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Abstract

Strong correlations—cooperative behavior due to many-particle interactions—are omnipresent
in nature. They occur in electrolytic solutions, dense plasmas, ultracold ions and atomic gases
in traps, complex (dusty) plasmas, electrons and excitons in quantum dots and the quark—gluon
plasma. Correlation effects include the emergence of long-range order, of liquid-like or
crystalline structures and collective dynamic properties (collective modes). The observation
and experimental analysis of strong correlations are often difficult, requiring, in many cases,
extreme conditions such as very low temperatures or high densities. An exception is complex
plasmas where strong coupling can be easily achieved, even at room temperature. These
systems feature the strongest correlations reported so far and experiments allow for an
unprecedented precision and full single-particle resolution of the stationary and
time-dependent many-particle behavior.

The governing role of the interactions in strongly correlated systems gives rise to many
universal properties observed in all of them. This makes the analysis of one particular system
interesting for many others. This motivates the goal of this paper which is to give an overview
on recent experimental and theoretical results in complex plasmas including liquid-like
behavior, crystal formation, structural and dynamic properties. It is expected that many of
these effects will be of interest also to researchers in other fields where strong correlations play
a prominent role.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

This paper is devoted to recent developments in complex
(dusty) plasmas—concerned with the realization of strongly
correlated behavior of mesoscopic or macroscopic particle
ensembles. We will use the term ‘correlated behavior’ as a
synonym for deviations from the trivial ideal gas behavior.
The origin of correlations is the interactions between the
particles missing (by definition) in an ideal gas, and a typical
Hamiltonian has the form

2 N | w
H=Z$+;U(n‘)+zzv(|ri_"°j|)’ M

i=1 = i#j

where U is a general external potential and we restrict ourselves
to systems with distance-dependent pair interactions.
Correlations have a profound effect on the arrangement
of the particles in momentum and coordinate space. While
in an ideal gas (V = 0) in thermodynamic equilibrium
the momentum distribution is given by a Maxwellian
(Fermi or Bose function, in the quantum case), the
momentum distribution of a non-ideal quantum system may be
substantially different leading to enhanced population of high-
momentum states and long tails, see e.g. [1] and references
therein. In contrast, in a classical system the momentum
distribution is always Maxwellian. However, both in classical
and quantum systems, much more striking is the effect of
correlations on the spatial arrangement of particles. While
in an ideal gas the particle positions are independent (the
probability g(r) to find two particles at a distance r is
independent of r), in a correlated system the pair distribution
g(r) exhibits strong modulations. This is caused by strong
interactions® which favor certain distances of neighboring
particles (attractive potential) or suppress close encounters
(repulsive potential). This non-trivial spatial arrangement of
particles will be in the focus of this review. We will entirely
concentrate on classical systems since, so far, in dusty plasma
experiments quantum effects are not accessible. Nevertheless,
the observed strong correlation phenomena are expected to be
of—at least qualitative—relevance also for quantum systems.
The strength of correlations is conveniently measured
by the coupling parameter, ' = (|V|[)/(K), the ratio of
the mean interaction energy to the kinetic energy K, see
equation (2). Using the parameter I', the universal trends in
all correlated systems can be highlighted and quantified: ideal
gas-like behavior occurs for I' « 1, liquid-like short-range

3 Spatial modulations of particles may also be caused by spin statistics, but
this will not be considered here.

order for ' 2 1 and crystalline long-range order for ' 2>
100. While the precise values are different for classical and
quantum systems and depend on the system dimensionality, the
form of the interaction potential and the external potential U,
many correlation phenomena are observed in all many-particle
systems, independent of their specific nature. This makes the
analysis of correlation effects in one system very interesting
also for other fields of physics. This is particularly true also
for complex plasmas. These systems not only allow one
to produce the strongest correlations known today (I" values
exceeding 1.000 have been realized), but they also allow for
an unprecedented accuracy of analysis. As we will show in
this review, many quantities such as crystal structure, pair
distribution function, normal modes and even single-particle
trajectories can be directly observed in the experiment with
full time resolution, making this field an ideal test case for
theoretical concepts, with high predictive capability also for
other fields.

1.1. Significance of strong correlations in nature

Let us start with a brief overview on correlation effects in
various fields of physics. Historically, the first encounter of
strong non-ideality effects was, probably, the gas—liquid phase
transition. Condensation effects clearly showed a deviation
from ideal gas behavior and the breakdown of the ideal
equation of state p = nkgT. The phenomenological solution
of this problem was achieved by the introduction of a modified
equation of state, such as the van der Waals equation, which
incorporates interactions between the molecules. Despite
its model character it correctly captures the non-perturbative
nature of the phase transition—a manifestation of strong
correlations with T" 2 1.

Modern statistical mechanics have put the theoretical
analysis of correlations on a firm ground. Here, pioneering
work started in the description of fluids, in particular, in
electrolytic solutions. Charged molecules in a solvent (such
as water) interact via strong Coulomb forces and may exhibit
strong correlations, see e.g. [2,3]. The consequences are
strong static and dynamical screening effects first described by
Debye and Hiickel [4]. Also, the formation of chemical bound
states of positive and negative ions, described by Planck [5],
Arrhenius [6], Bjerrum [7], and others strongly influences
the thermodynamic and transport properties [2]. The modern
statistical treatment of non-ideal fluids is based on a rigorous
derivation from mechanics which leads to the hierarchy for the
reduced distribution functions of Bogolyubov [8] and others
(BBGKY hierarchy, see e.g. [1]). The proper treatment of
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strong correlations in classical fluids is achieved with self-
consistent closure approximations such as the Percus—Yevick
(PY) and hypernetted-chain (HNC) approximation, e.g. [3],
which will be discussed in section 7.2.

Screening and, in particular, neutral bound state formation
strongly limit the interaction energy and coupling strength
in electrolytes. This limitation is overcome in colloidal
dispersions (‘complex fluids’) where mesoscopic particles
with a size in the range 1nm to 10 um are embedded into
a fluid solvent. These particles can become highly charged
and strongly interacting—the same mechanism which forms
the basis of strongly coupled complex plasmas, see section 2.
Strong Coulomb interaction together with dense packing of
particles gives rise to strong spatial correlations leading to the
formation of gels, crystals and glass states. These systems
differ from dusty plasmas by the existence of a liquid solvent
causing a strong damping of the particle motion. For recent
overviews, see [9, 10] and references therein.

Correlations also play a significant role in the description
of the electronic properties of solids. The physical properties
of many materials such as simple metals, semiconductors and
insulators are characterized by moderate coupling and are,
thus, successfully explained by modern solid-state physics
within a quasi-particle description. There exist, however,
numerous materials such as transition metals and their oxides,
in which electrons experience strong Coulomb interactions
because of their spatial confinement into narrow bands, see
e.g. [11]. In these systems, a mean-field description—as in
usual band theory—fails*, (e.g. [12]), and correlations play a
crucial role. Such materials are often extremely sensitive to
external parameters (fields) which can lead to huge changes
in the resistivity at the metal-insulator transition [13-15], to
volume-collapse transitions of rare earth metals [16], to high
transition temperatures of cuprate superconductors, gigantic
thermoelectric power [17] or colossal magnetoresistance
[18]. Successful theoretical approaches to strongly correlated
electrons include model Hamiltonians such as the Hubbard
model [12] or dynamical mean-field theory [19].

Another field where strong correlations are becoming
increasingly important is ultracold fermionic or bosonic atoms
confined in traps or in the periodic potential of an optical
lattice [20]. The full control over all relevant parameters
in these systems provides a novel approach for the study of
correlation effects on a quantitative level. Exciting correlation
effects include the quantum phase transition from a superfluid
to a Mott-insulating phase [21], even in the standard regime
where the average interparticle spacing is much larger than the
scattering length. Thus, these extremely dilute gases can no
longer be described by a mean-field picture of non-interacting
quasi-particles, but require inclusion of strong correlations.
In addition to the optical lattices, the exploration of strong
correlations with ultracold gases is possible by using Feshbach
resonances [22]. The possibility of tuning the interaction
strength allows, e.g., for the exploration of the crossover,
which takes place in two-component fermionic systems, from
a molecular Bose—Einstein condensate of tightly bound pairs

4 Interaction effects can be divided into mean-field and correlation
contributions. This will be discussed in more detail in section 4.4

to a BCS superfluid of weakly bound Cooper pairs [23]. This
crossover promises insights into recent questions of quantum
fluids and high-transition-temperature superconductors [24].

One of the major advantages of ultracold atoms
is the possibility of dynamically changing the relevant
parameters such as the relative strength of the kinetic and
interaction energy, and thus studying the real-time dynamics
of strongly correlated systems. However, this requires
precise experiments under difficult conditions. In addition
to the creation of ultralow temperatures and preparation
of adequate traps [25], the detection methods need to be
essentially correlation-sensitive (for a recent overview, see
[26]). These and future experiments may substantially benefit
from the experience in dusty plasmas where the diagnostics of
individual particles and of correlation effects have reached a
mature state, as we will show in section 3.

While the emergence of correlations at low temperatures
may not be that surprising, strongly correlated systems at high
temperatures are even more exciting. In complex plasmas
Coulomb crystallization is easily reached at room temperature
which is one of the reasons for the impressive experimental
progress. An extreme and entirely different very recent
example of high temperature systems is the quark—gluon
plasma (QGP). This state of matter consisting of deconfined
quarks and gluons plays a major role in the description of the
early universe and of ultra-compact matter such as in neutron
or quark stars. It is experimentally studied in relativistic
heavy-ion collisions at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory [27-30] and at
CERN at the Super Proton Synchrotron (SPS) [31, 32] and the
Large Hadron Collider (LHC) [33]. While it was originally
expected to observe a weakly interacting gas of quarks and
gluons [34,35] the experiments at RHIC give strong evidence
that the QGP actually behaves like a strongly coupled fluid
with extremely low viscosity [36,37]. This view is now
supported by first-principle QCD lattice calculations [38, 39].
Interestingly, the governing role of correlations may allow for
the application of simpler theoretical models and simulations
of the QGP, including semiclassical molecular dynamics [40—
42] and quantum Monte Carlo simulations [43]. The analogy
of the collective properties of the QGP and electromagnetic
complex plasmas has been pointed out recently [44, 45] where
it was suggested that results from the latter may give qualitative
insights into properties of the former.

So far we have discussed various examples (this is by
no means a complete list) of different systems where strong
correlations occur. It is amazing to see how enormously
different these systems are and how strongly their parameters
differ. An illustration is given in figure 1 where a density—
temperature plane is shown which spans tens of orders of
magnitude. Extreme cases in density are complex plasmas,
at the low end, and the QGP, at the high density limit; the
difference is more than 35 orders of magnitude. Similarly,
their difference in temperature is about 10 orders of magnitude;
another 6 orders of magnitude lower than complex plasmas are
the ultracold atomic gases.
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Figure 1. Examples of strongly correlated systems in thermodynamic equilibrium include complex plasmas, trapped ions and the QGP
extending along the outer (pink) area, dot shows the conditions at RHIC). Prominent properties of all systems can be quantified by a few
dimensionless parameters: the coupling parameter I', equation (2), the degeneracy parameter x, equation (3), and the Brueckner parameter

1y, equation (4).
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Figure 2. Phase diagram (small part of figure 1) of a two-component plasma of electrons and singly charged ions in thermodynamic
equilibrium with a few astrophysical examples (WDM and HEDP denote ‘warm dense matter’ and high-energy density plasmas,
respectively). The dashed line x. = 1 [x; = 1] separates the region of classical (upper left) and quantum (lower right) behavior of the
electrons (ions). Also, several lines of constant classical (I') and quantum (r) coupling strength are shown.

1.2. Correlations in charged particle systems

Many details of the observed correlation phenomena depend
on the character of the pair interaction which varies from
long-range Coulombic to short-range contact potentials. Since
plasmas are dominated by Coulomb forces, in the following
we will narrow the discussion to systems of charged particles.

