals Ia. To this end, the Greens
functions and selfenergies which are functionals of the single-particle density matrix,
i.e. g≷ = g≷[ f1] and σ≷ = σ≷[g≷] should be eliminated, so the collision integrals are
expressed entirely in terms of fa. This is the so-called reconstruction problem which
was solved by Baym and Kadanoff for the case of systems close to thermodynamic
equilibrium [44] and extended to nonequilibrium by Lipavski and co-workers [62].
Finally, the latter result was extended to a gauge-invariant form suitable for laser plasmas
in Refs. [61, 14],

±g≷a (k; t1, t ′1) = gR
a (k; t1, t ′1) f≷a

[
k−KA

a (t ′, t); t ′1
]

− f≷a
[
k−KA

a (t, t ′); t1
]

gA
a (k; t1, t ′1), (40)

where the upper (lower) sign refers to g> (g<), and f < ≡ f and f > ≡ 1− f , and gR
a is

the retarded propagator that can be expressed by the correlation functions according to23

gR
a (t, t ′) = Θ(t− t ′)[g>

a (t, t ′)−g>
a (t, t ′)], see also Eq. (44).

The results obtained so far are valid for any choice of selfenergy (i.e. any approxima-
tion for the pair correlations). Below we will consider two examples: the static second
Born approximation (statically screened Boltzmann equation or Landau equation) and
the dynamicallly screened Born approximation (nonequilibrium RPA, which is a gener-
alization of the Balescu-Lenard collision integral, Eq. (17), discussed above).

COLLISION INTEGRAL FOR A LASER PLASMA IN RPA

We first consider the collision integral that includes dynamical screening. The Greens
functions technique provides an extremely short and elegant way to this approximation.

23 Note that, for t1 ≥ t ′1 only the first term in (40) contributes and for t1 < t ′1 only the second.

149

Downloaded 08 Oct 2012 to 134.245.67.147. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



In fact, the corresponding selfenergies of particles and plasmons are given by [44]

σ
≷
a (1,1′) = ih̄g≷a (1,1′)V s≷

aa (1,1′), (41)

Π
≷
ab(1,1′) = −ih̄g≷a (1,1′)g≶b (1,1′). (42)

where V s
aa(1,1′) denotes the nonequilibrium dynamically screened potential of particles

of species “a” (note the dependence on two times), and the correlation function V s≷
aa is

nothing but the plasmon Greens function ds≷ introduced above24. Its equation of motion
was already formulated above and involves the plasmon selfenergies,

∆V s≷
ab (1,1′) = ∑

c

∫
∞

−∞

d1̄
[
Π

R
ac(1, 1̄)V≷cb(1̄,1′)−Π

≷
ac(1, 1̄)V sA

cb (1̄,1′)
]
, (43)

where we introduced the short notation for advanced (“A”) and retarded (“R”) propaga-
tors,

FR/A(1,1′) = ±Θ[±(t1− t ′1)]
{

F>(1,1′)−F<(1,1′)
}

. (44)

Despite its simplicity, the system (38–43) [14] describes remarkably complex physi-
cal processes: the evolution in space and time of charged carriers interacting via the
full dynamic Coulomb potential which in turn evolves selfconsistently (screening build
up) and may have nonequilibrium modes (including instabilities and nonlinear phenom-
ena). Furthermore, the dynamics is influenced by the transverse electromagnetic field A
which contains external fields (e.g. a laser field) and induced contributions and obeys
Maxwell’s equations.

