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Efficient grid-based method in nonequilibrium Green’s function calculations:
Application to model atoms and molecules
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The finite-element discrete variable representation is proposed to express the nonequilibrium Green’s function
for strongly inhomogeneous quantum systems. This method is highly favorable against a general basis approach
with regard to numerical complexity, memory resources, and computation time. Its flexibility also allows for an
accurate representation of spatially extended Hamiltonians and thus opens the way toward a direct solution of the
two-time Schwinger-Keldysh-Kadanoff-Baym equations on spatial grids, including, for example, the description
of highly excited states in atoms. As benchmarks, we compute and characterize, in Hartree-Fock and second
Born approximations, the ground states of the He atom, the H2 molecule, and the LiH molecule in one spatial
dimension. Thereby, the ground-state and binding energies, densities, and bond lengths are compared with the
direct solution of the time-dependent Schrödinger equation.
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I. INTRODUCTION

The two-time Schwinger-Keldysh-Kadanoff-Baym equa-
tions (SKKBEs; e.g., [1–3]) allow for a quantum statistical
analysis of nonequilibrium processes on microscopic footing.
To great success, the one-particle nonequilibrium Green’s
function (NEGF) has been computed from the SKKBE for
a variety of homogeneous quantum systems, for example for
nuclear matter [4–6], the correlated electron gas [7], dense
plasmas [8–10], or electron-hole plasmas [11–15], where
different types of many-body approximations, by diagram
technique, have been included in a conserving manner. On the
contrary, NEGFs, only in the recent decade, have presented a
challenge with respect to spatial inhomogeneity in exploring
localized, finite, and strongly correlated systems. Examples are
electrons in atoms and small molecules [16,17], few-electron
quantum dots [18,19], and charge carriers in lattice and
transport models such as strongly correlated Hubbard chains
[20], molecular junctions [21], and quantum dot levels coupled
to leads [22,23].

Although computational capabilities have been steadily
increasing in the recent past, NEGF calculations re-
main a demanding task for finite systems: in particular—
including electron-electron correlations in second Born
approximation—highly excited states in atoms or time-
dependent phenomena related to their ionization are generally
difficult to access, and only very few attempts have been made
[24,25]. Also, the describability of specific correlation effects,
such as two-electron resonances in dipole spectra [26], have
thus far remained unanswered in NEGF approaches as they
require an accurate and extensive (large-scale) computation
of the temporal evolution following an intense external
perturbation.

All calculations on the aforementioned finite systems rely
on general (semi)analytic basis expansions of the NEGF.
Nevertheless, concerning the numerical complexity associated
with the NEGF, a basis representation reveals restricted
capabilities. This affects, in particular, the spatial resolution,
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where a relatively small number of single-particle orbitals (typ-
ically nb <∼ 60 are feasible) are not appropriate to resolve the
nonequilibrium dynamics when (e.g., in atoms) occupations of
highly excited states are non-negligible or ionization processes
are involved. The same is the case when specialized basis sets
constructed from Gauss- or Slater-type orbitals or potential
eigenstates are being used. To this end, extremely large basis
sets are needed and the system under investigation requires a
large-scale treatment.

Another option is provided by grid-based methods. How-
ever, for inhomogeneous systems, no direct solution of the
SKKBE with grid-based—and, in turn, finite-difference—
methodologies has been performed so far that systematically
includes binary correlations and memory effects. This is due to
the fact that numerical grid methods allow for intuitive control
but require small mesh spacings, which become impractical
for the compound structure of the two-space two-time Green’s
function. We note that, in full three-dimensional (3D) space,
the NEGF is an eight-dimensional complex function. However,
also in one spatial dimension, severe problems generally arise
in the framework of spatially extended Hamiltonians, where
particles may occupy broad domains in coordinate space,
momentum space, or both. Thus, an alternative method for
NEGF calculations is desirable, to which one attributes more
numerical flexibility and efficiency and which has the ability
to combine the advantages of nonexistent grid and standard
basis approaches.

In this paper, we develop such a computational method
based on the finite-element discrete variable representation
(FE-DVR; see Refs. [27,28] and Sec. II A). This method allows
for an efficient solution of the two-time SKKBE for the one-
particle Green’s function, at least, in one spatial dimension. As
a general system, we thereby consider N interacting electrons,
the nonrelativistic Hamiltonian of which reads

ĥ = t̂ + v̂ + û

= −1

2

N∑
i=1

∇2
i +

N∑
i=1

v(xi, t) +
∑
i<j

u(|xi − xj |), (1)

with kinetic energy t̂ , a possibly time-dependent potential
energy v̂, and the binary interactions described by û. Except
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for their spin orientations, all electrons are considered identical
(in mass and charge) and, throughout the present work, atomic
units are used.

The use of the FE-DVR provides analytical expressions
for the kinetic and potential energies in NEGF calcula-
tions for strongly inhomogeneous systems. But the main
achievement of the present paper is the realization of a
grid-based NEGF approach together with a very efficient
treatment of the binary interactions. Explicitly, instead of
O(n4

b) interaction matrix elements (see Sec. II B), our method
requires only O(n2

b) elements, which, in addition, need not
to be precomputed as before in a complicated manner. With
regard to the SKKBE, the latter point directly leads to much
simpler, semianalytical formulas for the first- and second-
order self-energies, which are independent of the explicit
form of the interaction (Sec. II C). With these remarkable
scaling properties, the FE-DVR essentially reduces the nu-
merical effort such that considerably less storage memory
and computing time are needed and, hence, calculations are
enabled on significantly larger, more extended systems than
before.

