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Time-dependent second-order Born calculations for model atoms and molecules
in strong laser fields
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Using the finite-element discrete variable representation of the nonequilibrium Green’s function (NEGF)
we extend previous work [K. Balzer et al., Phys. Rev. A 81, 022510 (2010)] to nonequilibrium situations
and compute—from the two-time Schwinger-Keldysh-Kadanoff-Baym equations—the response of the helium
atom and the heteronuclear molecule lithium hydride to laser fields in the uv and xuv regimes. In particular,
by comparing the one-electron density and the dipole moment to time-dependent Hartree-Fock results on one
hand and the full solution of the time-dependent Schrödinger equation on the other hand, we demonstrate that
the time-dependent second Born approximation carries valuable information about electron-electron correlation
effects. Also, we outline an efficient distributed memory concept which enables a parallel and well-scalable
algorithm for computing the NEGF in the two-time domain.
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I. INTRODUCTION

Owing to binary interactions, electrons inside and between
atoms and molecules form a highly sophisticated quantum
many-particle system. Already two-electron atoms show
rich structure [1], for example, revealed by the presence
of autoionization resonances above the lowest ionization
threshold. Therefore, when out of equilibrium, and, especially,
when exposed to intense laser fields, atoms and molecules
comprise very complex electron dynamics which occur at
subfemtosecond time scales and include nonlinear excitations,
electron scattering, and ionization [2]. Novel techniques,
such as attosecond streaking (using coherent, ultrashort laser
pulses) [3], allow one to capture and trace this dynamics
experimentally and give, for example, time- and angle-
resolved indication of single-, double-, or multiionization
processes. The most prominent examples, in this context,
are attosecond (two-color) pump-probe scenarios (e.g., [4]),
including ionization that follows an electron shakeup [5].
Thereby, laser sources allow for the preparation of specially
selected atomic or molecular initial states.

In all the aforementioned processes, electron-electron (e-e)
correlations play a substantial role. Thus, consistent methods
beyond the single-active electron picture are required to
describe electronic structure and dynamics. However, theory
largely depends on good approximate solutions to the many-
electron problem and, particularly, time-resolved investiga-
tions including correlations in subfemtosecond regimes are
still in their infancy.

In this paper, we, in an ab initio fashion, apply generalized
kinetic equations, the Schwinger-Keldysh-Kadanoff-Baym
equations (SKKBE) [6–8], to compute the electron motion
in model atoms and molecules exposed to laser fields. In
contrast to time-dependent density functional theory, nonequi-
librium Green’s functions (NEGFs), thereby, offer a systematic
approach to e-e correlations, where the residual interactions
beyond the time-dependent Hartree-Fock (TDHF) frame can
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be incorporated in the SKKBE by self-consistent (i.e., φ-
derivable) and conserving approximations of the interaction
kernel [8]. In comparison to (approximate) wave-function-
based methods, such as the time-dependent Kohn-Sham orbital
approach [9,10] and its multiconfigurational variants [11,12],
NEGF theory does not provide immediate access to all
observables as it is premised on a two-time generalization
of the reduced (one-particle) density matrix. However, all one-
and—due to the two-time dependencies—also the two-particle
quantities can, in principle, be obtained at the same level
of self-consistency [8,13]. A key for applying NEGFs to
nonequilibrium laser-atom interactions is an efficient, well-
adapted representation of the Green’s function. In Ref. [14],
we have shown that a suitable concept is given by the finite-
element discrete variable representation (FE-DVR). Here, we
extend this work to nonequilibrium.

It is the goal of this paper to prove feasibility and
adequacy of two-time NEGF calculations along with spatially
extended atomic Hamiltonians. To this end, we consider N

nonrelativistic electrons which move in a time-dependent
potential V (x,t) and interact via a pair potential U (x − x ′).
Section II reviews the equations of motion for the associated
one-particle NEGF in FE-DVR representation, where e-e
correlations are treated in the time-dependent second Born
approximation (TD2ndB). In Sec. III, we present results for
ultraviolet-field (uv) induced electron dynamics in case of the
helium [15–19] and lithium hydride model [20] including,
respectively, two and four electrons. Thereby, we compare
TDHF and TD2ndB to full solutions of the time-dependent
Schrödinger equation (TDSE).