We can now apply the reconstruction ansatz (40) for the Greens functions and obtain
for the plasmon selfenergies (longitudinal polarization functions)

Π
R
aa(q; t, t ′) = − i

h̄
Θ(t− t ′)e

i
h̄ qRa(t,t ′)

∫ d3k
(2π h̄)3 e−

i
h̄(εa

k+q−εa
k)(t−t ′)

×
{

fa
[
k+Qa(t, t ′); t ′

]
− fa

[
k+q+Qa(t, t ′); t ′

]}
, (45)

where we used for gR/A in Eq. (40) the propagators of a free particle with energy εa in
an electromagnetic field. Further, Qa and Ra are, respectively, the momentum gain and
displacement of a free particle in a field E(t) during the time interval [t ′, t] given by

Qa(t, t ′) =−ea

∫ t

t ′
dt ′′E(t ′′), Ra(t, t ′) =

ea

ma

∫ t

t ′
dt̃
∫ t̃

t ′
dt̄ E(t̄). (46)

In the absence of an external field, E = 0, also Q and R vanish, and the function ΠR

yields just the Lindhard polarization function25. Obviously, here we have obtained a

24 The notation V s is more conventional in plasma physics.
25 To verify this one just has to perform a Fourier transform with respect to t− t ′ that yields a frequency
dependent function where the theta function takes care of causality.
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far-reaching generalization. In the presence of an external field, the plasmon spectrum
is modified in two ways: first, by the field-dependent prefactor of the standard RPA-
polarization and, second, by the field-dependent momentum arguments of the distribu-
tion functions. From this it is clear that the dielectric function will be influenced by the
field in a similar way. Indeed, since [3] εR(q, t, t ′) = δ (t− t ′)−∑aVaa(q)ΠR

a (q, t.t ′), the
field dependence of ΠR leads directly to a modification of the plasmon spectrum of a
plasma in a strong laser field E(t), in particular to the appearance of plasmon side bands
due to plasmon-photon coupling [14].

The collision integrals of the electrons and ions involving the two-time dynamically
screened potential V s is rather complicated and will not be written here. For details and
further discussion we refer to [14]. So far, no numerical solutions of this equations were
possible. In the limiting case of zero laser field the evolution of laser generated electrons
in a semiconductor under the influence of dynamical screening build up was computed
by Banyai et al. [39].

COLLISION INTEGRAL FOR A LASER PLASMA IN BORN
APPROXIMATION

We now neglect the plasmon dynamics and assume that a stationary spectum had time to
emerge. Furthermore, we neglect dynamics effects and consider the static limit, ω → 0
giving rise to a statically screened potential (Debye potential) between the electrons
and ions, V s,R/A

ab (q, t1, t ′1)→V st
ab(q, t1)δ (t1− t ′1) where we allowed for a time dependence

of the screening length (via the nonequilibrium distribution functions). As a result, the
collision integral in the quantum kinetic equation (38) becomes [61]

Ia(ka, t) = 2∑
b

∫ dkbdk̄adk̄b

(2π h̄)9 |V st
ab(ka− k̄a)|2(2π h̄)3

δ (ka +kb− k̄a− k̄b)

×
∫ t

t0
dt̄ cos

{
1
h̄

[
(εab− ε̄ab)(t− t̄)− (ka− k̄a)Rab(t, t̄)

]}
×

{
f̄a f̄b [1− fa] [1− fb]− fa fb [1− f̄a] [1− f̄b]

}∣∣
t̄ , (47)

where we denoted εab≡ εa +εb, εa≡ p2
a/2ma, fa≡ f (Ka, t̄), f̄a≡ f (K̄a, t̄), Ka≡ ka +Qa

and Rab ≡ Ra−Rb. Although plasmon and screening dynamics are no longer included,
Eq. (38) with the collision term (47) still contains important physics reflecting the in-
fluence of the electromagnetic field: (I) field-induced change of the arguments of the
distribution functions26; (II) modification of the energy balance in electron-ion scatter-
ing27 [argument of the cosine in Eq. (47)]; (III) nonlinear (exponential) dependence of
the collision integral on the field strength – this leads to the generation of higher field
harmonics in the scattering processes. Furthermore, it gives rise to scattering processes
which involve emission (absorption) of photons, i.e. (inverse) bremsstrahlung. Indeed, it