In Sec. III, we demonstrate the power of the approach and
compute the NEGFs for the one-dimensional He atom and the
neutral molecules H2 and LiH (also in one spatial dimension)
as a function of the interatomic distance. In the course of
this, we focus on the ground-state properties and compare
the Hartree-Fock and second Born approximations to the
exact solution obtained from the full few-particle Schrödinger
equation. Ignoring the nuclear dynamics (i.e., in the Born-
Oppenheimer scheme), the exploration of nonequilibrium
properties is straightforward within the formalism presented.
However, a detailed discussion is deferred to a forthcoming
publication.

II. FINITE-ELEMENT DISCRETE VARIABLE
REPRESENTATION

The FE-DVR is a hybrid approach [29] which com-
bines finite-element (FE) methods (i.e., spatial grids) and
the discrete variable representation (DVR) [30]. In a DVR
basis, a similarity transformation allows us to replace matrix
elements of local operators (of the coordinates) by their values
on a relatively small numerical grid. The high degree of
accuracy of this procedure, widely used in quantum chem-
istry, manifests its usefulness in solving quantum-mechanical
problems [31].

For the direct solution of the few-particle time-dependent
Schrödinger equation (e.g., Ref. [32] and references therein),
the FE-DVR is highly effective—often in combination with
time-dependent close coupling—due to the accuracy of the
DVR on the one hand and the sparse character of FEs on the
other. However, these scaling properties, which enable a well
parallelizable code [28], are less important for our application
of the method. Instead, we focus on the benefits of the FE-
DVR regarding the treatment of binary interactions and self-
energies, which require the main computational expense within
the framework of NEGFs.

The general idea of how to combine FEs with the DVR
to construct an extended basis is outlined in the following.

≈
≈

x00 x

nb = neng − 1

x0 x1 x2 xi xi+1 xne−1 xne

xi
0 xi

1 xi
2 xi

ng−2 xi
ng−1 x

i
ng

FIG. 1. In FE-DVR representation, the interval [0, x0] is parti-
tioned into ne finite elements [xi, xi+1]. In each FE, ng generalized
Gauss-Lobatto points (denoted xi

m) provide the basis for the construc-
tion of a local DVR basis set; nb denotes the dimensionality of the
extended basis covering the whole interval.

Thereafter, in Sec. II B, we discuss and give formulas for the
relevant matrix elements of t̂ , v̂, and û, which are finally used in
the equations of motions for the one-particle Green’s function
(see Sec. II C).

A. Basis construction

We divide the interval [0, x0], which is of physical and
numerical relevance regarding Hamiltonian (1) and may be
spatially extended, into ne finite elements with arbitrary
boundaries x0 = 0 < x1 < x2 < · · · < xne−1 < xne = x0 (see
Fig. 1). In each FE i (i.e., in [xi, xi+1]), we then construct
a local DVR basis based on the generalized Gauss-Lobatto
points [27] xi

m and weights wi
m:

xi
m = 1

2
[(xi+1 − xi)xm + (xi+1 + xi)],

wi
m = wm

2
(xi+1 − xi). (2)

When using ng Legendre interpolating functions, the points
xm (standard Gauss-Lobatto points) are defined as roots of the
first derivative of Legendre polynomials Pn(x) according to

d

dx
Png

(xm) = 0, (3)

and the associated weights are

wm = 2

ng(ng + 1)[Png
(xm)]2

. (4)

In our approach, we use a DVR basis of equal size in
each FE (see Fig. 2). The generalization to different numbers

≈≈

FE i FE i + 1

xi+2xi+1xi

1

2

x

element

} bridge

FIG. 2. (Color online) Structure of a FE-DVR basis {χi
m(x)} with

ng = 4 (i.e., five local DVR basis functions in each element). While
the element functions (solid) are defined in a single FE, the bridge
functions (dashed and dashed-dotted lines) link two adjacent FEs.
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of basis functions per element is straightforward and only
slightly alters the matrix elements involved (cf. Sec. II B).
The one-dimensional FE-DVR space is spanned by the set of
orthonormal [33] functions

χi
m(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f i
ng−1(x) + f i+1

0 (x)√
wi

ng−1 + wi+1
0

, m = 0 (bridge)

f i
m(x)√
wi

m

, else (element),

(5)

with Lobatto shape functions [27,34]

f i
m(x) =

∏
m̄�=m

x − xi
m̄

xi
m − xi

m̄

(6)

for xi � x � xi+1 and f i
m(x) = 0 for x < xi as well as

x > xi+1, which have the property f i
m(xi ′

m′ ) = δii ′δmm′ and
are orthogonal with regard to the generalized Gauss-Lobatto
quadrature (see Appendix). The bridge function (m = 0) in
Eq. (5) extends over two adjacent elements (element i has
overlap with element i + 1) and, hence, ensures communica-
tion between different grid domains i and i ′ and guarantees
continuity of any expanded quantity or Green’s function
(cf. Sec. II C). The element functions are zero at and outside the
element boundaries. Generally, in Eq. (5) and in the remainder
of this paper, superscripts are labeling elements i in the range
0, 1, 2, . . . , ne − 1, and subscripts denote local DVR indices m

in the range 0, 1, 2, . . . , ng − 1 (cf. Fig. 1). In the first (last) FE,
the DVR basis function that is part of the left-hand (right-hand)
bridge is removed, assuming that the many-body wave function
of system (1) vanishes outside the interval [0, x0]. Hence, the
total basis set has dimension

nb = neng − 1. (7)