II. THEORY

We begin the theory section by briefly describing the
grid-based representation of the one-particle NEGF G(1,1′) =
−i〈T̂Cψ(1)ψ†(1′)〉, 1 = (x,t,σ ), in coordinate space by means
of a FE-DVR basis (for a more detailed description the reader is
referred to Refs. [14] and [21]). Thereafter, Sec. II B recapitu-
lates the respective equations of motion, and Sec. II C discusses
our concept for parallel distributed-memory computation of
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G(1,1′) using the message passing interface (MPI). Atomic
units (a.u.) are used throughout: m = |e| = h̄ = 4πε0 = 1.

A. Representation of G(1,1′)

We represent the NEGF in one space dimension on an inter-
val [0,x0] which is partitioned into ne finite elements [xi,xi+1],
i ∈ {0,1, . . . ,ne − 1}. The finite element (FE) boundaries are
at the same time-generalized Gauss-Lobatto (GGL) points
xi = xi

0 and xi+1 = xi
ng

of a GGL quadrature of order ng with

abscissa points xi
m and weights wi

m, m ∈ {0,1, . . . ,ng − 1} (for
details see, e.g., [14] and references therein). These points
and weights define local DVR basis sets [22], which can be
superposed such that the total FE-DVR space is spanned by

χi
m(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f i
ng−1(x) + f i+1

0 (x)[
wi

ng−1 + wi+1
0

]1/2 , m = 0,

f i
m(x)

[
wi

m

]−1/2
, m �= 0,

(1)

where f i
m(x) are Lobatto shape functions [22]. All χi

0(x)—
denoted bridge functions—ensure the NEGF being contin-
uous in coordinate space (cf. Ref. [14]). Moreover, the
basis has dimension nb = neng − 1 and is GGL orthonormal
[23]. Using Eq. (1), we can expand the one-particle NEGF
G(1,1′) = θ (t − t ′)G>(1,1′) + θ (t ′ − t)G<(1,1′) in FE-DVR
representation as

G(xt,x ′t ′) =
∑
ii ′

∑
mm′

χi
m(x)χi ′

m′ (x ′)gii ′
mm′(t,t ′),

(2)
gii ′

mm′(t,t ′) ∈ C,

where we imply a spin-restricted ansatz (i.e., G does not
explicitly depend on the spin-projection σ ). However, the spin-
degeneracy ξ ∈ {1,2} is incorporated in the self-energies, that
is, 	(1,1′) = 	ξ (xt,x ′t ′), the representation of which is as G

in Eq. (2) with time-dependent coefficients 	ii ′
ξ,mm′(t,t ′) ∈ C.

B. Equations of motion

In FE-DVR representation, the second-quantized form of
the considered N -electron Hamiltonian reads as

Ĥ =
∑
ii ′

∑
mm′

hii ′
mm′(t)

[
ci
m

]†
ci ′
m′

+
∑

i1,...,i4

∑
m1,...,m4

ui1i2i3i4
m1m2m3m4

[
ci1
m1

]†[
ci3
m3

]†
ci2
m2

ci4
m4

, (3)

where the operator ci
m ([ci

m]†) creates (annihilates) an electron
in the local state χi

m(x). In particular, it holds that

hii ′
mm′(t) =

∫ x0

0
dxχi

m(x)

{
−1

2
∇2 + V (x,t)

}
χi ′

m′(x)

= t ii
′

mm′ + δii ′
mm′ ṽ

i
m(t), (4)

for the one-electron integrals and

ui1i2i3i4
m1m2m3m4

=
∫ x0

0
dx

∫ x0

0
dx ′χi1

m1
(x)χi3

m3
(x ′)

×U (x − x ′)χi2
m2

(x)χi4
m4

(x ′)

= δi1i2
m1m2

δi3i4
m3m4

ũi1i3
m1m3

, (5)

for the two-electron integrals, where δmm′
ii ′ = δii ′δmm′ . Explicit

expressions for the kinetic energy t ii
′

mm′ , the time-dependent
potential energy ṽi

m(t), and the interaction matrix ũii ′
mm′ are

given in Ref. [14]. We note that the equality in the last lines
of Eqs. (4) and (5), respectively, is only true when the GGL
quadrature rule is being applied.