Besides the examples mentioned above, strong correlations
are known to occur in various astrophysical systems including
the interior of giant planets, brown and white dwarf stars,
neutron stars and the hypothetical quark stars. Some of
them are included in figure 2 showing a small portion of
figure 1. Besides, strong correlation effects have been achieved
in various laboratory plasmas, most importantly in trapped ion
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systems. lon crystallization in Paul traps was achieved more
than two decades ago at milli-kelvin temperatures (e.g. [46]),
and is now routinely studied in a number of laboratories, see
e.g. [47]. Crystal geometries range from linear strings to
spheres and are similar to the structures observed in complex
plasmas. The main differences compared with the latter
are the existence of a pure Coulomb interaction between
the ions and the absence of additional plasma components.
Other laboratory systems where strong correlations play a role
are dense plasmas produced by intense lasers or ion beams
which gave rise to the new field of ‘warm dense matter’
(for a recent overview, see [48,49]). Finally, we mention
the field of ultracold plasmas where a strongly correlated
plasma is produced by photoionization of a trapped neutral
gas, previously cooled to micro-kelvin temperatures [50].
However, these experiments are very difficult and have so far
reached only moderate coupling strengths, I' ~ 3—4, although
Coulomb crystallization has been predicted if the plasma could
be laser cooled [51] (for recent overviews see [52, 53]).

The reason why these very different systems, spanning
so broad regions in density and temperature, possess similar
structural and collective properties rests on the fact that
the mechanisms governing cooperative behavior are quite
universal. To this end, consider the characteristic energy scales
of aone-component many-particle system: these are the kinetic
energy K of a particle and the mean interaction energy V of
two nearest neighbors. The ratio of their expectation values
forms a dimensionless ‘coupling parameter’ (e.g. [54])

V, 2

poo vl 0 .
<Ka> 7 akB Ta

where the second expression corresponds to charged

particles with charge Q, and mean interparticle distance
r,. Interestingly, distinct values of I', separate qualitatively
different behaviors: from weak coupling (ideal gas-like) at
', <« 1, over fluid-like (I'; = 1) to very strong coupling,
[, 2 100, where crystal formation occurs because particles
have insufficient kinetic energy to leave local minima of
the total potential. This scenario of crystallization was first
predicted by Wigner for the electron gas in metals [55] and has
since then been verified in many systems. The precise values
of I, at the freezing point have been obtained by computer
simulations and have, over the years, converged to values
around 175, in 3D, and 137, in 2D, (e.g. [54, 56]). Thus, in the
density—temperature plane, cf figures 1 and 2, lines of constant
I' separate different many-particle behaviors and allow one
to qualitatively estimate the characteristic properties of the
various physical systems. Other quantities characterizing the
correlations will be introduced and discussed in section 4.2.

In a multi-component system, I' may be different for
different species (labeled by subscript ‘a’) giving rise to
interesting coexistences of different phases. Throughout this
paper, I will be a key parameter for characterizing the strength
of correlations. Finally, for completeness, we note that the
definition of T, is restricted to classical systems. For quantum
systems characterized by a value of the degeneracy parameter
Xa (A4 denotes the thermal de Broglie wave length),

h2
=n,A> A= ——
Xa a“a @ 2amykgT,’
a a

3

exceeding unity the kinetic energy has to be replaced by its

quantum expression. This gives rise to a quantum coupling
parameter (Brueckner parameter):
Fo

Ysa = —,
as

“

where ag denotes the Bohr radius; for more details and further
references on strongly correlated quantum systems see [54].

1.3. How to reach the crystal state

With the coupling parameter I" at hand it is straightforward to
discuss different ways toward strong coupling and, ultimately,
crystal formation.

(1) The first approach to increase I' is to lower the
temperature. The main obstacle in a two-component
neutral plasma is the recombination of electrons and ions
leading to neutral bound states (atoms or molecules) which
interact much weaker. How to realize Coulomb crystals in
a two-component plasma was recently discussed in [57].
Alternatively, recombination can be entirely avoided by
working with a single charge species, i.e. with a non-
neutral plasma. This is realized with ions in electrostatic
traps which are required to stabilize the charges against
Coulomb repulsion. Typical temperatures are in the milli-
kelvin range (e.g. [47]); see section 1.2.

(i) The second approach consists of increasing the pair
interaction by reducing the interparticle distance. This
requires a substantial plasma density which exists in
certain astrophysical objects or laboratory environments
(e.g. laser or ion beam compression); see section 1.2.

(iii) There exists an alternative to increase the pair interaction
at fixed kinetic energy and density which consists of
increasing the particle charge. This was first predicted
by Ikezi [58] and confirmed by simulations [59]. This is
the key idea to form crystals in dusty (complex) plasmas.

What is remarkable about the third approach is that it allows
one to choose very ‘friendly’ experimental conditions—room
temperature and low density (large interparticle distance) such
that individual particles can be directly detected. This is
illustrated in figure 1 by the line I' = 175,Z = 1 x 10*
which is located eight (!) orders of magnitude higher in
temperature than the corresponding line I' = 175 for singly
charged particles such as those used in ion traps.

The outline of this paper is as follows: we first discuss the
main issues of dusty plasma experiments and the question how
strong correlations are achieved experimentally in section 2.
This is followed by a discussion of the peculiarities of plasma
crystals in finite systems containing several tens to several
hundreds of dust particles in section 3. These finite systems,
in particular spherically symmetric systems, allow for a very
clear analysis and comparison of experiments with theory and
are, therefore, in the focus of the remaining sections. We
discuss in detail the structure of plasma crystals (section 4),
their dynamical behavior and collective oscillations (section 5)
and their thermodynamic properties and melting behavior
(section 6). Finally, we analyze the properties of the liquid state
(section 7) and conclude with a brief discussion and outlook.
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2. Physics of complex (dusty) plasmas

A complex plasma contains electrons, ions and a third
comparably large and heavy species, namely dust particles.
This combination is found in astrophysical situations [60]
as well as technical applications [61]. However, in addition
complex plasmas are an ideal tool to study fundamental
properties of strongly coupled matter. The discovery that
the dust particles in complex plasmas can form crystalline
structures [62—64] has opened a new field of research which
allows one to obtain a microphysical picture of strongly
coupled matter.  After 15 years, a broad spectrum of
experiments, simulations and theoretical approaches has
achieved a considerable understanding of structural and
dynamical processes in complex plasmas. A complete survey
of the entire field of complex and dusty plasmas is of course
beyond the scope of this review and the reader is referred
to recent monographs [60, 61, 65-68] and a new review [69].
However, to show that complex plasmas are indeed a laboratory
for strong correlations this review will focus on plasma crystals
and in particular mesoscopic 3D systems. For this purpose, this
section will briefly introduce the basics of complex plasmas to
provide the physical background for the following sections and
to hint at some peculiar features of complex plasmas which are
not found in other systems and which make complex plasmas
interesting by themselves.

2.1. Parameter regime

Compared with other strongly coupled systems, complex
plasmas have several advantages. Firstly, they are stable under
laboratory conditions. This means dust particles can be trapped
at room temperature and kept in a desired dynamical state
for hours which is beneficial for any diagnostic purpose and
generally leads to high accuracy of the measurements due
to excellent statistical properties. Secondly, these complex
plasmas can consist of millions down to just a very few
particles, i.e. finite size effects are accessible. Thirdly, typical
densities of 1-50 particles/mm? and particle diameters of a
few micrometers result in a high optical transparency even
for macroscopic dust clouds. This transparency can be used
to illuminate particles at arbitrary positions, i.e. even at the
center of large clouds, and to resolve the scattered light of
individual particles with conventional CCD cameras [70, 71]
or to manipulate individual particles in situ [72]. Fourthly,
the charge-to-mass ratio of dust particles is small, and hence
the dynamic response is slow. The dust plasma frequency wpq
is on the order of several hertz and, therefore, the frame rate
of CCD cameras is sufficient to study dynamic processes in
great detail. Finally, complex plasmas are usually produced in
a gas discharge with neutral gas pressures of 1-100 Pa. This
implies that the system is subject to only moderate damping.
As aresult, many interesting dynamic phenomena, e.g. waves,
can be investigated at a kinetic level. In particular for two-
dimensional dust systems, the phase space evolution of all
particles is experimentally accessible which provides a unique
opportunity for a detailed comparison of experiment and
theory. The combination of these nice experimental features
is certainly the foundation of the success of complex plasma
research.

2.2. Charging of dust particles

One of the most important parameters in a complex plasma is
the particle charge. Except for astrophysical situations [73],
the particle charge is determined by the ambient plasma. For
an isolated particle in a collisionless plasma the orbital motion
limit (OML) model [74] can be used to determine the floating
potential ¢y at its surface. Since the electrons are much more
mobile than the ions the particles generally charge negatively.
The balance of electron (right-hand side) and ion currents (left-
hand side) to the dust grain then gives

edq miT, ne edq
-2 = [ Zexp , 5)
kT, meT; ni kT,

where T.(T;) is the electron (ion) temperature, m.(m;) the
electron (ion) mass and n.(n;) the electron (ion) density.
Although this equation can be solved exactly numerically, for
typical laboratory plasmas with 7, > T and n; = n., its
solution is well approximated with ¢g ~ —2kT,/e.

With the help of a simple capacitance model [75] the
particle charge Q4 = Zge can be determined for spherical
particles. Recent simulations [76,77] show that the charge
can deviate notably for arbitrarily shaped particles and even for
isolating and conducting particles. However, with the above-
mentioned approximation it is possible to find a simple rule of
thumb to estimate the particle charge to

Z4 ~ 1400a T, (©6)

where the particle radius a is given in micrometers and the
electron temperature in eV. From this approximation it is
obvious that particle charges of the order of 10* elementary
charges are typical for dusty plasmas.

Unfortunately, the validity of the OML model is
questionable for many discharge conditions, and different
additional processes have to be taken into account, e.g.
streaming ions [78-81], collisions [82—-84] and dense packing
of dust particles [85,86]. Nevertheless, measurements of
the dust charge have been performed by means of resonance
methods [63,87], wave phenomena [88-91] and particle
collisions [92], and they confirm that the OML model can
be used to estimate an upper limit for the particle charge.
Ivlev et al have shown that in a supersonic flow the charge
distributions become inhomogeneous and substantially deviate
from the OML model [93]. A completely different approach
to calculate the particle charge has been proposed recently by
Bronold et al [94]. Their physisorption-inspired model for
the formation of surface charges allows one to describe the
charging and shielding of dust grains and is an interesting
alternative to the existing models.

Finally, it is important to mention that the particle charge
in a dusty plasma is in general variable. Firstly, the floating
potential depends on the plasma parameters, and these usually
have a space dependence. Secondly, at high dust densities
the plasma losses on the particles reduce the electron and
ion densities [95-97] and, in addition, the quasi-neutrality
condition and the high negative charge of dust grains can give
rise to an additional depletion of free electrons [98]. Thirdly,
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the particle charge in the sheath of an rf-discharge is slightly
modulated due to the modulation of the electron density in
the sheath [99]. Fourthly, for small particles with just a few
elementary charges the discreteness of the charge of electrons
and ions and the stochastic nature of the charging process can
create notable charge fluctuations which can even result in
short periods where the particles are charged positively [100].
In general, the magnitude of the fluctuations is of the order of
0.5V N [100] and thus, under many experimental conditions,
particular those discussed in section 3, charge fluctuations are
negligible.