We note, that, with our construction of the spatial grid (see
Fig. 1), the formula for the dimensionality slightly differs from
that in Refs. [27,28]. Here, we do not separately define the size

of the local DVR basis set, which would be ng + 1 (cf. Fig. 2).
Moreover, a generalization to higher dimensions is possible
by using a product ansatz for the coordinate functions [28].

B. Matrix elements of operators t̂ , v̂, and û

To perform NEGF calculations with respect to system (1),
we need the matrix elements associated with the kinetic-,
potential-, and interaction-energy operators referring to the
chosen FE-DVR basis. Thereby, integrations over coordinate
space are calculated by using the generalized Gauss-Lobatto
(GGL) quadrature, and case differentiations arise from the fact
that the basis functions χi

m(x) split into element and bridge
functions.

The potential-energy matrix—and the matrix of any other
local operator—turns out to be diagonal with regard to
elements i and local DVR basis indices m:

vi1i2
m1m2

(t) =
∫ x0

0
dxχi1

m1
(x)v(x, t)χi2

m2
(x)

= δi1i2δm1m2 ṽ
i1
m1

(t), (8)
with

ṽi
m(t) =

⎧⎪⎪⎨
⎪⎪⎩

v
(
xi

m, t
)
, m > 0

v
(
xi

ng−1, t
)
wi

ng−1 + v
(
xi+1

0 , t
)
wi+1

0

wi
ng−1 + w0

i+1

, m = 0.
(9)

Hence, Eq. (8) implies that the potential energy is simply
represented by a vector of dimension nb.

The operator of the kinetic energy is nonlocal as it
involves information about different points in physical space.
As a consequence, t i1i2

m1m2
is not diagonal. Particularly, any

finite-difference method applied to approximate the second
derivative [cf. Eq. (10)] must be carried out with great
care, since the basis functions χi

m(x) given in FE-DVR are
continuous but do not have continuous derivatives at xi .
Here, we follow the derivation of Refs. [27] and [35] and
obtain the block diagonal structure [28] of the kinetic-energy
matrix as

t i1i2
m1m2

= −1

2

∫ x0

0
dxχi1

m1
(x)∇2χi2

m2
(x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2δi1i2 t̃

i1
m1m2

[
wi1

m1
wi1

m2

]−1/2
, m1 > 0,m2 > 0

1
2

(
δi1i2 t̃

i1
ng−1,m2

+ δi1i2−1 t̃
i2
0m2

)(
w

i1
ng−1 + w

i1+1
0

)−1/2
, m1 = 0,m2 > 0

1
2

(
δi1i2 t̃

i1
m1ng−1 + δi1i2+1 t̃

i1
m10

)[
wi1

m1

(
w

i2
ng−1 + w

i2+1
0

)]−1/2
, m1 > 0,m2 = 0

δi1i2

(
t̃
i1
ng−1,ng−1 + t̃

i1+1
00

) + δi1i2−1 t̃
i2
0,ng−1 + δi1i2+1 t̃

i1
ng−1,0

2
[(

w
i1
ng−1 + w

i1+1
0

)(
w

i2
ng−1 + w

i2+1
0

)]1/2 , m1 = m2 = 0,

(10)

where the quantity t̃ im1m2
is connected to the first derivative [27]

of the Lobatto shape functions via

t̃ im1m2
=

∑
m

df i
m1

(
xi

m

)
dx

df i
m2

(
xi

m

)
dx

wi
m. (11)

Equations (8) and (10) embody analytic formulas for the
kinetic and potential energy when a (finite-element) DVR basis
is involved.

The most attractive feature of the FE-DVR representation
is that it can also be used together with the GGL quadrature
to construct the matrix elements of the interaction operator
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û which is nonlocal and of two-particle type. In general,
the binary-interaction matrix elements (two-electron integrals)
carry a set of four index pairs (i, m) accounting for the
two-particle character of the pair interaction [see first line of
Eq. (12)]. However, in FE-DVR, using the separable form of
the discretized interaction potential u(|x − x ′|) [see Eq. (14)],
we arrive at a very simple, semianalytical expression for these
matrix elements. This opens the way toward efficient NEGF
calculations:

ui1i2i3i4
m1m2m3m4

=
∫ x0

0
dx

∫ x0

0
dx ′χi1

m1
(x)χi3

m3
(x ′)

× u(|x − x ′|)χi2
m2

(x)χi4
m4

(x ′)

