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Theoretical description of spherically confined, strongly correlated Yukawa plasmas
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A theoretical description of the radial density profile for charged particles with Yukawa interaction in a
harmonic trap is described. At strong Coulomb coupling shell structure is observed in both computer simulations
and experiments. Correlations responsible for such shell structure are described here using a recently developed
model based in density functional theory. A wide range of particle number, Coulomb coupling, and screening
lengths is considered within the fluid phase. A hypernetted chain approximation shows the formation of shell
structure, but fails to give quantitative agreement with Monte Carlo simulation results at strong coupling.
Significantly better agreement is obtained within the hypernetted chain structure using a renormalized coupling
constant, representing bridge function corrections.
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I. INTRODUCTION

Spatially confined charged particles have attracted growing
interest. Examples include electrons in quantum dots [1], ions
in Penning and Paul traps [2,3], and the mesoscopic charges of
dusty plasmas [4,5]. In particular, three-dimensional classical
spherical plasmas have been produced in ion systems [6] and
more recently in dusty plasmas [7]. The structural and dynamic
properties of these systems continue to attract the interest of
many groups in various fields; e.g., [8–10].

At sufficiently strong coupling these systems form con-
centric shells which are well reproduced by simulations;
see [11–13] and references therein. The objective here is to
provide a theoretical analysis to complement these results
from simulation and experiments, for a better physical un-
derstanding of the underlying mechanisms. For harmonically
confined particles with Coulomb interaction such a theory of
shell formation as a function of temperature (inverse coupling)
was derived recently using classical density functional theory
(DFT) [14–16]. However, a special property of dusty plasmas
is the screening of the pair interaction. The theoretical
description is extended here to describe spherically trapped
strongly correlated particles with Yukawa interaction for such
dusty plasmas.

The state conditions are specified by three dimensionless
parameters: particle number N , coupling constant � (defined
below), and dimensionless screening parameter κ∗. The ranges
of values considered are 15 < N < 500, 0 < � < 100, and
0 < κ∗ � 1. The primary focus here is on shell formation as a
function of these parameters. Only the equilibrium fluid phase
is considered (rotational invariance) so that shell structure is
reflected in the radial dependence of the density of confined
charges. The average density is defined as a multidimensional
configuration integral in the canonical ensemble, which can
be evaluated by Monte Carlo simulation. New simulations
are provided here as a means to determine the accuracy
of theoretical approximations. The system, dimensionless
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units, and adaptation of the hypernetted chain (HNC) theory
introduced in [15] for confined Coulomb charges are described
in Sec. II A. The density profiles from the HNC approximation
are compared to simulations in Sec. III. It is found that the
formation of shells, as well as their location and populations,
is well described by the HNC approximation, but the shell
maxima and widths show large discrepancies for � > 10 and
the errors increase with increasing κ∗. The primary qualitative
effect of screening is to shift the shells toward the center and
decrease the overall volume. An “adjusted” hypernetted chain
approximation (AHNC) is considered in Sec. IV. This is based
on a model for the bridge function corrections to HNC first
introduced by Ng [17] for the pair distribution function of a
Coulomb one-component plasma (OCP). It has the property
of preserving the form of the HNC equations with only a
renormalization of � to some larger effective value. It is
shown that the same method applies to the Yukawa OCP for
accurate pair correlations even at very strong coupling, and
the approach is then applied to the bridge corrections to the
equation for the density profile. An optimized renormalization
for the density leads to excellent results for the Coulomb case
(e.g., � � 100,N � 500). For Yukawa systems this approach
is very useful as well for the radial distribution function, but
it is somewhat more limited for the density profile at larger
values of κ∗ and N .

