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A first-principles study of diffusion in a strongly coupled one-component plasma in a magnetic field B

is presented. As in a weakly coupled plasma, the diffusion coefficient perpendicular to the field exhibits a

Bohm-like 1=B behavior in the strong-field limit but its overall scaling is substantially different. The

diffusion coefficient parallel to the field is strongly affected by the field as well and also approaches a 1=B

scaling, in striking contrast to earlier predictions.

DOI: 10.1103/PhysRevLett.107.135003 PACS numbers: 52.27.Gr, 52.25.Xz, 52.27.Lw, 66.10.cg

The question of how a magnetic field influences the
transport properties of ensembles of charged particles is
of considerable significance for a wide spectrum of physi-
cal systems and situations. Of particular current interest are
the diffusion properties in the case of strong coupling, i.e.,
when the Coulomb interaction exceeds the kinetic energy
of the particles. In astrophysics, for example, the diffusion
of strongly coupled ions directly influences the age esti-
mates of white dwarf stars through the time scale of
gravitational energy release [1]. Also, knowledge of the
diffusion coefficient of strongly correlated nuclei is a key
to understanding the properties of the crust of magnetized
neutron stars [2]. Furthermore, the diffusion coefficient is
directly connected to the energy loss (stopping power) of
slow ions in dense plasmas [3,4] and, therefore, of special
interest for magnetized target fusion scenarios [5] as well
as in ion beam cooling setups [6]. Finally, recent experi-
mental advances with ions in traps as well as with dusty
plasmas [7–9] are starting to access the microscopic
motion of correlated charge carriers in a strong magnetic
field. A second line of research originates in the compara-
tively younger field of strongly coupled plasmas (SCPs).
Here, correlations between particle movements give rise to
many new effects, including non-Fickian diffusion in two-
dimensional geometries [10,11] or shear waves [12]. While
the mass transport in an unmagnetized SCP has been
investigated in detail, e.g., Refs. [13,14], only little is
known about transport in plasmas which are both strongly
coupled and magnetized, which is the subject of the
present paper.

Recall that diffusion can be understood as a stochastic
process where particles advance in space on average a
distance �r until they undergo a scattering event with
mean frequency �, giving rise to the diffusion coefficient

D ¼ ð�rÞ2�: (1)

A strong magnetic field B substantially alters the diffusion
properties of a weakly correlated one-component plasma
(OCP). The cross-field diffusion coefficient is obtained
by replacing �r by the Larmor radius rc � B�1 and
using for � the collision frequency. This gives rise to the

well-known scaling of D? � B�2 [15] which also applies
to non-neutral confined plasmas if multiple collisions are
included [16]. A different scaling, D? � B�1, was pre-
dicted first by Bohm (‘‘Bohm diffusion’’) and plays a key
role in magnetic fusion plasmas, e.g., Ref. [17]. More
generally, this ‘‘anomalous’’ diffusion is expected to be
dominant in plasmas with strong field fluctuations, insta-
bilities, or plasma turbulence, as was shown based on mode
coupling theory by Marchetti et al. [18]. An overview of
the predicted scalings is given in Table I. In contrast to
weakly coupled plasmas where diffusion along B is un-
affected by the magnetic field, in the case of strong corre-
lations particle motion perpendicular and parallel to B
becomes coupled. Suttorp and Cohen have carried out an
extensive analysis based on the Balescu-Guernsey-Lenard
(BGL) kinetic equation and predicted that, for strong
fields, Dk would saturate at two-thirds of the field-free

value D0 for arbitrary coupling [19]. Finally, there exist
molecular dynamics (MD) simulation results for a SCP by
Bernu which, however, are limited to three values of B and
do not allow for a conclusive deduction of scaling laws
[20]. A more recent MD study [21] reported an unexpected
nonuniform decay of the diffusion coefficients with B and a
rapid breakdown of diffusion for large B [22].
In this work, we report on extensive novel first-

principles simulations of diffusion of magnetized strongly
coupled three-dimensional OCPs in a broad range of pa-
rameters with the following main results (see also Table I):
(1) At large B, a Bohm-like scaling of D? exists at all
couplings; (2)Dk exhibits a Bohm-like scaling, as well, but

only in the strongly correlated fluid regime; and (3) for
moderate coupling, the scaling of Dk is slower than 1=B;
however, in all cases, the decay continues algebraically at
strong fields and does not saturate as predicted in Ref. [19].
These results are of direct relevance for all SCP that are
well-described by the OCP model.
We now turn to the description of our results. The

thermodynamic state of a magnetized Coulomb OCP is
fully characterized by two dimensionless parameters:
(1) the temperature and density dependent coupling pa-

rameter � ¼ q2ð4�"0akBTÞ�1, where a ¼ ½3=ð4n�Þ�1=3 is
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the Wigner-Seitz radius with the number density n, and q
and m denote particle charge and mass; and (2) the field
parameter � ¼ !c=!p / B, which is the ratio of the cy-