Concerning Eq. (3), in the FE-DVR picture, the equations of
motion for gii ′

mm′(t,t ′) = −i〈T̂Cc
i
m(t)[ci ′

m′(t ′)]†〉 are the SKKBE
transformed into the matrix equation{

i∂t δ
mm̄
iī

− hiī
mm̄(t)

}
gīi ′

m̄m′ (t,t ′)

= δC(t − t ′)δmm′
ii ′ +

∫
C
dt̄	iī

ξ,mm̄[g,u](t,t̄)gīi ′
m̄m′(t̄ ,t ′), (6)

where C denotes the complex Schwinger-Keldysh contour and
additional summation is implied over ī and m̄. The self-energy
	ii ′

ξ,mm′ [g,u](t,t ′) depends functionally upon the matrices g and
u and, in the Hartree-Fock and second Born approximation, is
defined in the Appendix. Due to the simple structure of Eq. (5)
they are easily evaluated in the FE-DVR representation.

The SKKBE (6) represents the basic equation to be solved,
in Sec. III, for atomic and molecular model systems. Thereby,
to resolve the correlated dynamics (TD2ndB), it has to
be propagated into the two-time plane P = [0,tf ] × [0,tf ],
which scales quadratically with final propagation time tf . To
do so, we follow the scheme described in Refs. [24,25].

C. Code parallelization and performance

While the TDHF part of the self-energy, being of first order
in u, can be absorbed into hiī

mm̄(t) of Eq. (6), higher-order
contributions are connected to e-e correlations and lead to a
memory kernel (the right-hand side of the SKKBE), which,
generally, is not smooth. This means that, during each single
time step T → T + δt within P , integrals over the complete
dynamics history have to be performed [25]. Consequently,
for each point (t,t ′) ∈ P an n2

b-dimensional array has to be
allocated containing the spatial part of the NEGF. For sym-
metry reasons, the storage of the lesser (greater) correlation
function g< (g>) can be constrained to an upper (lower)
triangle [cf. the open (closed) circles in Fig. 1(a) or 1(b)].
Hence, the total amount of data evaluates to D = 16n2

t n
2
b

bytes, where nt = tf /δt and double precision is presumed.
In typical one-dimensional (atomic or molecular) problems
this can easily involve a few terabytes of data [26].

Such memory (RAM) requirements are conceptually be-
yond standard shared memory setups. Therefore, we have
developed a distributed memory concept [27] based on MPI

[28]. The main memory allocation for g
><(t,t ′) is embedded

as follows: Depending on the number of processes available
(Msize), the two-time plane P is partitioned into a series
of different vertical and horizontal blocks (arrays) attributed
to distinct MPI processes labeled as Mrank in Fig. 1. More
precisely, any g

><,ii ′
mm′ (t,t ′) is simultaneously kept in the memory

of process (tδt−1)modMsize + 1 and in the memory of process
(t ′δt−1) modMsize + 1. The situation is illustrated in Fig. 1(a)
for the case of two processes; Fig. 1(b) refers to Msize = 3. In
general, we arrive at a (multicolored) chessboardlike pattern
which has a “primitive cell” of side length (Msize − 1)δt .
As a consequence, the total NEGF is effectively stored
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FIG. 1. (Color online) Distributed-memory concept in the case
of (a) two MPI processes and (b) three MPI processes. The different
domains with dotted, dashed, and long-dashed border (thin lines)

mark main memory for g
><(t,t ′) allocated by distinct processes

(ranks). The extent of the memory kernel (the right-hand side
of the SKKBE) for the indicated time steps T → T + δT (cf.
the arrows) is given by the thick dashed line, while the required

self-energies 	
><(t,t ′) are bordered with a thick solid line. Note that

the relevant history is completely known to the process that performs
the respective time step. In addition, the propagation of the greater
and lesser Green’s function (extending the upper and lower triangle)
can be performed by a single process.