= δi1i2δi3i4δm1m2δm3m4 ũ
i1i2
m1m2

, (12)

with the remaining, full (kernel) matrix

ũi1i2
m1m2

=
∑
i3m3

αi3
m3

βi1i3
m1m3

βi2i3
m2m3

(13)

being symmetric and of dimension nb × nb. Here, the quanti-
ties αi

m are the eigenvalues of the real matrix

U(im)(i ′m′) = u
(∣∣xi

m − xi ′
m′

∣∣) =
∑
i3m3

αi3
m3

β̃
m3m
i3i

β̃
m3m

′
i3i ′ , (14)

and βii ′
mm′ are connected to the eigenvectors β̃ii ′

mm′ via

βii ′
mm′ =

⎧⎪⎪⎨
⎪⎪⎩

β̃i ′i
m′m, m > 0

β̃i ′i
m′(ng−1)w

i
ng−1 + β̃

i ′(i+1)
m′0 wi+1

0

wi
ng−1 + w0

i+1

, m = 0.
(15)

The key point is that full-rank representation (14) enables us
to factor the two integrations in Eq. (12) so that each integral
can be separately performed by the use of the GGL quadrature.
In turn, the evaluation of the two-electron integrals ui1i2i3i4

m1m2m3m4

reduces to the computation of a simple matrix of dimension
nb × nb [cf. Eq. (13)].

In summary, the effort of constructing the two-electron
integral in FE-DVR becomes comparable to computing any
single-electron matrix element (such as the kinetic or potential
energy) beside an additional but numerically elementary
matrix diagonalization. Moreover, Eq. (12) is not only memory
friendly [the required memory scales with O(n2

b) instead of
O(n4

b)] but also permits a much more efficient evaluation
of interaction contributions, especially self-energy diagrams

(see Sec. II C). This is due to the high degree of diagonality
determined by the product of Kronecker deltas in Eq. (12).
Also, it is favorable that the integrals do not depend on the
explicit form of the pair interaction.

C. Schwinger-Keldysh-Kadanoff-Baym equations

The FE-DVR basis, as set up in Sec. II A, allows us to
expand the one-particle NEGF G(1, 1′) = −i〈T̂Cψ(1)ψ†(1′)〉
[36], with space-time arguments 1 = (x, t), 1′ = (x ′, t ′) and
spin omitted, as

G(1, 1′) =
∑
i1m1

∑
i2m2

χi1
m1

(x)χi2
m2

(x ′)gi1i2
m1m2

(t, t ′). (16)

The time-dependent coefficients gi1i2
m1m2

(t, t ′) are generally
complex and vary on the complex Keldysh time contour C [2].
Furthermore, G(1, 1′) obeys the SKKBE [1–3]

{i∂t − H (1)}G(1, 1′)

= δC(1 − 1′) +
∫
C

d2�[G](1, 2)G(2, 1′), (17)

where H (�[G]) denotes the one-particle energy (self-energy),
the time-integral is performed over C, and Eq. (17) is accom-
panied by its adjoint equation for the second time argument.
Using Eq. (16), the SKKBEs transform into equations of
motion for the matrix g [dimension is nb × nb with nb as
defined in Eq. (7)] and attain matrix form, where H , G, and �

are to be replaced by their matrix components,

G(1, 1′) → gi1i2
m1m2

(t, t ′), (18)

H (1) → hi1i2
m1m2

(t) = t i1i2
m1m2

+ vi1i2
m1m2

(t), (19)

�[G](1, 1′) → �i1i2
m1m2

[g](t, t ′)

= �HF,i1i2
m1m2

(t, t ′) + �corr,i1i2
m1m2

(t, t ′), (20)

and all products are to be understood as matrix products. In
Eq. (19), hi1i2

m1m2
(t) has the block-diagonal structure imprinted

by the kinetic energy [cf. Eq. (10)]. Moreover, Eq. (20)
separates the self-energy �i1i2

m1m2
[g](t, t ′) into Hartree-Fock

(HF) and correlation parts, both of which are, generally, full (of
dimension nb × nb) and functionals of g. The HF self-energy
�HF and the correlation self-energy �corr in the second Born
approximation attain the forms

�HF,i1i2
m1m2

(t, t ′) = −iδC(t − t ′)

[
σδi1i2δm1m2

∑
i3m3

ũi1i3
m1m3

− gi3i3
m3m3

(t, t+) − ũi2i1
m2m1

gi2i1
m2m1

(t, t+)

]
, (21)

�corr,i1i2
m1m2

(t, t ′) =
∑
i3m3

∑
i4m4

[
σgi1i2

m1m2
(t, t ′)gi4i3

m4m3
(t, t ′) − gi1i3

m1m3
(t, t ′)gi4i2

m4m2
(t, t ′)

]
gi3i4

m3m4
(t ′, t)ũi1i4

m1m4
ũi2i3

m2m3
, (22)

where σ ∈ {1, 2} accounts for the spin-degeneracy, and t+
indicates the limit t → t + ε>0 from above on the con-
tour C. Equilibrium initial correlations concerning �corr

are treated in the mixed Green’s function approach
[37–39], where G and � have complex time argu-
ments t�0 + it̄ with t̄ ∈ [−β, 0] and β being the inverse
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temperature. (For the full set of equations involved, see Ref.
[39]).