clotron frequency, !c ¼ qB=m, and the plasma frequency,
!2

p ¼ nq2=ð"0mÞ.
The equations of motion read

€~r i ¼ ~Fi=mþ!c
_~ri � ~̂ez; i ¼ 1 . . .N; (2)

where Fi is the Coulomb force due to all particles j � i,
and B k ez is used. In the following, we use reduced units
�r ¼ r=a and �t ¼ t!p for lengths and time. Equations (2)

are solved for N ¼ 8196 particles by standard MD tech-
niques with Ewald summation and integrators adopted to
the influence of the magnetic field [23,24]. Periodic bound-
ary conditions are imposed in all three directions of the
cubic simulation box. Prior to measurement, the system is
brought into equilibrium by a repeated rescaling of the
particles’ momenta towards the target value of �. After
that, the system is advanced according to Eq. (2), resulting
in a microcanonical propagation. From the equilibrium
dynamics, the diffusion coefficients are calculated by the
Einstein relation for the mean-squared displacements [25]

D? ¼ lim
t!1

hjxðtÞ � xðt0Þj2i þ hjyðtÞ � yðt0Þj2i
4t

; (3)

Dk ¼ lim
t!1

hjzðtÞ � zðt0Þj2i
2t

; (4)

where h. . .i denotes averaging over the entire particle
ensemble [26]. We verified that the results obtained
from Eqs. (3) and (4) agree, within the statistical uncer-
tainty, with the time integral over the velocity autocorre-
lation function ZðtÞ ¼ h ~vðtÞ � ~vðt0Þi=3 (Green-Kubo
relation [25]).
Consider first the results for the cross-field diffusion

coefficient D?. Increase of � leads to a rapid monotonic
reduction of D?, cf. Fig. 1(a). Similarly, a monotonic
reduction of D? with B is observed, as expected from
weak-coupling arguments. The agreement with the results
of Daligault [14] (� ¼ 0) and Bernu [20] is excellent for
zero magnetic field and fair for magnetized systems. We
also include kinetic theory results from Ref. [19] for differ-
ent approximations for the memory kernel, namely
Landau, Rostoker, and modified Rostoker. While devia-
tions for the former two are considerable, the latter turns
out to be fairly accurate for B ¼ 0.
In Fig. 2(a), we detail the dependence D?ð�Þ at

different �. For � ¼ 1, we observe B independence, for
small �, with a crossover to a ��2 decay around � ¼ 0:1.

FIG. 1 (color online). Diffusion coefficients (a) perpendicular
and (b) parallel to the magnetic field as a function of the coupling
parameter for the unmagnetized system and two moderate values
of B. Also shown are the results of Daligault [14] (upper solid
line), Bernu [20] (crosses), and from kinetic theory (BGL [19]).

FIG. 2 (color online). Diffusion coefficients (a) perpendicular
and (b) parallel to the magnetic field versus field strength � ¼
!c=!p for different �. The straight broken lines indicate a decay

of ��2, ��1, and ��0:3, respectively. Also shown are simulation
data from Ref. [21] for � ¼ 50 (open diamonds) [22]. The open
circles in (b) are predictions from BGL theory with a modified
Rostoker kernel for � ¼ 1 and 10 [19].

TABLE I. Reported B-field scalings of the cross field and parallel diffusion coefficient of
an OCP. The results of this work for strong coupling, � � 1, are in bold; see also Table II.
� ¼ !c=!p, and ak, bk, �k, and �k are B-independent coefficients.

Weak coupling Strong coupling

� & 1 � � 1 � & 1 � � 1

D? b0B
0 þ b2B

�2 [15] �0kBTðqBÞ�1 [17,18] ! 0 [21]

�B�2 [15,16] B��? �?kBTðqBÞ�1

Dk �B0 [15] �B0 [19] ða0B0 þ a2B
2Þ�1 [19] �B0 [19], ! 0 [21]

B��k �kkBTðqBÞ�1
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For large �, the decay of D? approaches a ��1 asymp-
totics, as observed for weak coupling in Ref. [18]; see
also [4]. Consider now the results for strong coupling,
� ¼ 2 . . . 100. Irrespective of the coupling, D? is indepen-
dent of � for small values of �. With increasing �, the
intermediate ��2 decay is gradually lost. Finally, at high
couplings (� * 10), a Bohmian regime���1 immediately
follows for �*0:5. Our findings for the decay exponent �
(D? � ���) are collected in Table II for different ranges
of the magnetic field. Finally, we depict in Fig. 3 the ratio
of D? to the field-free coefficient D0 for � ¼ 0:5 and 1.0.
At small �, cross-field diffusion is efficiently suppressed
by the magnetic field. As, however, � increases, the in-
creased collisionality of the plasma allows for a more
frequent crossing of the magnetic-field lines, and the dif-
fusion coefficient attains a sizeable fraction of its field-free
value.