26 i.e. time-dependent generalization of the so-called intra-collisional field effect
27 For two electrons (or two ions) the field terms cancel, Raa = 0, because both particles oscillate in phase.
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FIGURE 1. Electron heating of a fully ionized hydrogen plasma due to electron-ion collisions in a
strong laser field (inverse bremsstrahlung heating) for different densities: ne = 1022cm−3 (full line),
ne = 1023cm−3 (dashes) and ne = 1024cm−3 (dots). Laser amplitude is E0 = 108V/cm. Computed by
solving the quantum kinetic equation (38) with the collision integral (47). (The straight lines are a guide
for the eye.) From Ref. [63].

is straightforward to show [61] that, for a monochromatic electric field, E(t) = E0cosΩt,
transport quantities computed from the integral (47) will contain contributions propor-
tional to J2

n(z)δ [εab− ε̄ab + qwab(t)− nh̄Ω], (−∞ < n < ∞), where the amplitude of
an n-photon process is given by the Bessel functions Jn. The argument z of Jn is de-
termined by the field strength and frequency, z = q[v0

a− v0
b]/h̄Ω, where q = ka− k̄a,

v0
a = eaE0/maΩ and wab = [v0

a−v0
b]sinΩt.

The quantum kinetic equation (38) with the collision integral (47) has been solved
numerically for a many parameters, e.g. [63, 64]. An example is shown in Fig. 1.
Here a fully ionized hydrogen plasma is exposed to a strong optical laser pulse. If
collisions are neglected electrons and ions would oscillate in the field with the external
frequency gaining and losing energy periodically and no net heating would occur. Only
by including electron-ion collisions via the collision integral (47) correctly captures
the collisional heating mechanism via inverse bremsstrahlung (photon absorption). The
heating effect is strongly density dependent, and an optimum is observed near resonance,
i.e. when the laser frequency is close to the electron plasma frequency. Interestingly, the
distribution function is strongly modified by the laser field and the collisions with the
ions, see Fig. 2. In particular, inverse bremsstrahlung in e-i collisions is accompanied
by photon absorption. This gives rise to equally spaced side peaks of the electron
distribution that can be detected experimentally in a plasma of small geometrical size.
In a bulk plasma, electron-electron scattering will tend to thermalize the system and
to wash out the side peaks and the dominant effect is a broadening of the distribution
[64], associated with the strong heating, as shown in Fig. 1. Details of the numerics and
further results are presented in Ref. [64]. Besides direct numerical solution the presented
quantum kinetic equation (38) is well suited for analytical investigation for special cases,
see e.g. Refs. [65, 66, 63].

152

Downloaded 08 Oct 2012 to 134.245.67.147. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



FIGURE 2. Time evolution of the electron momentum distribution in a strong monochromatic laser
field (in z-direction) under the combined action of the field and electron-ion collisions after 0, 6 and 12
laser cycles, respectively. Notice the side peaks in the distribution which are due to photon absorption
(inverse bremsstrahlung). From Ref. [63].

SUMMARY

In this paper, we have presented a brief overview on a kinetic theory approach to quan-
tum plasmas. A kinetic description is crucial in many cases where nonequilibrium distri-
butions are present and Coulomb collisions in the presence of a strong electromagnetic
field are relevant. This is clearly the case in laser plasmas or in ion beam produced plas-
mas where collisions set the relevant time scales for thermalization and determine the
heating rate of the plasma. These effects are of high current interest in experiments and
theory-experiment comparisons are becoming possible, e.g. via Thomson scattering us-
ing free electron lasers, e.g. [68]. The increasing accuracy of these experiments will be
a driving force for theory developments in the near future. Quantum kinetic theory has
proven successful in this respect but further improved time resolution in the experiments
and novel intensity and photon energy regimes are a constant challenge requiring new
developments.

The goal of the present review was to outline two approaches suitable to develop a
quantum kinetic theory. The first is based on the theory of reduced density operators
(nonequilibrium BBGKY hierarchy) and the second on quantum field theory leading to
the powerful concept of nonequilibrium Greens functions. Both approaches are practi-
cally equivalent and may serve as the starting point for future developments in quantum
plasma theory. For further reading on the theory and computational treatment of quan-
tum plasmas, see the two review chapters in the recent text book [34].
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