Self-energy expressions (21) and (22) manifest very simple
forms which arise from the subtle structure of the FE-DVR
basis (compare with Refs. [17,19]). In the time-local HF part,
Eq. (21), the Hartree term is completely diagonal [just as
v in Eq. (8)], requiring a single sum over the index pair
(i3,m3), and the exchange term involves only a product of two
matrix elements. Note that simultaneous summations over i

and m are equivalent to a single sum with nb elements. With
this in mind, the evaluation of the second Born self-energy
scales with O(n2

b) implying only two summations per matrix
element, which should be compared with the general-basis
representation: There, two sums are required for each full
vertex point in the second-order diagrams and, additionally,
a single sum is needed for the start as well as the end
point, leading to an effort of O(n6

b) in total for second-order
self-energies. The simplification of this process is a main result
of the present paper and provides the basis for addressing new
classes of problems, in particular laser-atom interactions.

In conclusion, by using FE-DVR in combination with the
two-electron integrals ui1i2i3i4

m1m2m3m4
of Sec. II B, it is possible to

rigorously reduce the computational complexity for inhomo-
geneous NEGF applications. In particular, with Eq. (22), the
effort becomes comparable to that in lattice models (see, e.g.,
[20–22]), which, by construction, are computationally much
simpler. Once the NEGF is computed from the matrix form of
Eq. (17), many observables such as the one-electron density
n(x, t) = −iG(1, 1+), the time-dependent dipole moment (and
in turn the polarizability [17]), or the total energy are accessible
[40]. Moreover, the advantages of FE-DVR also survive in
higher dimensions. But as the algorithm solving the SKKBE
for real times scales as T 2, where T is the final propagation
time, and the total Green’s function G(1, 1′) has to be recorded
to evaluate the memory kernel on the right-hand side of
Eq. (17), NEGF calculations with several hundred atomic units
temporal and spatial resolution are limited to one dimension.
This holds true even if a high degree of code parallelization
can be achieved.

III. MODEL ATOMS AND MOLECULES

In this section, we apply the FE-DVR, Eq. (16), to compute
the NEGF for atomic and molecular few-electron model sys-
tems. As an atomic example, we discuss the one-dimensional
helium atom (1D He; e.g., [41–45]), which represents the
most elementary closed-shell system. This 1D He model has
been studied since the 1970s and is known to reliably provide
the qualitative features of the single- and double-ionization
dynamics in intense laser fields [46], including the knee
structure [45]. Moreover, this model is still actively considered
(e.g., [47,48]), because it serves as a fundamental “testing
ground” for multielectron calculations. This issue is due to
the presence of strong electron-electron (e-e) correlations
which require a treatment beyond mean-field (HF) theories. In
addition to He, we discuss two molecular models with two and
four electrons, respectively—the hydrogen molecule (H2; e.g.,
[49–53]) and lithium hydride (LiH) [54]—again in one spatial
dimension. The reason why we focus on these atomic and
molecular systems is twofold. First, the long-range character

of the ionic Coulomb potential (enhanced in 1D) proves the
vital necessity of extended basis sets for the construction of
which the FE-DVR is indeed well suitable, and second, the
possible comparison to exact solutions, obtained from the
time-dependent Schrödinger equation (TDSE), allows us to
verify the quality of the involved many-body approximations.
Also, in the present paper, we restrict the NEGF calculations
to the ground states.

In Hamiltonian (1), the helium atom is modeled by using
v(x) = −Z1[(x − x0/2)2 + 1]−1/2 as the regularized potential,
where the atomic number is Z1 = 2. Thereby, the x0/2 shift
ensures that the nucleus is situated in the center of the dis-
cretized interval [0, x0]. For the hydrogen and lithium hydride
molecules, the coordinate is taken along the bond axis such that
the potential is given by vd (x) = −Z1{[x − (x0 + d)/2]2 +
1}−1/2 − Z2{[x − (x0 − d)/2]2 + 1}−1/2, where d denotes the
interatomic distance, Z1 = 1 and Z2 = 1 for the hydrogen,
and Z2 = 3 for the lithium atom. Principally, the regularization
parameters (here, 1 for H and Li) can be adjusted to match the
difference in the ionization potentials of the individual model
atoms to the 3D atoms (see Ref. [54]). Furthermore, for all
three systems, a soft-core Coulombic e-e pair potential has
been applied: u(|x − x ′|) = [(x − x ′)2 + 1]−1/2.

For the 1D helium atom, we have used 11 finite elements
within an interval of x0 = 50 a.u. length. Some smaller FEs
have, thereby, been arranged around x0/2 to ascertain larger
numerical precision in the central region. Furthermore, the
number of local DVR basis functions ng + 1 has been varied
between 5 and 20 to obtain convergence of the ground-state
energy Egs and, in Eqs. (21) and (22), the spin-degeneracy
factor was set to σ = 2, leading to the singlet state.