twice (i.e., Deff = 2D). However, doing so ascertains that the
amount of MPI communication is minimized—this is another
critical issue concerning efficient parallel two-time NEGF
calculations. In particular, with such memory distribution,
no Green’s function at all needs to be exchanged with other
processes! Exemplarily, the area bordered by the thick dashed
line in Fig. 1(a) indicates that, for a selected time step to
be performed by process Mrank = 1 (cf. the arrows), the
memory (interaction) kernel extends exclusively on local
storage domains. The same holds for diagonal time steps [cf.
Fig. 1(b)]. Further, note that the propagation of g< and g> can
be performed in sequence but bunched in a single process. As
a result, only the actual self-energy matrices 	

<,ii ′
mm′ (t,T ) and
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FIG. 2. (Color online) Speed-up ratio S(p) = T1/Tp [29] for
parallel propagation of G(1,1′) with up to 512 MPI processes for three
different propagation times tf = ntδt , where δt = 0.025. As physical
system, we have considered the one-dimensional He model (see
Sec. III) with nb = 23 FE-DVR basis functions. While the shortest
calculations (plus symbols, red) have been performed on the “xe”
nodes of the HLRN batch system [30], all other calculations have
been carried out by the “ice1” nodes. We note that the performance
drop between 4 and 8 processes is caused by internal architecture dif-
ferences. The thin dashed, dotted, and dashed-dotted lines indicate a
degree of parallelization of � = 95% to 99% according to Amdahl’s
law S�(p).

	
>,ii ′
mm′ (T ,t ′) with t,t ′ � T (see the areas edged by thick solid

lines in Fig. 1) need to be broadcasted and made known to all
processes, though they can be computed strictly locally.

In conclusion, such a distributed memory concept allows
for an efficient time-stepping algorithm and, at the same time,
enables large cluster computations. Regarding the scalability,
NEGF calculations concerning the one-dimensional helium
atom (cf. Sec. III) with up to 512 MPI processes have achieved
a typical degree of parallelization of more than 95%. Figure 2
shows the corresponding scaling behavior for test calculations
of different numbers of processes p and length nt . Finally,
we mention that the memory distribution scheme is easily
extended to cover also the mixed Green’s functions [25], which
account for the self-consistent dynamics of initial correlations.

III. RESULTS AND DISCUSSION

To illustrate the method, we consider N electrons moving
in a one-dimensional model atom or molecule, where the
potential in Eq. (4) plus a permanent laser field in the dipole
approximation is given by

V (x,t) = −
M∑

m=1

ZmU (x − x0,m)

+E0 cos(ω0t)θ (t)x, (7)

with atomic numbers Zm, M nuclei positions x0,m, a soft-
Coulomb electron-nucleus or, respectively, electron-electron
interaction U (x) = [x2 + 1]−1/2, and an electric field strength
(frequency) E0 (ω0). For M = 1, the potential V (x,t) describes
the core potential of a single atom superposed by the laser
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FIG. 3. (Color online) Contour plot (logarithmic) showing the time-dependent one-electron density 〈n̂〉(x,t) for 1D He in Hartree-Fock
(solid, green) and second Born approximation (dashed, blue). The dashed-dot-dotted (red) lines reveal TDSE solutions. (a) Time evolution of
the He atom initially prepared in the Hartree-Fock ground state and no uv field being switched on. (b) Short-time response of the Hartree-Fock
initial state to a permanent uv field (E0 = 0.1, ω0 = 0.54). (c) Permanent uv field as in (b) but with the He atom initially prepared in the
self-consistent ground state. The contour lines cover a density range from 10−4 to 0.5 a.u. with four contours in each decimal power between
10−4 and 0.1, and contours between 0.1 and 0.5 each 0.05 a.u.

field; in particular for Z1 = 2 we model the helium atom in
one spatial dimension (1D He).