II. THEORY AND SIMULATION

A. Model and units

The system is comprised of N identical charges interacting
pairwise via a Yukawa potential, confined by a harmonic
potential centered at the origin. The Hamiltonian is

H =
N∑

i=1

(
1

2
mv2

i + 1

2
mω2r2

i

)
+ 1

2

N∑
i �=j=1

V (rij ). (1)
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Here m is the mass, ω is the angular frequency measuring
the strength of the confinement, and ri ,vi are the position and
velocity of charge i. The Yukawa interaction is

V (rij ) = q2 e−κrij

rij

, (2)

where rij ≡ |ri − rj |, q is the particle charge, and κ is an
inverse screening length. The physical origin of this screening
length is described elsewhere [5] and will not be discussed
here. The primary property of interest here is the local density
of charges in the trap at equilibrium. For the classical canonical
ensemble its dimensionless form is given by

n∗(r∗
1 ) ≡ n(r1)r3

0 = N

∫
dr∗

2 . . . dr∗
Ne−V ∗(r∗

1,...,r
∗
N )∫

dr∗
1 . . . dr∗

Ne−V ∗(r∗
1,...,r

∗
N )

, (3)

with

V ∗(r∗
1,...,r

∗
N ) ≡ βV (r1,...,rN )

= �

[
mω2r3

0

2q2

N∑
i=1

r∗2
i + 1

2

N∑
i �=j=1

e−κ∗r∗
ij

r∗
ij

]
. (4)

Here, r∗
i = ri/r0, β = 1/kBT is the inverse temperature, � =

βq2/r0 is the Coulomb coupling constant, and κ∗ = κr0. The
usual choice for the length scale r0 is the ion sphere radius, or
mean distance between charges, given by

4πr3
0 n/3 = 1, (5)

where n is a characteristic spatially averaged density to be
chosen for convenience. Here it is chosen to simplify the
Hamiltonian by the condition

mω2r3
0

2q2
= 1

2
, or n = 3mω2

4πq2
. (6)

This is not the average density for the Yukawa particles in the
trap nT = N/VT , where the volume VT = 4πR3

T /3 is defined
by the maximum radius RT at which the force on a charge due
to the trap is equal to that of all other charges

mω2RT = q2
∫

dr′ e−κ|RT −r′|

|RT − r′|2 (1 + κ|RT − r′|)nT (r ′). (7)

It follows that nT = n for κ = 0 and nT > n for κ > 0. The
solution to (7) is discussed further below.

The dimensionless trap potential energy is now a function of
two dimensionless parameters, the Coulomb coupling strength
� and the screening parameter κ∗,

V ∗(r∗
1, . . . ,r

∗
N ) = �

1

2

[
N∑

i=1

r∗2
i +

N∑
i �=j

e−κ∗|r∗
i −r∗

j |

|r∗
i − r∗

j |

]
, (8)

and the dimensionless density profile n∗(r∗) can be obtained
numerically from a Metropolis Monte Carlo simulation for
given �,κ∗, and N .

B. Theory and approximations

A formal representation of the average density profile was
developed within density functional theory in Ref. [15]. That
analysis applies here as well, with only the replacement of the
Coulomb potential by the Yukawa potential. First, the density

is represented in terms of a dimensionless effective potential
U ∗ (r∗),

n∗(r∗) ≡ N
e−�U∗(r∗)

4π
∫ ∞

0 dr∗r∗2e−�U∗(r∗)
. (9)

Here N denotes the average number of particles in the trap,
since the theory is formulated in the grand canonical ensemble.
The effective potential obeys the equation

U ∗(r∗) = 1

2
r∗2 + N

∫
dr∗′e−�U∗(r∗′)c(|r∗ − r∗′|)∫

dr∗′e−�U∗(r∗′) + B(r∗).

(10)

The function c(r∗) is proportional to the direct correlation
function for a uniform one-component plasma (OCP) of
Yukawa charges

c(r∗) = − 1

�
cOCP(r∗), (11)

which is related to the OCP radial distribution function
gOCP(r∗) by the Ornstein-Zernike equation

gOCP(r∗) − 1 = cOCP(r∗) + n∗
OCP

∫
dr∗′[gOCP(r∗′) − 1]

× cOCP(|r∗ − r∗′|). (12)

Finally, gOCP(r∗) is determined from the equation

ln gOCP(r∗) = −�
e−κ∗r∗

r∗ + n∗
OCP

∫
dr∗′[gOCP(r∗′) − 1]

× cOCP(|r∗ − r∗′|) − �BOCP(r∗). (13)