The present results are, to our knowledge, the first ob-
servation of Bohmian diffusion in a SCP. Such a behavior
is remarkable because it indicates striking similarities
of these highly ordered systems with the completely differ-
ent turbulent fusion plasmas, despite the entirely different
range of coupling parameters: in both cases, the dominant

transport mechanisms are collective modes. In a SCP, these
are predominantly magnetoplasmons with a frequency

around ~!p � ð�!2
p þ!2

cÞ1=2, where � is a parameter of

order unity and ka * 1. Indeed, replacing, in Eq. (1),
�r ! rc and � ! ~!p yields D? ! �?ð�ÞkBTðqBÞ�1 for

� � 1. For example, for � ¼ 100, we find �? � 2=3,
which is surprisingly close to Spitzer’s weak-coupling
estimate of �0 ¼ 1=2:2 [17] but substantially larger than
the familiar 1=16 of Bohm.
Let us now turn to the field-parallel diffusion. As ex-

pected, for small couplings, Dk is practically insensitive to
B [Fig. 1(b)]. In contrast, in a SCP in the liquid state that
sustains shear, Dk decreases with increasing �. This effect
is elucidated in more detail in Fig. 4, showing the ratio
Dk=D0 as a function of � for two values of �. At small �,
the ratio is close to unity and declines steadily with grow-
ing � until, around �crit � 30, it becomes �-independent
[in Fig. 2(b), this corresponds to parallel curves for differ-
ent �]. Interestingly, the onset of this saturation coincides
with a change in the particle dynamics: at �crit, the velocity
autocorrelation function ZðtÞ (see the inset of Fig. 4)
changes from a modulated decay to large amplitude oscil-
lations which extend to negative values [we demonstrate
this by showing, in Fig. 4, the integral over the negative
portions of ZðtÞ from �t ¼ 0 to �t ¼ 100]. Such negative
correlations reflect ‘‘caging’’ of particles in their local
potential minima which lasts on average a time Tc.
Donkó et al. showed that, in this regime, D� T�1

c [27].
Thus, Fig. 4 indicates that, in an external B field, parallel
diffusion for � * �crit is limited by caging effects where
the magnetic field prolongs Tc.
The � dependence of Dk is detailed in Fig. 2(b) and

Table II. In all cases, an initial �0 behavior is followed by
an algebraic decay, Dk � ���. The exponent � is smaller

than unity for comparatively small �. With increasing �,

FIG. 3 (color online). D? in units of its field-free value (for the
same �) for two field strengths, � ¼ 0:5 and 1.0.

FIG. 4 (color online). Dk in units of its field-free value (for the
same �) for � ¼ 0:5 and 1.0. Also shown are the integrated
negative velocity autocorrelations (caging time; see text). Inset:
the velocity autocorrelation function Zð�tÞ for three values of �.

TABLE II. The modulus j�j of the decay exponent of D? and
Dk (� ���) averaged for different ranges of �. The values in

parentheses correspond to the region ½� ¼ 5:0� 100:0�.

�
D? Dk

½� ¼ 0:2� 0:5� ½� ¼ 1:0� 5:0� ½� ¼ 1:0� 5:0�
1 1.41 0.89 0.34

2 1.15 0.92 0.40

5 0.86 0.93 0.52

10 0.71 0.94 0.63

20 0.56 0.94 0.80

50 0.46 0.94 0.86

100 0.45 0.95 (0.99) 0.94 (0.95)
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however, � gradually increases and reaches � � 1 at
� � �crit. Thus, there exists Bohmian diffusion parallel
to the field, which is another novel feature of SCPs.
Note that this rules out the predicted saturation
Dkð�Þ=D0 ! 2=3 for large � of Ref. [19].

In conclusion, we have presented first-principles simu-
lation results which, for the first time, illuminate the dif-
fusion characteristics of SCPs under external magnetic
fields in great detail, substantially generalizing results
known for weakly coupled OCPs. At low coupling, three
regimes of the magnetic-field dependence ofD? have been
identified, with a faster decay at intermediate B fields. At
large coupling parameters and strong magnetic fields, we
have found evidence of Bohmian 1=B diffusion indicating
the dominant role of collective modes. On the other hand,
field-parallel diffusion in a SCP differs drastically from a
weakly coupled plasma:Dk also depends on B, resulting in
an algebraic decay, Dk � B��. This is a unique feature of

high-� liquidlike OCPs that is induced by many-particle
correlations—in particular, shear and caging effects. Our
results are expected to be of direct relevance for the SCP in
compact stars and in inertial confinement fusion, as well as
for trapped ions and dusty plasmas [28]. Moreover, they
suggest to look for similar behavior of other transport
quantities of magnetized SCP.
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