2.3. Dust plasma interaction

As pointed out in the previous section, dust grains are charged
by the plasma, but at the same time they do affect the plasma.
Firstly, plasmas are known to be quasi-neutral. Thus, if a
notable amount of negative charge is bounded to the dust, the
number of free electrons has to decrease to maintain neutrality.
Secondly, the average plasma density will decrease since the
continuous recombination of electrons and ions on the dust
particle surface is an additional plasma loss. Thirdly, any
charged object in a plasma is shielded, and this is certainly the
most important fact. Thus, in the direct vicinity of a negatively
charged dust particle the ion density will increase and the
electron density will decrease. As a result two neighboring
dust particles will not interact via their unscreened Coulomb
potential. Their interaction is weakened by an additional
exponential factor and reads as

_ 4nnae§
P :)\Dz = Z my (7)

2
V(r;k) = Q—e”(",
r

a=e,i

where the screening parameter « (inverse screening length Ap)
is determined by the density n, and temperature T, of electrons
and ions. This type of potential is well known in plasmas
and nuclear matter as Debye—Hiickel or Yukawa potential,
respectively, and is a good approximation for all cases without
streaming electrons or ions. However, as soon as ion streaming
occurs, the Yukawa potential is shown to be valid only in the
direction perpendicular to the ion drift [101], and even there,
at large distances, deviations from a Yukawa form have been
found [102]. In particular at the plasma boundary, where the
ions are supersonic, it was shown by experiments that an ion
focus establishes in the wake of a particle. This positive space
charge adds an attractive component to the interaction potential
and, due to the supersonic character, the resulting particle
interaction was shown to be non-reciprocal (e.g. [103, 104]).
As a result the particles arrange in chains in the direction of
the ion flow (see figure 3(a)). This ion focusing and effective
dust—dust attraction were studied in detail experimentally (e.g.
[105, 106]), as well as theoretically and with simulations (e.g.
[107-112]).

2.4. Neutral gas effects

So far the discussion concentrated on the dust particles
embedded in a plasma. However, in a typical gas discharge
the ionization degree is at maximum of the order of a few

Table 1. Summary of important forces acting on dust particles in a
plasma environment.

Name Formulae
Gravitational force F, = %na3 P4
Electrostatic force Fy = 4neqgapgE
2ot _ 7'[(1210
Radiation pressure F =y=—"R
Neutral drag force F, = —B%nazmnnnvm_n(vd —vp)
. 2
Thermophoretic force  Fy, = — :—g ‘zT/‘“VT
th,n
Ion drag force Fion = Feon + Fon

(after Barnes) F.1 = b’ psvgv;

For, = 47 by o pivsINv;

with v, = /v? + :;‘
1

percent. Thus, most atoms are not in an ionized state and
even though their cross sections are much smaller than those of
ions, collisions with neutrals cannot be neglected in general. In
particular, temperature gradients in the neutral gas are known
to give rise to a thermophoretic force (see table 1 and [113—
115]). Already temperature gradients of a few kelvin per
centimeter are sufficient to compensate the gravitational force
and levitate particles [114, 116]. The recent experiments of
Carstensen et al [117] are another example. They showed that
collisions of ions and neutrals can provide a sufficient transfer
of momentum to set up a collective neutral gas motion which
can drive dust particles. Thus, it is important to keep in mind
that the neutral gas component might contribute more than just
friction to dynamical processes in dusty plasmas.

2.5. Forces on dust particles

To understand dust confinement and dust dynamics, several
forces are important (see table 1). For large particles,
the gravitational force exceeds all other forces because it
scales with the volume of the particles. Due to the high
particle charge, Coulomb forces are important for both,
particle confinement and particle interaction. Furthermore,
thermophoretic forces due to temperature gradients in the
neutral gas [113—115] and friction with ions and neutral
gas [118] cannot be neglected for dust particles. While
gravitational, Coulomb and thermophoretic forces as well as
neutral gas friction are well understood, the ion drag force
is still a subject of intensive research activity. There are
several models for the ion drag force [78, 119-125], but a
complete self-consistent model is not yet available. On the
one hand, the self-consistent treatment of the charging and
shielding problem of particles is aggravated by the requirement
to include streaming ions and collisions. On the other
hand, a correct description of the contribution of scattered
ions to the momentum transfer is not trivial. Although the
recent models reflect considerable progress, the debate on the
description of the ion drag force has not finally settled. Only
few experiments have studied the drag force quantitatively
(e.g. [126—-131]). The first experiments were performed in a
parameter regime, where the influence of ion—neutral collisions
during the scattering in the field of the dust particle cannot
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be neglected. Hirt et al [130] presented the first dedicated
ion drag investigations in a collisionless situation. The ion
drag force and the collection radius b, were measured for
weak (B < 1) and strong (8 > 1) ion—dust interaction.
Here the momentum transfer is characterized by the scattering
parameter B = e|¢g|a/(mijv*ip), where m; and v are the
ion mass and velocity, respectively. For low values of beta
(B < 0.2) already the model of Barnes et al [78] was found to
give a suitable description. At high ion energies, the collection
of streaming ions was correctly described by the OML model
[74]. For superthermal ion drifts (8 = 50-122), however,
the OML model predicts collection radii b, > Ap. In this
case, the collection radius was overestimated by the model
of Barnes. The critical parameter b, from Khrapak et al’s
model [122] gave a better description. Recently, Nosenko
et al [132] repeated these experiments for 8 = 16-60 and
found good agreement with a slightly modified Khrapak model.

2.6. Dust confinement

To confine dust particles inside a plasma, the gravitational
force has to be balanced. Thus, dust confinement is typically
achieved in the plasma sheath region above an electrode where
strong electric fields are present [133]. The trapping of
the dust particles in the horizontal direction is established
by depressions of the electrode surface [134] or flat metal
rings on the electrode [87]. However, this results in a
very anisotropic confinement potential. The confinement in
the vertical direction is much stronger and thus these dust
clouds are mostly 2D systems which nevertheless can form
highly ordered crystals with a hexagonal lattice structure [62—
64]. Further, the supersonic ion flow toward the electrode
is focused below each particle [105, 107-110]. In multilayer
systems, the resulting positive space charge attracts particles in
a lower layer. This process is responsible for chain formation
observed in all dust clouds which are confined in the regions
of strong electric fields, i.e. regions with strong ion flows (see
e.g. figure 3(a)). This alignment vanishes if small particles
and high gas pressures are used (figure 3(b)) [135-137].
However, extended homogeneous 3D plasma crystals cannot
be generated this way and investigations of dust dynamics are
not feasible due to strong damping.

To produce extended 3D dust clouds, different approaches
were followed. Merlino and co-workers confined dust in a
magnetized anodic plasma [141, 142] and investigated dust
acoustic waves. In these experiments the dust confinement
is achieved by a balance of electric field and ion drag forces
in the horizontal direction [143] and ion drag, gravitation and
electric fields in the vertical direction [144]. Barkan et al [145]
calculated that the system can be in a strongly coupled state
and recently Pilch et al [146] indeed observed well-ordered
regions in these dust clouds, but their detailed structure is not
yet understood.

To produce 3D plasma crystals, a number of experiments
have been performed under microgravity conditions. These
experiments have provided many interesting observations, e.g.
of localized crystalline structures [147], of complex plasma
boundaries [148,149], of coalescence of complex plasma

fluids [150], of transport properties [151,152] and of low
frequency waves and instabilities [153—-156]. However, the
most striking observation was the formation of a dust free zone
(void) at the center of the discharge [140, 147]. It was proposed
that the ion drag force is responsible for the formation of these
voids (figures 3(c) and (d)) [139, 157-159]. The combination
of simulations [160-162], experiments [97, 114, 131, 163] and
recent ion drag models [119—-121] was able to verify this.
Although it was shown very recently that a void closure can
be achieved [164], the formation of void-free crystalline dust
clouds is still an important issue.

2.7. Dust dynamics

Many investigations on complex plasmas focused on dynamic
phenomena. New types of waves have been predicted and
observed, e.g. dust acoustic waves [165], dust-ion acoustic
waves [166, 167] and dust lattice waves [168, 169]. Many non-
linear wave phenomena, e.g. shocks [155, 170-172] and Mach
cones [173-176], were studied and the role of compressional
and shear waves in solids and fluids has been discussed [177—
180]. A recent review on this topic was published by Shukla
and Eliasson [181]. Furthermore, the detailed investigations
of the solid—fluid phase transition are certainly a highlight of
complex plasma research [182—-186]. Recently, a growing
interest in liquid complex plasmas has been noted. Several
investigations aim at a deeper understanding of transport and
diffusion processes in strongly coupled liquids [151, 152, 187—
192]. However, such dynamic properties were mostly studied
in 2D complex plasmas.

3. Finite systems

Systems consisting of just a few particles are of special interest,
because their structural and dynamical properties strongly
depend on the precise number of particles. Already Thomson
[196] investigated the structure of charged particle clusters in
view of his atomic model. Although his results did not explain
the structure of atoms, they mark the starting point for research
on finite strongly coupled systems. Finite particle number
effects have turned out to be of similar importance for the
understanding of the structure of atomic nuclei. In the field
of non-neutral plasmas Thomson’s ideas have been developed
much further [56]. Using the Penning and Paul traps [197] it
was shown that the regime of strong coupling can be reached
for laser-cooled ions [46,198]. With refined experimental
techniques the ions were found to arrange on nested shells
[199] and for large ion clouds bcc order was observed, cf
figure 4 [195,200]. The same results were obtained with
molecular dynamics simulations [56, 201, 202], and it should
be noted that the particle arrangements, in particular those for
closed shell configurations, are very similar to those of noble
gas [203] and metal clusters [204]. This finding is a hint that
geometric constraints might determine the structure of small
systems to a large extent.

Nevertheless, when approaching large clusters the shell
formation should vanish and a regular volume order should
appear. This transition was predicted for ion clouds containing
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Figure 3. Examples for experimental realizations of 3D dust clouds. (a) Dust cloud in an inductively coupled rf-discharge. Note that the
dust grains form vertical chains due to a strong vertical ion flow. (Reprinted with permission from [138]. Copyright 2000 Springer Science
and Business Media.) (b) Structure of a multilayer crystal using small particles and high gas pressure to avoid chain formation. Coexistence
of hep (green) and fcc (red) lattices is observed. (Reprinted with permission from [137]. Copyright 2000 American Physical Society.)

(c) Typical dust cloud under microgravity conditions. A dust free zone (void) establishes at the center of the discharge due to ion drag
forces. (After [139, 140].) (d) If gravity is compensated by thermophoresis, similar voids are observed. (Reprinted with permission

from [114]. Copyright 2002 American Physical Society.)
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Figure 4. Structure of ion crystals. (a) Image of a small, spherical ion cloud (~2000 ions) in a Paul trap. The ions arrange in distinct shells.
(After [193].) (b) MD simulation of a cloud with 10° ions reveals bulk order close to the center and shell formation outside. (Reprinted with
permission from [194]. Copyright 2002 American Physical Society.) (c¢) Time-resolved Bragg diffraction pattern of a large ion cloud with a
bec lattice structure. (Reprinted with permission from [195]. Copyright 1998 American Association for the Advancement of Science.)

(a) (b)

dust
dispenser

glass box

heated electrode

Figure 5. (a) Side view of the discharge arrangement for the Yukawa balls experiment. The lower electrode is heated (7' < 90 °C) and the
vacuum vessel is grounded and kept at room temperature. The dust cloud is confined inside a glass cube where the upper and lower sides are
left open. The inset shows an image of a large dust cloud which is 1 cm in diameter. (b) A thin slice at the front side of the cloud is
illuminated. The particles basically arrange in a hexagonal lattice. (After [116].)
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Figure 6. Structure of a Yukawa ball with N = 31 particles observed experimentally. (a) Particle positions in cylindrical coordinates in the
p—z plane. The (red) dots are the average particle positions of a (5, 26) configuration, the dashed lines indicate the shells. (b) Structure of
the inner shell. (c) Voronoi analysis of the outer shell with NV, = 26. Pentagons are dark (blue) and hexagons are bright (green). The particle
positions are marked with dots. (Reprinted with permission from [216]. Copyright 2007 IOP Publishing.)

about 10* ions. However, recent experiments show that even
small clouds (N ~ 103) can show a bcc or fcc structure
[193]. Further experiments investigated structural transitions
due to resonant instabilities [205] and Coulomb bicrystals
[206,207]. In general, it can be stated that many theoretical
predictions [56] for these systems are not yet verified by
experiments, e.g. the size dependence of the melting process.
The main reason for this is that the ion clouds are about
20 times smaller than complex plasma clouds with the same
particle number and that the ion dynamic is too fast to track
individual ions. Hence, these experiments are restricted to the
analysis of the average structure of ion clouds. However, Juan
et al [208] demonstrated that such experiments are generally
possible in complex plasmas. Klindworth er al were able to
show that the structural and dynamical properties of finite
2D clusters strongly depend on the particle number [209].
Further experiments and simulations treated normal modes
[210], phase transitions [211] and structural properties of these
systems [212,213].