The second term of (10) describes the effect of correlations
among particles in the trap in terms of the corresponding
correlations among particles in the uniform OCP. The last
term B (r∗) corrects this approximate treatment of correlations
and is known as a bridge function. Similarly, BOCP (r∗) is the
bridge function for gOCP(r∗) [18]. To optimize this contribution
of OCP correlations, the density of the trap is matched to that
of the OCP:

n∗
OCP = n∗

T. (14)

For given N the trap density is fixed by the volume of
the trap, whose radius RT must be calculated from (7). An
approximate evaluation for the ground state has been discussed
elsewhere [19], with the result that it is the unique positive, real
solution to

−(1 + κ∗R∗)(N − 1) + R∗3 + κ∗R∗4

+ 6
15κ∗2R∗5 + 1

15κ∗3R∗6 = 0. (15)

In all of the following, n∗
T is determined in this way for

each κ∗.
The above Eqs. (9)–(13) are still exact, but require specifi-

cation of the bridge functions. The simplest approximation is
the neglect of the bridge functions, leading to the hypernetted
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chain approximation (HNC)

U ∗
HNC(r∗) = 1

2
r∗2 + N

∫
dr∗′e−�U∗

HNC(r∗′)cHNC(|r∗ − r∗′|)∫
dr∗′e−�U∗

HNC(r∗′) ,

(16)

ln gHNC(r∗) = −�
e−κ∗r∗

r∗ + n∗
T

∫
dr∗′[gHNC(r∗′) − 1]

× cHNC(|r∗ − r∗′|), (17)

gHNC(r∗) − 1 = cHNC(r∗) + n∗
T

∫
dr∗′[gHNC(r∗′) − 1]

× cHNC(|r∗ − r∗′|). (18)

This is a closed set of equations for U ∗
HNC,gHNC(r∗), and

cHNC. Note that the determination of gHNC(r∗) and cHNC is
independent of the trap density calculation.

It is well known that the HNC approximation for the
OCP properties is a good approximation except for strong
coupling where the bridge function BOCP becomes important.
However, the results below for the trap density show that
the trap bridge function can be important even at moderate
coupling. It is therefore necessary to go beyond HNC and find
an approximation for the bridge functions. This is described
below.

III. RESULTS: HNC APPROXIMATION

Correlations in the HNC approximation are described by
cHNC. For weak coupling, � < 1, cHNC → e−κ∗r∗

/r∗. This is
the “mean field” limit. Figure 1 shows a comparison of this
mean field description with Monte Carlo simulation results at
moderate coupling, � = 1 and 5 for several values of κ∗. As

(a)

(b)

FIG. 1. (Color online) Mean field results for the density profile
(lines) for a Coulomb and Yukawa OCP in a spherical trap for (a)
� = 1 and (b) � = 5 for N = 100 compared with Monte Carlo
simulations (symbols).

(a)

(b)

FIG. 2. (Color online) Various direct correlation functions for
(a) Coulomb interaction and (b) Yukawa interaction with κ∗ = 1.
The top curve is the mean field value.

might be expected, there is reasonable agreement at � = 1, but
emergence of an outer shell is evident at � = 5, which cannot
be reproduced by the mean field theory. Evidently, here it is
necessary to calculate the correlations of cHNC through the full
coupled set of equations (16)–(18).

Figures 2(a) and 2(b) show cHNC as a function of r∗ for
κ∗ = 0 and 1. In both cases the deviation from the mean field
limit increases for stronger coupling, creating a “correlation
hole” for r∗ < 1. The effects of these correlations on the trap
density profile are illustrated for several values of the screening
parameter κ∗ in Fig. 3 at � = 50,N = 100. It is seen that
increased screening tends to compress the system [11] and
enhance the shell structure.