For the Hartree-Fock approximation, the convergence of
the He ground-state energy—at the fixed FE configuration—is
shown in Table I with regard to the basis size. At ng = 14,
corresponding to 153 basis functions in total, we obtain the
HF limit with more than six decimal places’ precision and,
consequently, sufficient convergence with respect to the basis
dimension. For the second Born approximation, we used the
same FE-DVR setup. However, due to the grand-canonical
averaging involved in G(1, 1′) (see definition in Sec. II C), the
ground-state (equilibrium) Green’s function has an additional
imaginary time argument τ = t − t ′ ∈ [−iβ, 0] ⊂ C. This
argument has been discretized using a uniform power mesh
(for details see, e.g., Refs. [19,37]) and, to ensure the zero-
temperature limit (i.e., the ground state), we set β = 100. We
note that, in the HF case, this grid is redundant as �HF(t, t ′) is
local in time [cf. Eq. (21)]. For the second Born calculation,
this implies, however, that convergence must be checked with
respect to a second parameter: the number of τ -grid points
(see Table I). In the second Born approximation, the helium
ground-state energy converges toward −2.2334 a.u., which
is 0.0092 a.u. lower than the HF reference value, and a
comparable accuracy is obtained by using more than 600
time-grid points. With a deviation of less than 0.005 a.u., it
comes close to the exact ground state [55] (−2.2383 a.u.),
which follows from the TDSE.

The one-electron ground-state density for the 1D He
atom is obtained from n(x) = −iG(x, t ; x, t ′)|τ→0+i0− and is
displayed at the bottom graph of Fig. 3 (Nion = 1, x

eq
1 = 0).

The differences of both approximate results (dashed and solid
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TABLE I. Ground-state energy Egs of the 1D He atom (with fully
converged decimal places) as computed from the Green’s function
in Hartree-Fock and second Born approximations. The exact energy
is obtained from the time-dependent Schrödinger equation (TDSE);
153 FE-DVR basis functions (at ne = 11) are adequate to reach the
HF limit and, thus, convergence with respect to the basis size. In the
second Born approximation, about 600 points in imaginary time are
needed for convergence in the fifth decimal place.

Hartree-Fock

ng (nb) EHF
gs [a.u.]

4 (43) −2.22
9 (98) −2.224209

14 (153) −2.2242096

Second Born

ng (nb) Number of τ -grid points E2ndB
gs [a.u.]

14 (153) 101 −2.23
14 (153) 301 −2.2334
14 (153) 601 −2.23341
14 (153) 1001 −2.233419

TDSE (exact)

ETDSE
gs [a.u.]

−2.2382578

lines) and the exact density (dotted line) are most dominant
within a small range of 0.5 a.u. around the ion position. As for
the total energies, the second Born density improves the HF
result and is relatively close to the exact density profile.

For the hydrogenic and the lithium hydride systems, the
electron ground-state energy changes with distance d between
the atomic nuclei. Hence, whether or not the individual atoms
combine into molecules depends on the H–H (Li–H) binding
energy Eb(d), which is the electron ground-state energy
plus the interatomic repulsion [56] (Z1Z2)/d. The computed
binding-energy curves for H2 are displayed in Fig. 4, where a
FE-DVR setup similar to that for the helium case has led to
convergent results. The singlet state |↑↓〉, again with σ = 2

TABLE II. Computed equilibrium bond lengths db and corre-
sponding binding energies Egs(db) + Z1Z2/db of the one-dimensional
H2 and LiH molecule (all quantities in a.u.). While the Hartree-Fock
(HF) and second Born values are Green’s function results, the exact
values are obtained from the full solution of the few-particle TDSE.

Bond length (db)

Molecule HF Second Born Exact

H2 1.9925 2.0561 2.151
LiH 3.3860 3.5053 3.6

Binding energy (Eb)

Molecule HF Second Born Exact

H2 −1.3531 −1.3740 −1.391
LiH −4.8534 −4.8886 −4.91

0

0.2
nH2(x)

[a
.u

.]
H2

0

0.2

0.4

−4 −3 −2 −1 0 1 2 3 4
x [a.u.]

nHe(x)

[a
.u

.]

He

0

0.2

0.4

0.6

0.8

1

nLiH(x)

[a
.u

.]

← HF
← 2nd Born

HF

2nd Born
TDSE (exact)

LiH

FIG. 3. (Color online) One-electron ground-state density n(x) of
the one-dimensional He atom, and the H2 and the LiH molecules,
in Hartree-Fock (dashed line) and second Born approximations
(solid line). The exact density (dotted line) is obtained from the
time-dependent Schrödinger equation (TDSE) with imaginary time
propagation. The (colored) dots show the equilibrium positions of the
ions separated by the bond length db, Table II, and the gray curves
indicate the associated potentials veq(x) = ∑Nion

n=1 −Zn[(x − xeq
n )2 +

1]−1/2 [in a.u. (left ordinate), but scaled by a factor of 0.35 and shifted].

in the self-energies, is binding, showing a minimum at a
distance db in the exact result (dotted curve) and a well-defined
dissociation threshold (horizontal line). Also, the HF (dashed
line) and the second Born approximations (solid line) confirm
a substantial hydrogen-hydrogen binding, where second Born
correlations lead to a larger binding energy that indicates
an essential improvement of about 60% in the HF energy
discrepancy. However, for the singlet state, neither the HF
nor the second Born approximation can accurately resolve the
dissociation threshold at −1.3396 a.u., which is due to the
fact that the closed-shell H2 molecule dissociates into open-
shell fragments—single hydrogen atoms. Such a transition
cannot be described within the semilocal (spin-restricted)
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FIG. 4. (Color online) Hydrogen-hydrogen binding energy E
H2
b

as a function of the interatomic distance d for the case of the binding
singlet (|↑↓〉) and antibinding triplet, spin-polarized (|↑↑〉) system.
While the triplet system is less affected by correlations (see inset),
the binding-energy curve of the singlet state is essentially improved
against HF in the second Born approximation. The triangles mark
TDSE results from Ref. [49]. The exact dissociation threshold is
indicated by the horizontal line. For the values of the bond lengths,
see Table II.