In 3D, interesting observations were reported by
Annaratone and co-workers [214,215]. They observed
spherical dust clouds with less than 50 particles in a secondary
discharge in front of an adaptive electrode. Unfortunately,
these clouds are rather in a liquid state and their confinement
is not yet understood. Similar dust clouds but in a well-
defined confinement were generated by Arp et al [116].
Using thermophoresis to balance gravity and a glass box
to generate radial electric fields, they managed to create an
isotropic parabolic confinement potential, cf figure 5. Inside
this trap the dust particles were found to form spherical
dust clouds. Figure 6(a) visualizes the typical structure of
an experimentally generated so-called Yukawa ball. Using
cylindrical coordinates, z and p = +/x2+ y2, a formation
of shells is clearly observed. The inner shell consists of 5
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particles whereas 26 particles form the outer shell. While
the inner shell is a symmetric double tetrahedron (figure 6(b))
which represents a typical close-packed structure, the Voronoi-
analysis of the outer shell shows a pattern of hexagons and
pentagons (figure 6(c)). Thus, Yukawa balls are in a crystalline
state and the particle arrangement is similar to the one in ion
crystals.

4. Structure of plasma crystals

After having discussed the basic issues of dusty plasma
experiments we will now concentrate on the results in the
strong coupling regime. The large amount of work in this field
does not allow for a comprehensive presentation of all results
and even of the main systems. We will, therefore, focus on one
particular system—finite spherically confined dusty plasmas in
the liquid and crystal states. For this system we will discuss a
variety of properties in close comparison between experiment
and theory.

4.1. Theoretical models

We now turn to a theoretical analysis of the structure of
plasma crystals and start by analyzing the plasma conditions.
First, due to the large size and mass of the dust particles
quantum effects are irrelevant. This holds not only for the
presently used temperatures but also for cryogenic conditions
with temperatures in the micro-kelvin range unless particles in
the sub-nanometer range are being used. But in that case, the
advantage of achieving highly charged particles will be lost.
Thus for this classical system, in principle, an exact simulation
approach is possible. Such approaches which are based on
particle in cell (PIC) simulations have in fact been developed
by Matyash and others but they are presently capable of treating
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only a very few dust particles in the plasma. These difficulties
are caused by the second peculiarity—the embedding of the
dust particles into a partially ionized plasma consisting of
neutral gas molecules, ions and electrons, all of which have
a mass which is at least 10 orders of magnitude smaller. This
leads to an essential decoupling of the dust particle motion
from that of the plasma—in many cases the plasma can be
assumed quasi-stationary and instantaneously following the
motion of the heavy particles. Therefore, instead of simulating
the complex plasma exactly it is possible to develop hybrid
concepts (see e.g. [217] and references therein).

The third peculiarity of dusty plasmas is that strong
correlations appear asymmetrically. While the dust component
may be very strongly correlated with I'y >> 1, the correlations
of the electron and ion subsystems are normally very small,
I'.i < 1, and also the coupling of the dust to electrons
and ions is weak (the coupling parameters associated with
the average dust—electron and dust—ion interaction are small).
This allows one to develop effective one-component plasma
(OCP) models where the dust is treated exactly whereas the
properties of the lighter components enter via several input
parameters. The fourth aspect is that the dusty plasma is in
a non-equilibrium state which can be considered stationary:
electrons and ions counterstream between the electrodes and
(in particular electrons) attach to the surface of the dust
particles, see the discussion in section 2. A simplified model
which treats the streaming electrons and ions within linear
response and computes the dynamically screened potential V
of the dust particles was developed by Joyce and Lampe (see
[218,219] and references therein). They derived an anisotropic
and non-monotonic (wake) potential around a dust grain which
explains many of the unusual observations such as effective
dust—dust attraction, cf section 2, as well as the control of dust
crystallization by variation of the neutral gas pressure.

4.1.1. Langevin molecular dynamics simulations. In the
following we will take advantage of the peculiarities of dusty
plasmas mentioned above. For simulations of spherical dust
crystals which are formed in the plasma bulk, electron and ion
streaming are of minor importance, so dynamical screening
effects can be neglected. Then the simplest effectively one-
component model is given by the Hamiltonian (1) for the
dust particles where the properties of the light plasma species
are included into the pair interaction potential V and the
confinement potential U. For the interaction potential V,
an isotropic Yukawa potential (see equation (7)) can be used
as will be verified by comparisons with the experimentally
observed crystal structures below. On the other hand, the
interaction of the dust particles with the dominant species, the
neutral gas, can be treated as in standard Brownian motion:
by a simple Stokes-type friction (see table 1) together with a
noise term,

mii(t) = Fy(t) — vmv +; (1), i=1,..., N,
(yi) =0, (yia®)yjp(t")) =2D8; j84.p8(t — 1),
a,B=x,y,2,

which models the random collisions of dust particles with
neutral gas atoms. If the latter are in thermodynamic

®)
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equilibrium with a temperature 7,, which is normally the
case, the particles will relax toward a Maxwellian velocity
distribution with the same temperature, and the random force
amplitude D is determined by the fluctuation—dissipation
relation, D = mkgT,v. The force F; = —V;U — V;V is
the total force on the ith particle due to the external potential
and all other dust particles.

Solving this set of equations yields a first-principle
simulation (Langevin molecular dynamics, LMD) for the dust
particles which does not make any approximation with respect
to the coupling strength. This approach thus allows one
to systematically study the details of the dust ensemble in
the whole parameter space, including the strongly coupled
liquid and crystal regimes. A second first principle approach
which provides the thermodynamic properties is Monte Carlo
simulations with the Hamiltonian (1). This provides the crystal
structures and melting points, but cannot reveal dynamic
properties. We will discuss examples of such simulations in
section 4.3.

4.1.2. System of units. For the theoretical and numerical
analysis it is useful to define proper dimensionless quantities
based on physical length, time and energy scales, rg, #y, Eo.

(i) For macroscopic systems, we will use, as the length scale,
the Wigner—Seitz radius, ro = r and the associated energy
scale Ej, 0?/ry. The characteristic time scale is the
inverse plasma frequency, fy = w> ', and frequencies and
damping constant v are given in units of wp.

(ii) For finite systems in a spherically symmetric harmonic
trap potential, U (r) = mw?*r?/2, it is convenient to use

ro = (2Q*/ma*)'",

: (€]

Eo = (mo?Q*/2)'?
where r(y is the stable distance of two particles with
Coulomb repulsion in a harmonic trap and Ej is their total
energy. A natural unit of time is the inverse trap frequency
to = w~ ! whereas frequencies and the dissipation constant
v are given in units of w.

4.2. Pair distribution function of a strongly coupled plasma

For a quantitative analysis of the correlation effects a variety
of quantities can be used, besides the coupling parameter
I', equation (2). Spatial correlations and formation of long-
range order are well characterized by the pair distribution

function g(r),
> ; (10)

which is normalized to the system volume, f d3rg(r) =1V,
and represents the probability of finding an arbitrary particle
pair at a distance r. In dusty plasmas, this quantity is not only
easily computed from simulations but also directly measured
from the available particle positions. The function g(r)
is straightforwardly computed within a molecular dynamics
simulation by analyzing all pair distances r;;. A simulation
example is shown in figure 7 for the case of an OCP monolayer
at three different coupling strengths. The function evolves

14
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Figure 7. Pair distribution function of a one-component Yukawa
plasma (xays = 2.0) in two dimensions. The curves correspond to
the solid phase, (I' = 440), the strongly (I' = 140) and the
moderately coupled liquid phase (I" = 20). For an ideal system,
g(r) = 1. Length unit is the Wigner—Seitz radius a.

from a constant, g(r) = 1, in an ideal plasma, to a curve
with a minimum around zero (‘correlation hole’) at I’ > 0.
With increasing coupling, first, short-range ordering appears,
cf the curve for I' = 20, until long-range order emerges, which
corresponds to a crystalline state. Note that for finite systems
the pair distribution function decays to zero, for distances of
the order of the system size, see figure 10.

There exist many other quantities well suited to
characterize the many-particle effects and the spatial ordering,
including the static structure factor (essentially the Fourier
transform of g(r) — 1). Further quantities suitable for
characterizing finite spherical crystals will be discussed in
section4.3. The experiments with dusty plasmas directly allow
one to measure the pair distribution function and to compare
with theoretical approaches. An example for a measurement
of a spherical plasma crystal is presented in figure 10.

4.3. Spherically confined crystals: Yukawa balls

The spherical crystals (Yukawa balls) consist of a finite number
N of dust particles where N can be varied between one and
a few thousand. This gives access to a whole new field of
strongly correlated systems in which finite size effects play a
crucial role. Even though these systems are classical, they have
properties very similar to atoms and nuclei—they can be in a
variety of stationary states characterized by a well-defined total
energy. Ground state and metastable states can be realized in
experiments, see below, and are easily studied with simulations
and analytical models.

As shown by the experiments, see section 3, the dust
particles forming the crystal are confined by an isotropic and
nearly harmonic potential, U (r;) = mw?*r? /2. This crystal is
formed in the plasma bulk so that the dust—dust interaction is
well approximated by a Yukawa potential (7). Note that in a
harmonic potential, the absolute strength of the confinement
(i.e. of w) has no influence on the plasma state. An increase in
w leads only to a reduction in the interparticle distances, as can
be seen from equation (9) for the case of two particles. The
same is true for Yukawa systems [220].

12

4.3.1. MD results for the ground state. ~With these input
parameters, the structure of the Yukawa balls is easily obtained
by simulations solving the equations of motion (8) without
the dissipation and stochastic force terms (MD). Since the
screening parameter is difficult to measure accurately it
is used as a free parameter. Based on the experimental
estimates, the Yukawa balls are strongly correlated, with
' 2 500. Thus the observed crystal structure should
be close to the ground state. The classical ground state
of system (1) is obtained by neglecting the kinetic energy
and by finding the absolute minimum of the total potential
energy. The simulations are conceptually very simple: one
starts with a random particle configuration and proceeds
with slow ‘cooling’ (reduction of the particle velocities)
until the desired temperature—zero for the ground state—
is reached, so-called ‘simulated annealing’. Nevertheless,
there are many caveats: there exists no computational scheme
which will with certainty lead to the ground state, in a finite
time. With high probability a simulation will end up in a
local minimum of the potential energy, rather than in the
absolute minimum. Therefore, simulations have to be repeated
sufficiently frequently, typically several thousand times. Also,
rapid cooling will not lead to the ground state but rather to
metastable or glass-like states. On the other hand, very slow
cooling will be very inefficient, and one has to find an optimal
time step.

Let us summarize the results: at T 0 the dust
particles form narrow concentric shells which agrees with the
measurements, cf figure 6. Ground state and metastable states
are characterized by a definite set of shell occupation numbers
{Ns}. With increasing cluster size, particles continuously
populate a shell until its capacity is reached (so-called ‘magic’
clusters) and a new shell forms. Shell closures have been
investigated in detail for spherical Coulomb systems by Hasse
and Avilov [201], Tsuruta and Ichimaru [202], Ludwig et al
[221] and many others. The first shell is closed for N = 12, the
second for N = 57 and again for N = 60 [202]. The closure of
the third and fourth shells is observed for N = 154 [221,222]
and N = 310 [220], respectively.