The quality of HNC is tested by comparison to Monte
Carlo simulations. This is illustrated for N = 100 and � =
10,40,100 with κ∗ = 0 in Fig. 4(a) and with κ∗ = 1 in
Fig. 4(b). HNC is a poor approximation at r∗ = 0 which results

FIG. 3. (Color online) HNC density profile for a Yukawa system
with various κ∗ at � = 50 and N = 100.
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(a)

(b)

FIG. 4. (Color online) Density profile for N = 100 particles and
various � values: comparison of HNC results (solid lines) with Monte
Carlo (symbols) for (a) Coulomb and (b) Yukawa interaction with
κ∗ = 1.

in overall poor results for small particle numbers N < 10. This
error appears periodically with the creation of each new shell
and is small if no particle is at the center. For κ∗ = 0 the shell
locations match well the simulation data, while increasing κ∗
leads to decreased accuracy for the inner shells. The effect
is small up to κ∗ = 0.5. Figure 5 compares HNC and Monte
Carlo results with N = 15, 125, and 500 for Coulomb charges
in Fig. 5(a), and for Yukawa charges with κ∗ = 1 in Fig. 5(b).
The shell populations (not shown) and locations are nearly
independent of �, as seen in MC simulations [20,21], and
are given accurately by HNC. However, the peak heights and
widths for the shells are poorly predicted and require going
beyond the HNC approximation.

IV. ADJUSTED HNC

In a recent analysis for Coulomb systems in a spherical trap
it was also observed that the HNC approximation gives the
correct location and population of shells [14,16], which depend
only weakly on �. For Yukawa systems, these properties
become less accurate with increasing κ∗. For both Coulomb
and Yukawa, the amplitude and width depend strongly on �

and are underestimated by the HNC approximation at strong
coupling. This suggests that increasing the coupling constant
alone would increase the accuracy of HNC.

A. Pair distribution function

This failure of HNC for strong coupling has been studied in
some detail for the calculation of the Coulomb gOCP(r). Among
the earliest investigations is that of Ng [17] who observed
that the HNC peak positions are given accurately for strong

(a)

(b)

FIG. 5. (Color online) Density profile for � = 20: comparison
of HNC results (lines) with Monte Carlo results (symbols) for
(a) Coulomb and (b) Yukawa interaction with κ∗ = 1.

coupling, but not the amplitudes and widths. He corrected the
HNC by representing the bridge function of (13) in the form

BOCP(r∗) → λ(�)βV (r∗), (19)

where λ(�) is a chosen function of � and V (r∗) is the Coulomb
potential. This particular choice was not obtained from any
theoretical analysis, but rather because it leads back to the
HNC form with a renormalized coupling constant �′ = [1 +
λ(�)]�. This approach will be referred to as the adjusted HNC
(AHNC). It was shown that an accurate prediction of gOCP(r)
could be obtained over the entire fluid domain with the choice

λ(�) → λNg(�) = 0.6 erf(0.024�). (20)

Subsequent theoretical studies of the Coulomb bridge function
by Rosenfeld and Ashcroft [22] indicated that it has a
“universal” form and hence could be represented by the
corresponding hard sphere bridge function for which an
accurate parametrization is known. Although considerably
more complex to implement computationally, it also gives a
very good representation for gOCP(r). Furthermore, it has an
important thermodynamic consistency not shared by the HNC
or AHNC approximations. Evidently, the functional form (19)
represents the actual bridge function for the relevant range of
r needed to determine gOCP(r∗) (the numerical difficulty of
determining BOCP (r∗) precisely from gOCP(r∗) is discussed
by Poll et al. [23]). Due to its simplicity and the direct
interpretation as a renormalization of the coupling strength
the AHNC will be used here as the means to improve the HNC
approximation.
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It remains to show how the bridge function should be
chosen for the Yukawa potential. An empirical choice has
been suggested in the form [24]

BY(r∗) → BOCP(r∗)e−κ∗2/2, (21)

where BOCP (r∗) is the Coulomb bridge function. This gives
very good results for gY(r∗) when BOCP (r∗) is approximated
by the corresponding hard sphere bridge function, as suggested
by Rosenfeld and Ashcroft. In contrast the AHNC for the
Yukawa potential is obtained from (19)

BY(r∗) → λ(�)β
e−κr

r
, (22)

where λ(�) is the same form as (20) for the OCP

λ(�) → λNg(c(κ∗)�) = 0.6 erf(c(κ∗)�). (23)