approximations involved in the NEGF. We note that the same
problem is encountered in density functional theory using
exact exchange [57]. Nevertheless, Eb(d) does not diverge [16]
for large d as it occurs in Møller-Plesset perturbation theory
[58], and the different equilibrium positions of the nuclei (bond
lengths db) and the ground-state energies are not affected by
this failure of the many-body approximations (see Table II).
Overall, it turns out that correlations cause larger bond lengths
due to the lower electronic ground-state energy.

In addition, we have performed calculations for the spin-
polarized or triplet H2 system, |↑↑〉 with σ = 1. The respective
binding-energy curves in Fig. 4 show that, in contrast to
the singlet state, as expected, the system does not undergo
molecular binding but behaves correctly in the limit d → ∞.
In particular, for all interatomic distances, the exact binding
energy is well approximated within the HF approximation.
Correlations generally improve the results (see inset of Fig. 4)
but play a minor role, which is typical for spin-polarized
systems.

The approximate and exact one-electron ground-state den-
sity for the H2 singlet is shown in Fig. 3 (center graph) with
respect to the corresponding equilibrium bond lengths. The
gray curves illustrate the superposition of all ion potentials,
defined by veq(x) = ∑Nion

n=1 −Zn[(x − x
eq
n )2 + 1]−1/2, where

Nion = 2 is the number of nuclei, Zn are the respective
atomic numbers, and x

eq
1,2 = ±db/2 denote the equilibrium ion

positions obtained either in HF or second Born approximation,
or from the solution of the TDSE. The exact density profile
indicates the onset of electron localization on the individual
hydrogen atoms. This is not captured in HF and second Born
approximations, which both lead to a smooth profile, but the
trend toward a lower density between the nuclei becomes
obvious. In particular, the ionic potential of the second-Born
value of db (compare also the dots in Fig. 3) is in better
agreement with the TDSE result.

The four-electron molecule, LiH, serves as a simple
example for the hetero-atomic dissociation. However, LiH,
just like molecular hydrogen, dissociates into open-shell
components—Li(3e) and H(1e). Thus, in Fig. 5(a), we
obtain similar behavior for ELiH

b in HF and second Born
approximations compared to that for H2 against interatomic
distance. Within the calculations, we used a basis consisting
of 15 nonequidistant elements and up to 15 local DVR basis
functions for large values of d. For LiH, the inclusion of e-e
correlations improves the results such that the minimum in the
binding energy becomes situated below the exact dissociation
threshold. This is not realized in the HF approximation. For
reference, in Fig. 5(a) we also included the binding-energy
curve for the 3D counterpart [59] (dashed-dotted line) of the 1D
model, which possesses a stronger Li–H bond at comparable
internulear distance. However, we note that bond lengths and
binding energies are very sensitive to the softening parameters
used in the ion and Coulomb potentials (e.g., Ref. [54]).
For the specific values of Eb and db for LiH, see Table II.
The one-electron density of LiH is plotted in the top graph
of Fig. 3, where the lithium (hydrogen) atom is situated at
negative (positive) x-positions [cf. the ion potentials vd (x)].
In all considered cases, the density shows a clear minimum
between the nuclei, and correlations alter the density mainly
around the hydrogen atom. In particular, we highlight that
the second Born ground-state density is in surprisingly good
agreement with the exact result.

In order to identify the intramolecular electronic structure
more closely, we have computed the most relevant natural
orbitals (NOs) for the 1D LiH molecule [see Fig. 5(b)]. The
natural orbitals φi(x), i = 0, 1, . . . , nb − 1, are obtained from
the eigenvalue problem∫

dx ′ρ(x, x ′)φi(x
′) = niφi(x), (23)

with density matrix ρ(x, x ′) = −iG(1, 1′)τ→0+i0− and occupa-
tions ni ∈ [0, 1]. For HF ground states, with β → ∞, we have
ni = 1 for i = 0, 1, . . . , N − 1 and zero otherwise, where N is
the number of electrons with the same spin projection. Hence,
there are two fully occupied orbitals for the case of LiH in
the HF approximation [see the NO φ0 and φ1 in Fig. 5(b)].
Correlation effects generally lead to occupations of more than
two orbitals; compare φ2 in second Born approximation with
the exact result, and note that the orbitals have been scaled
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FIG. 5. (Color online) (a) Li–H binding energy ELiH
b as function

of the interatomic distance d . See Table II for the specific bond
lengths. The compound dissociates at a threshold of −4.8802 a.u. For
comparison, the dashed-dotted line shows the binding-energy curve
for the three-dimensional molecule [59]. (b) Most relevant natural
orbitals φi(x) for the LiH ground state at equilibrium bond length
as obtained from the TDSE and the HF and second Born Green’s
function (weighted by their occupation ni).