However, the shell occupation numbers are not sufficient
to fully characterize the stationary state. Clusters with the
same occupation numbers {Ns} can be in one of several
configurations differing by the intra-shell symmetry. This
‘fine structure’ was investigated in detail in [221] where it
was observed that the ground state is characterized by the
highest intra-shell symmetry. Each shell is characterized by a
combination of six-fold and five-fold symmetries, i.e. particles
have, respectively, six and five nearest neighbors (other
symmetries are also observed but less frequently), known
as Euler’s problem, in agreement with the measurements,
cf figure 6. A prominent example is the cluster with N = 12
particles which forms a single shell with 4 (8) particles having
6 (5) nearest neighbors. Another example is shown in figure 8
depicting the ground and the first excited states for N = 17,
both having the same shell configuration and the same number
of hexagons (4) and pentagons (12), but differing in their
arrangement.
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Figure 8. Voronoi construction for the cluster N = 17—the two energetically lowest states with shell configuration Ny = {1, 16} are
shown. White (gray) areas are hexagons (pentagons)—indicating the number of nearest neighbors of the corresponding particle (black dot):
(a) ground state, () first excited (‘fine structure’) state, (c) arrangement of the four particles surrounded by hexagons—the two states differ
by rotation of the edge A B, black [white] circles correspond to case (a) (b). (Reprinted with permission from [221]. Copyright 2005

American Physical Society.)
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Figure 9. Binding energy A, (right axis) and MVSP (left axis), equation (12), for the two outermost cluster shells: (@) N < 80,
(b) 80 < N < 160. (Reprinted with permission from [221]. Copyright 2005 American Physical Society.) (Color online.)

The strong correlation between cluster stability and
symmetry is demonstrated in figure 9 where the binding energy
A, and the mean Voronoi symmetry parameter (MVSP),

Ay = E(N+1)+E(N — 1) —2E(N), (11)

MVSP = e Z NuGuy,  Ni+Ns+ Ng= NP,
M=4,56
(12)
Gy = 30 L I3 g (3)
Nu =1 M\

13

are plotted together for clusters with N from 1 to 160. The
MVSP is the weighted (by the corresponding number Ny, of
particles) average of the bond angular order parameters Gy
within a shell. Here Ny, denotes the number of all particles
j in the shell, each of which is surrounded by a Voronoi
polygon of order M (M nearest neighbors) and 60y is the angle
between the jth particle and its kth nearest neighbor. For
example, a value G5 = 1 (G¢ = 1) means that all pentagons
(hexagons) are perfect, the magnitude of the reduction of Gy
below 1 measures their distortion. For the cases included
in figure 9 only the symmetries with M = 4,5,6 occur
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Figure 10. Experimental results for a Yukawa ball with N = 190 particles: (a) Radial particle distribution, clearly indicating formation of
four concentric shells and (b) the associated pair distribution function, indicating a strongly correlated liquid-like state. The monotonically
decreasing (red) curve shows the pair distribution function for a random distribution of particles in a spherical cloud with the same volume.
(Reprinted with permission from [223]. Copyright 2005 American Institute of Physics.) (Color online.)

[221]. Magic clusters—as in the case of noble gas atoms
or magic nuclei—have a particularly high binding energy
(high stability) and a high symmetry; prominent examples are
N = 12,38, 103, 116. Note that these magic numbers differ
from those in nuclei or neutral gas clusters due to the different
pair interaction potentials.

Finally, small clusters, N < 12 have a particularly
symmetric arrangement—they form platonic bodies. These
reappear in the core of larger clusters, cf figure 6. With
increasing cluster size the competition between bulk order and
spherical order due to the trap becomes more pronounced and
for N > 10%, the bulk order begins to prevail in the core, as
was shown by Totsuji et al [194].

4.3.2. Comparison with experiments: screening dependence
of the ground state. The high quality of the dusty plasma
experiments makes it possible to directly compare the
measured cluster configurations with the above theoretical
predictions. In figure 10 experimental results for a Yukawa
ball with 190 particles are shown. The radial density profile
(left) clearly confirms the formation of concentric shells. At
the same time, the pair distribution function (right) signals
the emergence of a quasi-long-range order. The decay is a
consequence of the finite cluster size and is also present in an
ideal (non-interacting) cluster, cf figure 10.

The shell configurations for a large number of Yukawa
balls containing 100-500 particles were reported in [220], see
figure 11. The overall trend observed in the simulations and
in the experiment is an increase in N, proportional to N*/3.
However, the experimentally determined occupation numbers
{Ny} show small deviations from the theoretical results for
Coulomb clusters of about 5-10%. The authors could show
that this is not due to statistical errors but is a systematic
difference which is explained by screening of the interaction.
In fact, screening leads to a reduced repulsion—the clusters
shrink and, at the same time, it is energetically favorable for the
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Figure 11. Experimental (symbols) and theoretical (lines) shell
population N; of the ground states versus system size. The MD
results are obtained for different screening parameters k (k is given
in units of () and show that the particles redistribute toward inner
shells with increased x. Good agreement is observed for xry = 0.6.
(Reprinted with permission from [220]. Copyright 2006 American
Physical Society.) (Color online.)

particles to increasingly occupy inner shells. Results for {N;}
for several values of « are shown in figure 11. A comparison
with the experiments allows one to deduce an average value of
the Debye screening length in the experiment of Ap/a ~ 1.5
where a is the mean interparticle distance (this corresponds,
in dimensionless units, to kg = 0.6), in good agreement with
other measurements.

Thus these experiments confirmed the existence of an
effective screened interaction between two dust particles—
which is a qualitative difference compared with ultracold ions
in traps. Subsequently there have been numerous studies of
the properties of finite spherical Yukawa plasmas and of their
dependence on the screening strength. Baumgartner ef al have
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Figure 12. Shell closures for Yukawa ball ground states. N denotes
the last cluster with only one shell (lower curve) and two shells
(upper curve) for the given value of « (in units of ). The N + 1st
particle will be located at the trap center, opening a new shell. Note
the re-entrant shell closures for the outer shell (for k = 0) and the
first shell (for 2.0 < k < 4.0). (Reprinted with permission

from [224]. Copyright 2008 IOP Publishing.)

computed all shell configurations for N < 60 in a broad range
of k¥ [224]. The first observation is that the magic clusters
(clusters with a closed shell) with increased ¥ move to lower
N. This is shown in figure 12. While, overall, an increase
in k leads to an increased occupation of inner shells, there
exist a number of interesting anomalies: (1) upon « increase
two particles may move to (one of) the inner shell(s) at once,
(2) when the particle number is increased by one, at fixed «,
in some cases one particle moves from the inner to the outer
shell and (3) at very large « there exist cases of re-entrant shell
fillings: one particle returns from the inner to the outer shell.
These anomalies are, in most cases, dictated by symmetry
properties of the corresponding state which allow one to lower
the total energy.

4.3.3. Shell models. The observed shell structure suggests
that the main crystal properties can be obtained from simpler
shell models. Such a model assumes that the particles are
homogeneously distributed along L concentric shells with zero
width. The first shell model was proposed by Avilov and Hasse
for ion crystals (pure Coulomb interaction) [201] and was
improved by Tsuruta and Ichimaru [202] who approximately
included correlation effects.  Kraeft and Bonitz further
improved this model and presented detailed comparisons with
MD simulations [225]. They gave the following form of the
total energy per particle (they also subtracted a term 45 N>/
which accounts for a possible neutralizing background but can
be omitted for our present discussion of the shell structure):

L
Emodel(N) _ 21/3 Z Nv
N(Ze)*/rg ~ Nx,

N, —ey/N, 1
X<T+ZNM+C+§X

n<v

3
v

(14)

15

where ¢ 0 or 1 (accounting for the possibility of a
particle sitting exactly at the trap center) and x, is the
radius of the shell w in units of ry. Here, the first term
(proportional to N?) is related to the surface energy of a
spherical capacitor of radius x,, containing N, charges, with
Eqi(N) = [N(N — 1)e*]1/(2x,). The sum over u accounts
for the electrostatic interaction of the shell v with all inner
shells whereas the x? contribution describes the confinement
energy. This model, without the term proportional to €, can
be rigorously derived from a mean-field theory [226] which is
discussed in section 4.4. The term proportional to € takes into
account the discreteness of the particles by excluding a certain
area around each particle from the available shell area and thus
accounts for intra-shell correlations. The cluster configuration
can now be derived simply by an optimization procedure
searching for those shell populations and radii which minimize
the total energy (14) which is much simpler than to solve the
exact problem. While this yields the correct qualitative trend,
with € = 0 [201] there are large quantitative deviations from
the MD simulation results [225]. Using € as an additional free
parameter allows one to reduce the deviations from the exact
ground state energy to (1-2)% [225]. The resulting values for
€ were slightly above 1 and converged to € = 1.104 for large
N, aresult which could be recently derived from the Thomson
model by Cioslowski [227, 228].

For Yukawa balls the situation is more complex. A mean-
field-type model (¢ = 0) was recently obtained by Totsuji
et al [229] and derived from continuum theory, cf section 4.4,
by Henning et al [226],

dl

inh(k R
;+ZWNM)}. (15)

n<v

Ry sinh(x R,)

KR,

o e
—R?+Q?

L
Emodel(N; K) = ZNU{
— 2 R,

Nv _Ev(Na K)\/ NV
X > +

One readily confirms that this result includes the Coulomb
case. Model (15) differs from [226,229] by the additional
correlation corrections which generalize the Coulomb
expression (14). This model was used in [230] and optimized to
minimize the total energy. A detailed comparison with exact
results showed that the model with ¢ = 0 performs rather
poorly. In contrast, allowing for correlation corrections €,
which are different for different shells gives rise to an accuracy
of about 5% for the shell populations compared to experiment
and simulations. Such shell models are a valuable complement
to simulations since they allow for insight into the structure of
the Yukawa balls.

4.4. Radial density profile of Yukawa balls

The experimental data suggest that the mean density in Yukawa
balls is distributed inhomogeneously. This is in striking
contrast to a system of charged particles (with Coulomb
interaction): as is known from electrostatics, a homogeneously
charged sphere produces a parabolic electrostatic potential ¢
in its interior, cf figure 13. Vice versa, a parabolic confinement
will give rise to a homogeneous distribution of particles with
Coulomb interaction. However, this is not the case for particles



Rep. Prog. Phys. 73 (2010) 066501

M Bonitz et al

3
—~

=
=

nc

 6o(r)

<Y

Rc

Rc

T T

Rc

Figure 13. A homogeneously charged sphere (Coulomb interaction, density n(r)) with radius Rc produces inside a linear field E,; and a

parabolic potential ¢e,.

LA %
B T (PR Kro =3
20 - I T B Kro =2 -
\‘\* — — — krg=1
N krg =10
o \ ) ]
N A A reraged s nsity
= A N % *,A  Averaged shell density
= A A \
= L ~ N .
£ 10 \\&(\
m K — Ak —k— R
L *— ke f ]
PO R o
! 1 A\
0 ! I PR I L [ L i 1 L | L 1 L
0 01 02 03 04 05 06 07 08 09 1
I’/RQ

F/(mwiRc)

04}

0.6
T‘/RC

Figure 14. (Left) Mean radial density profile in mean-field approximation, equation (19), lines, compared with exact result (symbols), for
four different screening parameters. (Right) Radial profile of the force contributions on a particle at radial position r for three screening
parameters. Fy is the force produced by the confinement and F. (F- ) the force from all particles inside (outside) the radius r. (Color online.)

with Yukawa interaction. The corresponding radial profile has
been computed by Henning et al [226]. The derivation uses a
classical version of density functional theory: the ground state
total energy is written as a (unique) functional of the density
profile n(r):

E[n] = /d3ru(r), (16)

2
/d3V2 I’l(’l"z)—Q C_KT_TZ}
|r — |
(17)

where the terms on the right denote the confinement energy
density, the mean-field contribution and the density of the
correlation energy. The ground state density profile is obtained
from minimizing the total energy E, i.e. from the variational

problem 0 = 8 E[n]/8n(r) under the constraint [dra@) =
N. The solution for a general anisotropic confinement U (r)
in mean-field approximation (i = 0) is given by [226]

u(r) = n(r) {U(T‘) +

+ uCOITﬂ

—1 2 2
n(r) = (A —«HUr) +x°p,
N
where p is a Lagrange multiplier (chemical potential) assuring
the normalization.
For the case of Yukawa balls, we use an isotropic harmonic
potential, U(r) = ma)2r~2 /2, and equation (18) yields the
explicit result (we define 0> =07 / (maw?))

ano? Y (18)

N K22
n(r) = — | c— OR—r),
47 (N — 1)0Q? 2
R**3+kR
3+ K“3+«k ' (19)
2 1+«R
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The density drops to zero at a finite radius R(N, ) which
follows from the normalization, yielding the following
equation:

O*(N — 1)+ Q*(N — DkR — R®* —kR* = 2k*R%/5
—«3R%/15 =0, (20)

which has a single real positive solution R(x, N) [226].
The result for the density profile is shown in figure 14.
As expected, for a Coulomb system (x = 0), a constant
profile is observed which terminates at a finite radius R =
Rc = [(N — 1)Q?%/(mw*)]"/3, with a step. With increased
screening, the cluster is compressed due to the weakened
interparticle repulsion. This is clearly seen by the reduction
in R. Furthermore, the profile is not constant anymore but
decreases parabolically towards the edge where the decrease
becomes steeper with increasing «, cf equation (19).