The constant c(κ∗) is adjusted for each κ∗, with the Ng value
c(0) = 0.024. This Yukawa AHNC leads to the HNC form
(17), but with a renormalized coupling constant

ln gAHNC(r∗) = −�′ e
−κ∗r∗

r∗ + n∗
T

∫
dr∗′[gAHNC(r∗′) − 1]

× cAHNC(|r∗ − r∗′|). (24)

Figures 6(a) and 6(b) show the excellent agreement between
AHNC and molecular dynamics even at very strong coupling
for both κ∗ = 0 and κ∗ = 2. [Note that � and κ∗ used here refer
to a length unit r0 defined by Eq. (5) with the OCP density.]
It is interesting to note that results for recent MD simulations
for different values of � and κ∗ can be collapsed in terms of
a single effective coupling constant �∗ = �∗ (�,κ∗) [25]. In

(a)

(b)

FIG. 6. (Color online) Comparison of AHNC results for the pair
distribution function g(r∗) with simulations for (a) Coulomb and
(b) κ∗ = 2. The values of �′ in (a) are 12.5, 57, and 160; in (b) 10,
130, and 480.

summary the AHNC for g(r∗) proposed by Ng for the Coulomb
OCP works as well for the strongly coupled Yukawa plasma.

B. Density profile

With the results for the homogeneous OCP pair distribution
function as a guide, a similar representation is considered for
the bridge function B(r|n) of the trap density profile (10):

B(r) → λ(�)βV0(r∗). (25)

Here βV0 is the trap potential �r∗2/2, restoring the HNC form
(9) and (16) with a renormalized �′. An initial approach would
be to use the same renormalization function λ(�) as obtained
in the optimization of gAHNC. This improves the accuracy for
coupling constants up to � � 40. To include stronger coupling
it is necessary to choose a different renormalization function
λ(�) when calculating the trap density profile. Although
Eqs. (19) and (25) formally allow for separate specifications
of the renormalization function λ(�) for the OCP and trap
systems, results show that the same function λ(�) must be used
to determine the trap density profile to agree with simulations.
That is, λ(�) can be determined by fitting either the density
profile or the pair correlation function, but not both.

The explanation as to why these two approaches [determin-
ing λ(�) separately for the systems and as a common function]
give very different results when using (19) and (25) lies in the
relationship between direct correlation functions at different
�. The scaled direct correlation function (11) is independent
of � for � > 10. That is, if separate coupling constants for
the trap (�trap) and OCP (�OCP) systems were fitted, the direct
correlation functions are still related by

c(r; �trap)

�trap
= c(r; �OCP)

�OCP
. (26)

By considering again (10), this shows that the two procedures
of using one common coupling constant, and using separate
coupling constants, are related by scaling the number of
particles in the trap. As the procedure of using a common
renormalization function has shown to give good results,
an equivalent approach involving separate renormalization
functions is to have the effective number of particles in the trap
also be dependent on the coupling constant so as to correct the
discrepancy. It is important to note that with this alternative
approach, although both the coupling constant and particle
number are scaled, there still is only one fitting parameter
for the trap (which fixes both a scaled coupling constant
and particle number), and one fitting parameter for the OCP.
However, the interpretation of the scaled particle number for
the trap is not clear, as the shell structure depends critically
on N .

Therefore we proceed by choosing to fit only the trap
density profile, and using a common renormalization function
for both the trap and the OCP systems.

An appropriate value of λ(�) to optimize the density profile
is obtained by minimizing the square difference of the Monte
Carlo data nMC(r) and the HNC profile nHNC(r|�′) with respect
to �′,

�′ : min
∫

drr2[nMC(r|�) − nHNC(r|�′)]2. (27)
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FIG. 7. (Color online) Dependence of the AHNC parameter λ on
� and κ∗ calculated by (27) at fixed particle number N = 100. The
renormalized coupling parameter is given by �′ = [1 + λ(�)]�.

Since at small r the HNC density profile is not accurate, the
difference in the peaks is weighted to the particle number in
each shell. In practice this effectively fits the height and width
of the outermost peak. The dependence of λ(�,N ) on � and
N is shown in Figs. 7 and 8. The � dependence for different
κ∗ cannot be collapsed to a single curve by rescaling � as in
Eq. (23), as the asymptotic large κ∗ limits of λ(�,N ) are now
different.