by
√

ni . On the contrary, the two core electrons at the lithium
atom, according to the localized NO φ0, are affected very
little by correlations, which is revealed by the HF, second
Born, and the TDSE curves lying almost on top of each
other. Furthermore, the second natural orbital φ1—with about
95–98% occupation and a node near the lithium atom—is
shared between the nuclei and extends over several bond
lengths. In correspondence with the one-electron density in
Fig. 3, the exact form of φ1 is well approached by the second
Born approximation, which shows the correct trend in the
central bond region. Also, the third NOs φ2 are similar in
shape. However, the deviation in their occupations is mainly
responsible for the differences between the result of the
second Born approximation and the exact result. Finally, all
other NOs (those which are not shown) are occupied by less
than 1%.

IV. CONCLUSION

In this work, we have applied the FE-DVR to expand the
one-particle NEGF with respect to the two (one-dimensional)
spatial coordinates. This procedure is highly favorable against
a general-basis representation for three reasons. (i) Conceptu-

ally, it allows for an optimal and flexible combination of grid
and basis methods, and (ii) with respect to the NEGF of finite
systems, a direct solution of the SKKBE within a grid-based
hybrid approach becomes possible by (iii) an essentially
simplified treatment of all binary interactions. The third point
includes the description of particle-particle correlations, where
the second-order Born self-energy in Sec. II C, as the most
basic model of correlations, attains a comparably simple form
induced by the high degree of diagonality involved in the
two-electron integrals [Eq. (12)] expressed in the FE-DVR
picture. Also, due to the discretization in coordinate space,
it is straightforward to change the one-particle potential v(x)
or the specific form of the pair interaction, u(|x − x ′|). This
is in striking contrast to a general basis, where to some
extent enormous, extra numerical effort is required if the
matrix elements or two-electron integrals are not analytically
accessible and have to be precomputed. This completely drops
out in the present approach.

In summary, the developed method enables better perfor-
mance with relation to larger accuracy and spatial resolution,
but at crucially lower numerical cost with regard to storage
memory and computing time. In particular, this also holds true
when spatially extended Hamiltonians are being considered, as
shown in Sec. III. In turn, when the FE-DVR is applied, larger
basis dimensions with a guide number of nb ≈ 500–1000
become feasible, which implies an enhancement of more
than one order of magnitude compared to a general-basis
approach.

For illustration purposes, we have computed the NEGF for
simple but benchmarking atomic and molecular models—the
helium atom and the linear molecules H2 and LiH in one
spatial dimension. Especially for the molecular systems, where
two (or four) electrons are shared between the nuclei, the
enhanced electron collision rate in one dimension makes it
attractive to investigate electron-electron correlation effects
in the second Born approximation. Indeed, with respect to
inhomogeneous and finite systems, very few comparisons
are available between NEGF findings and exact many-body
results. In our comparisons, we restricted ourselves to two-
and four-electron models because the full solution of the
TDSE becomes impractical for more than four electrons.
In the present examples, it turns out that the second Born
approximation is very capable of catching the main ground-
state features of the considered models. Thus, the presented
analysis affirmatively contributes to the assessment of the
applicability of NEGFs to atomic and molecular systems.

Of course, the FE-DVR approach also enables calculations
with larger particle numbers. Depending on the system, multi-
electron ensembles (in one spatial dimension) with up to N <∼
20 turn out to be feasible [60]. Particularly, we note that with
this grid-based method adequate spatial resolution over a range
of several hundred atomic units becomes available in NEGF
approaches to strongly inhomogeneous quantum systems. The
good performance is thereby not limited to the second Born
approximation. The method also allows for more complicated
self-energies, including GW or the T -matrix approximation
on spatial grids. Moreover, the attractive scaling behaviors of
the FE-DVR fully survive in nonequilibrium situations and,
thus, provide essential impact for the efficient solution of the
two-time SKKBE for atomic and molecular systems. Explicit
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results of the time evolution in the second Born approximation,
including transitions to few-electron resonance states [26]
located energetically above the one-electron excitations, are
the subject of a forthcoming publication.
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APPENDIX: GENERALIZED GAUSS-LOBATTO
INTEGRATION

In numerical analysis, the GGL scheme is a special
quadrature rule which approximates a definite integral of a

function g(x) as∫ x0

0
dxg(x) =

∑
i

∫ xi+1

xi

dxg(x) ≈
∑

i

ng−1∑
m=0

g
(
xi

m

)
wi

m, (A1)

where the specified points xi
m and weights wi

m are associated
with subdomains [xi, xi+1] or finite elements i of the integra-
tion (see definition in Sec. II A). For an arbitrary segmentation
of the total domain [0, x0], the approximation becomes exact
in the limit ng → ∞. Moreover, from the GGL integration, it
follows that the Lobatto shape functions are orthogonal in the
sense of the quadrature rule:∫

dxf i
m(x)f i ′

m′ (x) = δii ′
∑
m̄

f i
m

(
xi

m̄

)
f i

m′
(
xi

m̄

)
wi

m̄

= δii ′δmm′wi
m. (A2)
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