This density profile provides a global minimum to the
total energy (16) and, at the same time, it assures stability
of the cluster locally, i.e. for any r simultaneously. In fact,
computation of the gradient of the total potential energy yields
the force on the particles, cf right part of figure 14. There are
three contributions to the force: the first, Fy, results from the
confinement and is directed inward. On the other hand, the
particles themselves produce a repulsive force. For a particle
located at any given radius r < R there is a force F_ from
all particles located inside a sphere of radius r which acts
toward the edge. In the Coulomb case, these two forces are
both linear functions and exactly balance each other, for any
r, see the solid lines in figure 14. Obviously, there is no force
from the particles located at radii larger than r, i.e. F. = 0,
which is nothing but the Faraday cage effect. The situation
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is completely different in the case of a screened interaction,
k # 0. In this case, there is no Faraday cage effect—particles
located outside a given radius produce a substantial inward
force which adds to the force Fyy. Thus, stability requires an
increased (compared with the Coulomb case) force F_. Due to
the shorter range of the interaction, the plasma can accomplish
this only by strongly increasing the density toward the center.

Finally, it is interesting to compare the results of this
mean-field model for the density profile with the exact results
which are shown by the symbols in the left part of figure 14.
For comparison, the exact ground state profile which is
characterized by a radial modulation (shell structure) has been
averaged over radial intervals, for details, see [226]. The
agreement is surprisingly good, at least for kry < 2. For larger
Kk, there are growing deviations in the central part of the cluster
which are due to the neglect of the correlation energy uco-
In fact, it was shown by Henning et al [231] how to include
correlations in a local density approximation. The results were
in excellent agreement with the simulations for xry > 2 but
they are less accurate than the mean-field result for smaller
k. Thus, the present density functional theory concepts with
and without correlations in LDA complement each other. This
approach allows to correctly reproduce the radially averaged
properties of a Yukawa plasma in the (classical) ground state.

With the present approach the basis for a continuum theory
of strongly correlated dusty plasmas has been laid. It is
straightforward to extend this approach to finite temperatures
as was shown by Wrighton et al [232]. In that case the density
profile becomes smooth. It extends to larger distances and
the abrupt density step is washed out. We underline that
this theory yields only a part of the properties—the mean
density profile and related average properties. The observed
radial density modulation arising from the shell structure is,
however, a correlation effect and is, thus, notreproduced by this
approach. A theory which allows one to describe correlation
effects will be discussed in section 7.2. Interestingly, the
theoretical prediction of an inhomogeneous density profile in
Yukawa balls could be verified experimentally by Block et al
and co-workers [233,234].

5. Dynamical properties

So far we have considered the zero temperature behavior
of spatially confined dusty plasmas which is determined by
the minima of the total potential energy. These minima
correspond to either the ground state or metastable states of
the cluster. Finite temperature will lead to excitations of
the cluster—particles will oscillate around the local potential
minima. Under normal experimental conditions, i.e. room
temperature and strong coupling, the excitation energy is
weak, and one can expand the total energy in a Taylor series
around a stationary state to second order. This gives rise
to the normal modes of the system which fully determine
the dynamical and transport properties and are crucial for
the melting behavior [213,235] of strongly correlated finite
systems at weak excitation. For these reasons, normal modes
in classical trapped Coulomb systems have been extensively
studied by many authors, (e.g. [213,236-238]). Investigations
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of Yukawa systems were reported in [210, 230, 239, 240], for
other types of pair interactions in finite clusters, see e.g. [241—
244].

5.1. Normal modes of finite systems

In the following we recall the main properties of normal modes
of a d-dimensional finite system of N particles described by
the general Hamiltonian (1), where U (r) = U(|r|), and, at the
end, apply the concept to harmonically confined dust crystals
in two and three dimensions.

We start from the ground (or metastable) state of our
system given by the d x N-dimensional coordinate vector
r* = (r’l", 3, ..., r?{,) , corresponding to a minimum of the
total potential energy Ui and thus fulfilling the equations
(Z' indicates the absence of terms with equal indices, and
we denote r;; = r; — 1))

Ui . v
TN >

=1

,VidraDh

il

0=ViUo(7)|p=p = 7%
il

Vi < N. 1)

Now consider an arbitrary small excitation, 7 = » —r*, around
this state for which a harmonic approximation of the potential
can be applied
Uiot(1) % Ut (") + 5. (r = r) THEr ) (r = 7%), (22)
where equation (21) and the definition of the Hessian matrix
H@*) = VV Ut (1) |-~ have been used. Since H(r*) is a
real, symmetric and positive semidefinite d N X d N matrix, its
eigenvalue problem
amr = H(r*)r, (23)
defines d x N eigenvalues, A; > 0, and d x N linearly
independent eigenvectors ;, which form a basis in the
configuration space and are conveniently chosen to be
orthonormal. Within this basis the excitation can be expanded,

dN
r(t) =7+ c;(O)F, (24)

j=1

so that the time dependence of an arbitrary excitation is fully
determined by the coefficients ¢ (t)—the normal coordinates.
Using the equations of motion for particles described by the
Hamiltonian (1) and equations (22)—(24), the equations for the
normal coordinates follow

0 = m# + VUg (7) = mi + H(r") (r — r¥)
dN

IMZ[EJ‘(I)+)\1'CJ'([)] ’I/:j.

j=1

(25)

Due to the independence of the normal modes the solution is
given by

Cj(l‘) =Aj COS(w/)\jl‘+Bj), (26)
in which the constants A; and B; have to be determined

from the initial conditions 7(0), 7(0) of the excitation. The
frequency of the normal mode j is given by the eigenvalue,

Vj <dN,
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Figure 15. All normal modes of two-dimensional harmonically confined Coulomb systems with N = 3, 4, 5 particles. The dots picture the
particles within the ground state configuration, and the arrows show the direction and amplitude of the oscillatory motion. The
N-independent modes, i.e. the rotational modes, the sloshing modes, and the breathing modes are highlighted. (Reprinted with permission

from [248]. Copyright 2009 IOP Publishing.)

wj = \/Z and the associated collective motion of all particles
by the eigenvector 7;.

With the normal modes the individual particle coordinates
can be eliminated from all expressions. In particular, inserting
expansion (24) into equation (1) diagonalizes the Hamiltonian
which is thus transformed into a superposition of N - d
independent one-dimensional harmonic oscillators.  This
representation is very useful in order to obtain semi-analytical
approximations for the transport and melting properties of
strongly correlated systems, e.g. ([204, 213, 245]) and can also
be extended to quantum systems, cf section 5.5. In the limit of
a macroscopic system, the normal mode spectrum of a finite
cluster approaches the phonon spectrum of an infinite crystal.

5.2. Normal modes of crystals in a spherical harmonic trap

5.2.1.  Coulomb systems. For the investigation of the
normal modes of harmonically confined Coulomb systems
(k¢ = 0) detailed theoretical studies have been performed
for d 1,2,3 dimensions (see [213,237,238,246,247]
and references therein). It was shown that there exist three
(partially degenerate) normal modes, which are universal, i.e.
they are independent of the particle number N, dimensionality
d and configuration r*:

(i) There are rotational modes (A 0) corresponding to
a rotation of the whole system which reflect the axial
symmetries of the confinement potential.

(i1) There are d sloshing modes (or Kohn modes [246], A =
w?) describing the oscillation of the system as a whole.
The motion of the center of mass is independent of the
interparticle forces.

(iii) The breathing mode (A = 3 w?) describes a uniform radial
expansion and contraction of all particles.

The existence of these three universal modes is illustrated for
the two-dimensional systems with N = 3,4, 5 particles in
figure 15, where all modes of these systems corresponding to
the ground state configuration are shown.
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Figure 16. Screening dependence of the normal mode spectrum for
a two-dimensional harmonically confined system of N = 16
particles. The universal center of mass rotation (sloshing mode) is
shown by the dashed—dotted (dashed) line, the uniform breathing
mode exists in the Coulomb case only and is depicted by the dot at
k = 0. (Reprinted with permission from [248]. Copyright 2009 IOP
Publishing.)

5.2.2.  Yukawa systems.  Since dusty plasmas exhibit
a screened interaction between the particles the question
arises how screening affects the normal mode spectrum of
plasma crystals. Since the screening parameter « enters the
Hamiltonian (1) also the Hesse matrix H and its eigenvalues
will depend on «. This dependence has been analyzed in
detail by Henning et al [248]. An example of a 2D crystal
with N = 16 particles is shown in figure 16. The analysis
shows that for Yukawa systems there are only two modes with a
universal frequency: the center of mass oscillation and rotation,
cf modes (i) and (ii) above. In contrast, the extension of the
Coulomb breathing mode to finite x values shows an increasing
frequency which changes from /3w, for k = 0, to /5w, for
krog > 1. A simple analytical model for this frequency was
developed by Sheridan [249, 250] which, however, assumes a
constant mean density throughout the cluster which is justified
only for weak screening, cf section 4.4.

5.3. Breathing mode versus monopole oscillation

The breathing mode—the radial and uniform collective
expansion and contraction of all particles—is of special
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relevance since it can be easily excited selectively by variation
of the confinement [210] or by applying external fields [241].
In particular, the corresponding breathing frequency wpym can
often be precisely measured and may serve as a sensitive
indicator of intrinsic system properties including the screening
parameter and the particle charge in complex plasmas [210].
The continuum analog to the breathing mode is the monopole
oscillation [237], which represents the lowest compressional
mode within a hydrodynamic approach [251]. Due to the
continuum character, this monopole oscillation is applicable
to gas or fluid phases of classical [237,250,252] or quantum
systems [253-255] where correlations are weak or moderate.
In the strongly coupled crystalline state, however, where
the particles become individually separated, the concept of
the monopole oscillation is questionable. In order to use
this concept also in the case of strong correlations, the
monopole oscillation is often associated [210,213,256] with
the oscillation of the mean square radius:

N
! Zr(r)z.
i—1

It was then shown [213, 237] that this oscillation is universal
in 3D harmonically confined Coulomb systems, with a
frequency, wmo = V3 w, equal to wpy. A similar universal
correspondence between wyo and wpy was observed for
harmonically confined 2D systems if the interaction is a
repulsive power law, < 1/r" (n = 1,2, ...), or logarithmic
[256]. Due to this close connection some confusion of
both concepts emerged [256]. Thus, the existence of a
breathing mode is commonly assumed also for non-Coulomb
systems, including Lennard-Jones clusters [238] or systems
with Yukawa interaction [257-259]. We also mention a recent
kinetic theory approach to the monopole oscillation [260].
However, while an oscillation of R? can appear in all types
of finite clusters, this is not the case for the breathing mode.
The existence conditions of the uniform (i.e. self-similar with
7; ~ r¥, for all particles) breathing mode have recently been

R*(t) ;== N~ 27
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derived by Henning et al [261] and can be summarized as
follows. A configuration- and N-independent, breathing mode
exists:

(a) in the case of a harmonic confinement, U (r) = mw?*r?/2,
with particles interacting via potentials V (r) proportional
to1/r” ortolog(r). Inthese cases the breathing frequency
is generally given by wpm = /2 + Y o,

(b) for interaction potentials proportional to r- if the
confinement has the form r2 log(r). In this case also
the prefactor of the confinement determines the breathing
frequency,

(c) in the case of stationary states with a special symmetry,
for example platonic bodies, a uniform breathing mode
exists for any pair interaction. This is restricted to small
clusters typically having only a single shell.