The quality of the AHNC approximation is again estab-
lished by comparison to Monte Carlo data; see Fig. 9. AHNC
describes accurately the density profile of Coulomb charges
for the full range of � [Fig. 9(a)] and particle numbers N

[Fig. 10(a)], while keeping the simple form of HNC. A similar
improvement in accuracy is observed for the Yukawa system
with κ∗ � 0.5 and N � 100 [Fig. 9(b)]. For larger κ∗ errors
in the inner shells occur and increase with increasing κ∗
and N [Figs. 9(c) and 10(b)]. For large particle numbers
fitting λ becomes more subjective, depending upon which
criteria are imposed, e.g., best outermost peak height or inner
shell heights. Similarly, increasing the renormalized coupling
constant beyond a certain value is only trading agreement from
inner to outer shells.

It is curious that the AHNC procedure works so well
for pair correlations, both Coulomb and Yukawa, and for
the Coulomb trap density profile, but fails for the Yukawa
density profile at large κ∗ and N . One possible explanation

FIG. 8. (Color online) Dependence of the AHNC parameter λ

on N for the Coulomb case. The height of the outermost peak is
used to obtain λ. The renormalized coupling parameter is given by
�′ = [1 + λ(�)]�.

(a)

(b)

(c)

FIG. 9. (Color online) Density profile for N = 100 particles:
Comparison of AHNC results (lines) and MC data (symbols) for
(a) Coulomb interaction, and Yukawa interaction with (b) κ∗ = 0.5
and (c) κ∗ = 1. The renormalized �′ values used are shown in
Fig. 7.

is the following. The density equation of the HNC entails an
additional approximation not contained in that for the pair
correlations, namely that the pair correlations in the trap can
be represented by those of the OCP. This can be justified for
Coulomb interactions, but that argument does not extend to
Yukawa interactions. At large κ∗ this approximation may no
longer hold. In addition, the shell structure is enhanced at large
κ∗, and the number of shells increases with N . Hence there are
increased demands on the AHNC to represent more complex
structure.

There is a qualitative difference between the Coulomb and
Yukawa cases at large N . In the former case, the harmonic
trap is exactly equal to the effect of a uniform neutralizing
background, and the system approaches the Coulomb OCP for
large N except at the boundaries. However, for the Yukawa
case the relationship of the trap to the neutralizing background
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(a)

(b)

FIG. 10. (Color online) Density profile for a fixed coupling
constant � = 20 and various particle numbers: comparison of AHNC
results (lines) and MC data (symbols) for (a) a Coulomb and
(b) a Yukawa system with κ∗ = 1. Disagreement in the inner part
is increasing with particle number for the Yukawa system.

no longer holds. Totsuji et al. have derived the corresponding
confinement potential for a Yukawa system [26,27].

V. DISCUSSION

A theoretical description is developed for the shell structure
of spherically confined Yukawa plasmas. While the precise
shell occupations are well known from computer simulations,
both for trapped Coulomb, e.g., [12,13], and Yukawa plasmas,
e.g., [11], it is desirable to have an analytical theory that
correctly reproduces these results and provides physical
insight into the correlation properties. Classical density
functional theory is the proper starting point for this. In
particular, it has been shown that the HNC approximation
is able to provide the density profile (the formation, shape,
location, and population of shells) accurately for weak
to moderate coupling (� < 10). However, HNC fails to
reproduce the correct width of the shells.

A simple representation of the bridge functions B (cor-
rections to HNC) called the adjusted HNC (AHNC) is able
to provide quantitative agreement in the case of Coulomb
interactions for � � 100 and N � 500, indicating that a
simple renormalization of the HNC is sufficient to capture
the structural effects of confinement. A similar adjusted HNC
provides substantial improvement for the isotropically trapped
Yukawa system as well. While it correctly reproduces the shape
of the outermost shell(s) that host the majority of particles, it is
less accurate for the inner shells, in particular with increasing
screening parameter and particle number.
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