2

These results are valid for any real y and any dimension and
coincide, in special cases, with the results of the monopole
oscillation [256]. Furthermore, the conclusion follows that
no universal breathing mode exists for exponential interaction
potentials (such as Yukawa and Morse) or non-monotonic ones
(e.g. Lennard-Jones). Interestingly, as a consequence, these
systems possess multiple monopole modes.

5.4. Normal modes in dusty plasma experiments

A remarkable feature of dusty plasmas is that the normal modes
are directly accessible in experiments. Melzer has performed
detailed measurements of the normal mode spectrum of small
1D and 2D dust crystals [210,262] (for an overview see
[263]). In one type of experiments the thermally excited
particles were traced and the associated power spectrum was
recorded. In other experiments, certain normal modes were
selectively excited by focusing a laser beam on selected
particles, including rotation of the whole cluster and inter-shell
rotations. Examples are shown in figure 17. Recently, first
measurements of the normal mode spectrum of 3D Yukawa
balls have been reported [248,265]. An example of a Yukawa
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Figure 18. Experimental normal mode spectrum of a Yukawa ball
with N = 31 particles. The spectral power density is shown in
gray-scale with brighter colors corresponding to higher power. Gray
dots show the best fit to the theoretical power density computed
from the normal modes. (Reprinted with permission from [265].
Copyright 2009 American Physical Society.)

ball with 31 particles is shown in figure 18 displaying the
measured frequencies of all 93 normal modes compared with
the theoretical predictions.

For a quantitative comparison of the experimental results
with theory it is important to take into account dissipation
effects which are missing in the discussion of section 5.1.
This is straightforward and has recently been performed in
[248,266]. Dissipation has a substantial effect on the spectral
properties: it leads to a broadening of the spectral peaks and to
ared shift and, ultimately, to a disappearance of low frequency
modes from the spectra.

5.5. Normal modes of strongly correlated quantum systems

The concept of normal modes is very useful for strongly
correlated quantum systems as well. In terms of the normal
modes the Hamilton operator can be diagonalized and used to
obtain an analytical solution for the N -particle wave function
which is a simple superposition of d - N harmonic oscillator
wave functions. This has been demonstrated for electrons in
quantum dots and indirect excitons in coupled quantum dots
by Balzer et al (cf [267,268] and references therein).

A variety of normal modes of confined quantum systems
have been studied in some detail for electrons in quantum
dots and for ultracold atomic gases in traps. In particular, the
sloshing (Kohn) mode was analyzed, including the extension
to the case of a magnetic field [246,247]. The independence
of this mode of the interaction between the particles is also
an important consistency test for approximate theories and
simulations [269]. Besides the Kohn mode, the breathing mode
(more precisely, the monopole mode, cf. section 5.3) also has
been intensively studied [254, 270]. Its dependence on the type
of the interaction potential was investigated by several authors,
including 1/r2 potentials [270] and dipole interaction [271].
A detailed study of the breathing frequency in the whole
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range of coupling strengths, from the ideal quantum system
to the strongly coupled crystal-like state, has recently been
performed by Bauch er al [254]. They found that, in contrast
to classical systems, quantum systems possess two breathing
modes one of which is associated with the center of mass
motion and has a universal frequency of 2w. They also reported
an interesting dependence of the standard breathing frequency
on the system dimensionality and on the spin statistics. These
dependences are of interest for experiments with trapped
atomic gases and for electrons or excitons in quantum dots
and may develop into a sensitive diagnostics just as it has been
demonstrated for dusty plasmas.

6. Thermodynamics and phase transitions

When the plasma crystal is heated particles start to oscillate
in their local potential minima. At sufficiently strong heating
these fluctuations become overcritical and the crystal melts.
Melting and freezing are well studied in macroscopic systems
and they can be characterized by many quantities. One is the
coupling parameter which has a critical value I'y at the melting
point. Alternatively melting can be diagnosed from order
parameters, the shape of the pair distribution function (the ratio
of maxima and minima falls under a critical value) or the static
structure factor (e.g. [272]). Other sensitive quantities are the
specific heat C, or the total energy autocorrelation function
[273] (the indices i and k denote either a time argument or a
Monte Carlo step in a thermodynamic simulation)

S (B — (E)) (Ei — (E))

e = (L — k) ((E?) — (E)?)

. (28)

which will be discussed below. Finally, an important quantity
is the magnitude of the particle position fluctuations around
the equilibrium position,

1 N 2
it = 5 Ll =Y).

originally discussed by Lindemann [274]. But when applied to
two-dimensional systems, u7 shows a logarithmic divergence
with system size according to the Landau—Peierls theorem (e.g.
[275]), and also the displacement autorcorrelation function
diverges [276]. This led to modified quantities, including the
relative interparticle distance fluctuations (IDF) [277-279]

(29)

N 2
(ri]

)
1,
(rij)?

2
Urel = 77 1%

N(N —1 (30)

)1§i</

which are well behaved in low dimensional systems. Below
we will consider melting of finite Coulomb crystals. Readers
interested in general aspects of melting and the analysis with
computer simulations are referred to the dedicated reviews by
Lowen [280] and Hartmann et al [272]. The peculiarities of
melting in two-dimensional systems related to the Kosterlitz—
Thouless scenario [281,282] have also been studied in dusty
plasmas (e.g. [283]).
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6.1. Melting in finite systems

A phase transition is a phenomenon observed in macroscopic
systems for which the thermodynamic limit can be applied.
Therefore, in finite systems such as plasma crystals in traps,
the notion of a phase transition such as melting requires a
special analysis. It has been observed in many finite systems,
including electrons in quantum dots [284, 285] or clusters [279]
that upon heating the collective particle behavior changes from
solid-like to liquid-like. Instead of a ‘true’ phase transition
a crossover is observed which extends over a finite range
of temperatures (of the order parameter), cf. figures 19(b).
This makes the definition of a ‘melting point’ ambiguous,
moreover, various quantities including the specific heat, the
energy correlation function (28) or the distance fluctuations
(30) need not necessarily agree with their predictions of the
melting point. Some examples are shown in the right column
of figure 19.

These difficulties have their physical origin in finite size
effects. Melting can occur via several mechanisms such as
excitation, coupling or softening of certain normal modes,
via creation of defects or oscillation between stationary states
(e.g.[286,287]). Boning et al have discussed a simple example
which is very intuitive [273]. They considered a 2D ‘cluster’
of just four particles in a spherical confinement. This system
has a single stationary state where the particles are located
at the corners of a square of side length @. An increase in
temperature (lowering of I') has two effects. Firstly, particles
start to oscillate around their ground state positions (in the local
potential minima). Secondly, two particles can exchange their
positions. This is a rare event since it requires to overcome a
certain potential barrier and requires a coordinated motion of
(at least) two particles. This coexistence of local fluctuations
and hopping events changes when the temperature is increased
and shows similarities with a melting process. This is shown
in the left column of figure 19 where the time-dependent
fluctuating distance of a pair of particles with a mean distance
b = ~/2a is shown. In the ‘solid-like’ state close to the ground
state, hopping events are exponentially rare. An increase
in temperature leads to a growing frequency of these events
during which the distance changes from a to b and vice versa,
and in the ‘liquid-like’ state hopping events occur constantly.

This behavior is not adequately captured by the distance
fluctuations u,., equation (30), although the general trend of
an increase with T is seen, cf figure 19(b). Even worse, the
behavior of u, as a function of T depends on the way it is
computed [273]. When the simulation length is increased the
increase in uy shifts to lower and lower temperatures because
the probability of capturing a hopping event is increased. A
solution to this dilemma consists of recording not just the mean
value of the distance fluctuations but the whole probability
distribution of distance fluctuations P (uy). This function
has a peak around small values of u, associated with local
fluctuations which are dominant in the ‘solid’ state. In contrast,
in the ‘liquid’ state there is a peak around a larger value of u,
associated with the hopping events. In the transition region, in
the vicinity of the ‘melting’ point, P (i) has a large width (in
some cases there are two peaks, see figure 21). This behavior
is well captured by the second moment of the fluctuations, oy,
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Figure 19. (a) Distance of an arbitrary pair of N = 4 classical
particles in 2D as a function of Monte Carlo step. From top to
bottom: 7} = 0.02 (solid-like), 7, = 0.06 and 75 = 0.09 (transition
region), and 7y = 0.5 (liquid-like). @ and b = +/2a denote the two
possible interparticle distances in the ground state. (b) Temperature
dependence of the mean block averaged IDF u,, for different block
lengths M = 10°, 10%, 10°, 10° (right to left) (equivalent to
computing u,, equation (30), from multiple simulations of length
L = M). (c) The corresponding second moment o, ,, equation (31).
(d) Specific heat C, and energy correlation time k... (e) Total
energy autocorrelation function Cp, equation (28), for three of the
temperatures in (a). (Reprinted with permission from [273].
Copyright 2008 American Physical Society.)
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i.e. the variance of the block averaged interparticle distance
fluctuations (VIDF) [273]:

Z Mrel(s)

Z Urel (S)

€19}

This allows one to obtain a reasonable estimate of the melting
temperature Ty from the peak of o, (T'). In equation (31) the
whole simulation duration L was split into K equal blocks
of length M, ie. L K - M, and uy is computed for
each block s with a subsequent average over all blocks. In
this approach the ‘proper’ value of M remains open, and the
authors used the maximum of the energy correlation time,
keoe(T) = >, Ce(k, T), cf figure 19(d), which is sensitive
to melting, to fix the value of M.

urel > urel

Oy =

6.2. Melting of Yukawa balls: experiment and simulation

The dynamical behavior of small trapped systems has been
studied in a number of recent experiments with Yukawa balls
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Figure 20. Experimentally observed inter-shell transition in a small
Yukawa ball with N = 31 particles. (Left) Particle positions (gray)
and trace of one particle moving from the outer shell inward and
back (red) in the p—z plane. (Right) Time-resolved radial component
of the trajectory of the particle leaving the outer shell. Vertical
(blue) stripes indicate the location of the two shells. (Color online.)

[233,234]. In particular, transitions of particles between shells
or, in other words, transitions of Yukawa balls between two
different stationary states could be followed in detail. An
example of a cluster of 31 particles is shown in figure 20. There,
the dynamics of one particle is recorded as a function of time.
The particle first oscillates in its local potential minimum for
about 400 s and then undergoes a ‘hopping’ event as discussed
above: it moves from the outer shell to the inner shell and
rapidly returns to the outer shell. Thereby the cluster state, for
a short period of time of about 50 s, changes from the ground
state (4, 27) to the excited state (5, 26). The reason for this
rapid return can be traced to the local potential landscape—the
potential barrier from state (5, 26) to (4, 27) is much lower than
vice versa [288]. This shows that dusty plasma experiments
allow one to directly probe the total potential landscape of
strongly correlated plasmas.

The concepts for melting in finite systems developed
above can be directly applied in computer simulations of
Yukawa balls. An example of Monte Carlo simulations is
presented in figure 21. There for a crystal of 40 particles the
mean distance fluctuations (30), the variance of the distance
fluctuations (31) and the probability distribution P (u.) are
shown. As discussed in section 6.1 the distance fluctuations
Uy increase very gradually with temperature; however, their
variance shows a distinct peak around the melting point.
Also, the distance fluctuations and their probability distribution
(right part of figure 21) exhibit the characteristic broadening
and indications of a two-peak structure in the vicinity of the
melting temperature discussed above.

In recent years there have been numerous theoretical
studies of melting in spherical plasma crystals. Golubnychiy
et al have shown that the melting temperature of small clusters
varies non-monotonically with the cluster size [289]. It
closely follows the stability of the clusters, cf section 4.3:
particularly high ‘melting’ temperatures were observed for
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N 6, 12,13 all of which are stable with high values
of the mean Voronoi symmetry parameter (equation (12)).
Apolinario et al investigated larger two-dimensional and three-
dimensional clusters in anisotropic confinements and observed
inhomogeneous melting and the existence of several melting
transitions where first the order within a shell is lost, followed
by a decoupling of different shells, at a higher temperature
[235,287]. Finally, the melting temperature of large Coulomb
balls was studied in detail by Schiffer [290] who found that it is
generally lower than in a macroscopic crystal and investigated
the transition to this limit.

Thus, summarizing this section, we have shown that the
concept of phase transitions can be extended to finite systems
and the melting point is reasonably well estimated by the
specific heat, the maximum of the energy autocorrelation
function or the VIDF, equation (31). Dusty plasmas are well
suited to test these concepts by direct measurements. Here
systematic experimental studies in a broad range of parameters
are still missing and are expected to become possible in the
near future. Finally, we note that the concept of ‘melting’ in
application to small systems should be of relevance also in
other fields of strongly correlated systems. In particular it was
shown that the presented melting criterion based on the VIDF
is applicable not only to small classical clusters but also to
finite quantum crystals [273].

7. Liquid behavior

Complex plasmas are perfectly suited to study thermodynamic
and transport properties in strongly correlated systems, in
particular in the liquid state. One can measure not only
macrosopic properties as e.g. in conventional fluids, but it is
possible to perform measurements even by tracking individual
particles. As an example we briefly discuss the recent
observation of anomalous diffusion in two-dimensional plasma
layers.

7.1. Anomalous diffusion

Stimulated by theoretical predictions [291] that in purely 2D
systems diffusion should deviate from the Einstein formula for
the particle displacements

u(t) = (|r(t) — r()*) = 1%, with a=1, (32)

where the averaging is performed over all particles, a series of
experiments has recently been performed [187, 190, 191, 292—
298]. As an example, we show in figure 22 the results of
Liu et al, for the friction and screening parameters v = 0.2
and « = 0.9, clearly indicating values of @ > 1, so-called
‘superdiffusion’. The measurements were complemented by
first-principle computer simulations [189,297,299-303]. The
majority of these works predicted significant deviations from
normal diffusion, mostly toward « > 1, although a large scatter
of «-values from one to 1.3 was reported.

The systematic analysis of Ott et al indicates [301] that
superdiffusion reaches a maximum in the strongly coupled
liquid state at a temperature about 5 times higher than the
melting point, T & 5T, corresponding to I' & 0.2T, cf left
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Figure 21. (Left) Mean distance fluctuations (equation (30), crosses) and their variance (equation (31), circles), versus temperature around
the melting point 7y, for a Yukawa ball with N = 40 and « = 0.4. (Right) Block averaged interparticle distance fluctuations u,(s) versus
block number s during a Monte Carlo simulation and their accumulated probability P (rightmost column) for four temperatures (from
bottom to top): below, close to, at and above Ty;. Block length M = 1000. (Reprinted with permission from [288]. Copyright 2009

Wiley-VCH Verlag.)
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Figure 22. (Left) Experimental and simulation results for the diffusion exponent in a 2D Yukawa plasma as a function of inverse
temperature (normalized to the melting temperature). Lines are Langevin simulations for k = 1.0, 2.0, 3.0 and no dissipation, v = 0. Three
small crosses indicate results with a dissipation of v = 0.02 and ¥ = 3. Experimental data for x = 0.90 and v = 0.02 from Liu et al [296]
are indicated by the gray boxes with error bars in the lower right and are averaged over temperature regions, as indicated, and correspond to
T, =~ 6000 K. (Right) Diffusion regimes observed in the simulations for I' = 200 and ¥ = 3 as a function of time for different dissipation
parameters v in units of w,. (Figure courtesy of T Ott.) (Color online.)

part of figure 22. This trend is easy to understand: when
the coupling is reduced, superdiffusion gradually vanishes
since excitation of collective modes requires sufficiently strong
interaction between the particles. On the other hand, at very
strong coupling, particles are increasingly localized in the
minima of the total potential energy (these ‘caging’ effects
have been investigated in detail by Donko et al [304,305])
and the system approaches the crystallization point I'y;. As
a consequence, particle mobility is reduced again resulting in
normal diffusion and, ultimately, subdiffusion. The physical
origin of the collective modes responsible for superdiffusion
is still open and more recent substantially longer simulations
with a larger particle number indicate that superdiffusion is
only a transient phenomenon, see the right part of figure 22.
This is particularly clear in a dissipative system, and the figure
shows the results for a broad range of friction coefficients v
(in units of plasma frequency). After sufficiently long times
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of about 103-10* plasma cycles the system apparently returns
to normal diffusion, for dissipative and even for friction-less
systems [306, 307].

The experimental results in figure 22 are substantially
below the simulation data obtained without dissipation (lines).
If dissipationisincluded at alevel as expected in the experiment
(cf three data points marked by the small crosses) the data
fall below the experiment. It is clear that the qualitative
trends are captured by the simulations; however, quantitative
discrepancies remain. They are, most likely due to different
time scales during which the diffusion exponent has been
extracted. As the right part of figure 22 shows, this has
crucial effect on the value of «. More precise comparisons
and resolution of these questions should be possible in the near
future. The behavior of the diffusion coefficient is expected to
be typical for the transport properties of strongly correlated
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Figure 23. Radial density profile of Coulomb balls (x = 0) with N = 25, 100, 300 particles in the liquid phase. Symbols denote Monte
Carlo simulations and lines standard HNC and the improved HNC (AHNC). In the right (left) figure I' = 20 (I" = 40). (Reprinted with

permission from [309]. Copyright 2009 American Physical Society.)

plasmas. It clearly shows the important role of collective
effects. Still many of these effects are not yet fully explored.

7.2. Theoretical description of strong correlations in the fluid
state

In section 4.4 we have presented an analytical approach to
strongly correlated confined plasmas which was based on a
classical version of density functional theory. The results in
mean-field approximation and in local density approximation
were shown to well reproduce the spatially averaged properties
of the Coulomb and Yukawa balls, in particular the mean
density profile. However, the typical trends of particle
localization in shells, which are observed in simulations and in
the experiments in the strong coupling regime, were missed by
these approximations. An extension of this approach both to
finite temperatures and to the strongly coupled liquid regime
was recently developed in a series of papers by Kraeft et al
[308] and Wrighton et al [232,309,310]. The basis is the
classical theory of liquids. The external potential U induces a
non-uniform equilibrium density n (7). It follows from density
functional theory that n(r) obeys the equation [311]

A3 S Fex
WO g B
én (r)
where z = ef*, u is the chemical potential and A =

(h2f3 /an)l/ ® is the thermal de Broglie wavelength. The
excess free energy Fex (B | n) is a universal functional of the
density for the Hamiltonian (1), independent of the applied
external potential U, and describes all correlations among
the particles. The solutions to (33) are such that there is a
unique equilibrium density z () for each U (r), using the same
Fex (B | n).

Equation (33) can be transformed by introducing the direct
correlation function of the uniform OCP, ¢, evaluated at the
average trap density 1 = 3mw? /(4 Q%) [309]:

3
In nNA” _ —I“%r*2 + / dr* n*(r*)e (|r* = r[;T)
z
—TB(r | n*), (34)
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where the function B(r | n) is referred to as bridge function for
the trapped system. Here, correlations are introduced via the
direct correlation function and the bridge function. The mean-
field results of section 4.4, generalized to finite temperature,
follow by neglecting correlations, i.e. setting B —> 0 and
c(ry — —T/r.

To go beyond the mean-field limit, the authors of [309]
considered two approximations: the HNC approximation and
an augmented version of the HNC (AHNC). The HNC
approximation follows by neglecting, as before, the bridge
terms, B — 0 and computing the direct correlation function
from the Ornstein—Zernicke equation (35) with the HNC
closure relation (36), where g(r) denotes the pair distribution,

g(r)—1 =c(r)+/dr/{g(r’)—1}c(}r—r/};r), (35)

lng(r)=—£+/dr’{g(r’)—l}c(’r—r/|;1"). (36)
Equations (35) and (36) are a closed set of equations to
determine g(r) and c¢(r) for the OCP [3] which is here
generalized to strongly correlated trapped systems by means
of equation (34).

The results of the solution of the closed system (34)-
(36) for a system for 300 charged particles with Coulomb
interaction in a trap are shown in the left part of figure 23.
The curves correspond to a strongly correlated liquid state
at T 40 and are compared with exact results from
Monte Carlo simulations [309]. In contrast to the mean-
field approximation, the HNC result indeed reproduces the
formation of shells. Overall there is a good qualitative
agreement with the simulations: the number of shells and
their positions are correctly reproduced. However, there are
some quantitative discrepancies: the height of the peaks is
underestimated by about 30%, and the width of the shells is
too large.

The origin of these errors is, of course, the neglect
of the bridge diagrams. Interestingly, these discrepancies
could be almost completely removed by a simple choice of
the bridge functions [309,312] B(r|n) = A([I)U(r). The
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results of this improved scheme (AHNC) with the choice
A = 0.6 are included in the right part of figure 23. There
two cases of N = 25, 100 for I' = 40 are shown and reveal
a surprising agreement with the simulations. Now even the
width and height of the density peaks are reproduced within
about 2%. This shows that the present augmented HNC
model adequately describes the thermodynamic properties of
the strongly coupled liquid state of trapped charged particles.
An extension to even larger couplings with I' < 100 has been
presented in [310] indicating that even a description of the
crystal state should be possible.

Finally, we mention another interesting theoretical
approach to strongly correlated plasmas—the quasi-localized
charge approximation due to Kalman and Golden [313,314]
which has proved to be efficient to compute the dielectric and
spectral properties of strongly correlated dusty plasmas, such
as the dust acoustic wave [315].

8. Conclusions

In this paper an overview of strongly correlated dusty plasmas
has been given. We started with a brief summary of the
historical developments—from the first predictions of the
plasma crystal by Ikezi and the first experimental realization
and proceeded to very recent results in this very active field.
We presented a diverse collection of experimental results and
figures which demonstrate the unique opportunities provided
by dusty plasmas: due to the large particle size and associated
large charge strong correlation effects are achieved at room
temperature, millimeter length scales and second time scales.
This allows one to directly view and record the position and
the motion of individual particles and to study many-particle
properties both in large and finite systems with a precise
particle number at the smallest (kinetic) level with maximum
(‘atomic’) resolution. Thus, dusty plasmas are indeed an
ideal ‘laboratory’ for strong correlation effects. Since under
conditions of strong coupling many universalities are observed
which are caused by the interaction, it is expected that many of
the results from dusty plasmas will be of (at least qualitative)
relevance also for other strongly correlated systems, including
quantum gases in traps and optical lattices, ions and ultracold
neutral plasmas in traps, electrons in quantum dots or the
quark—gluon plasmas.

Our main goal was to highlight some of the most
remarkable strong correlation effects observed in dusty
plasmas: formation of crystalline structures, coexistence of
ground and metastable states, collective excitations (normal
modes) and solid-liquid phase transitions. These effects
were discussed on the example of finite dust clusters in close
comparison of experiments, theory and simulation. Naturally,
this review had to omit many exciting experimental and
theoretical results. Among the questions not covered are
the effect of impurities and of non-spherical particles on the
crystal structure. Further interesting topics are dusty plasmas
in external electric and magnetic fields where first results show
that the interaction potential between dust particles can be
externally controlled [316], very similar to semiconductors
(e.g. [317]). Furthermore, there have been recent results on
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the non-equilibrium dynamics and short-time behavior of dusty
plasmas (e.g. [245, 266, 318,319]). Among the exciting topics
of current research are phenomena at the shortest time scales,
including the formation of binary correlations, anomalous
transport (in analogy to superdiffusion), non-Newtonian
viscosity [320], non-reciprocal forces due to streaming ions
and electrons and magnetized dusty plasmas.
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