A. Helium

1. Short-time density response

The neutral 1D He model containing two electrons prepared
in the singlet ground state has total energy −2.2383 a.u.
(exact). In the second Born approximation, the ground-
state energy is −2.2334, accounting for 65% of e-e cor-
relations (Hartree-Fock: −2.2242) (cf. Ref. [14]). We now
excite this system by uv laser light of intensity E0 =
0.1 (3.5 × 1014 W/cm2) and, from the SKKBE (6), re-
solve the time-dependent one-electron density 〈n̂〉(x,t) =
−iG<(xt,x ′t) within a simulation box of width x0 = 30 a.u.
and up to 49 FE-DVR basis functions. Thereby, the frequency
ω0 = 0.54 (84 nm) is chosen such that the perturbation is (in all
cases) near resonant to the first excited singlet state (cf. Fig. 6).
The short-time density response of the 1D helium atom is
shown in Fig. 3 in the form of contour plots. Figure 3(a) shows
the dynamics in the absence of the laser field, E0 = 0. Here, in
the TDHF approximation (solid line), the initial state remains
an eigenstate of Ĥ for all times t . However, if the Hartree-Fock
ground state evolves under the influence of e-e correlations
[see the dashed (dashed-dot-dotted) TD2ndB (TDSE) curves],
collective oscillations in 〈n̂〉(x,t) are initiated. These small

time-dependent features are, in particular, well characterized
in the second Born approximation.

In Fig. 3(b), laser light is switched on instantaneously at
t = 0, and, as in Fig. 3(a), the He atom is prepared in the
Hartree-Fock ground state. The external field drives the system
out of equilibrium, leading to strong density deformations,
which reveal that both electrons are oscillating in the uv
field. Thereby, many time-dependent details in 〈n̂〉(x,t) (at
high density around x = 15 and low density) which are not
captured in TDHF are well resolved in the TD2ndB calculation
[see, e.g., the domains labeled as A, B, and C in Fig. 3(b)].
Also, in the TD2ndB and TDSE densities, the oscillatory
behavior of Fig. 3(a) is superimposed. Moreover, due to
the finite simulation box, reflections occur at the interval
boundaries.

Figure 3(c) shows the density response after preparation of
(correlated) self-consistent initial states, that is, propagation
of the NEGF in the second Born approximation in particular
involves mixed Green’s functions G�(xt,x ′t ′) (G	(xt,x ′t ′))
with t (t ′) on the imaginary branch of the contour C (e.g.,
[25]). These can be omitted in case of an uncorrelated TDHF
calculation. Comparing approximate to exact calculations, we
see that TD2ndB performs fairly well and complies essentially
better with TDSE than with TDHF. This is observed at high
density around x = 15 as well as for moderate- and low-
density domains, where 〈n̂〉(x,t) is spatially more extended
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FIG. 4. (Color online) Nonlogarithmic plot of the 1D He density
〈n̂〉(x,t) for different times t corresponding to Fig. 3(c). The inset
shows the self-consistent (initial) ground-state density at t = 0.
Further, the contour lines indicate the absolute of the density
difference 〈δn̂〉γ of TDHF (solid) and TD2ndB (dashed), respectively,
to TDSE at values of 0.005, 0.01, 0.02, 0.04, and 0.06.

in the TD2ndB approximation. In addition, the oscillatory
behavior of (a) and (b) vanishes due to the self-consistency. To
support the quality of TD2ndB, Fig. 4 shows nonlogarithmic
snapshots of the electronic density close to the nucleus at
different times t and also quantifies the difference 〈δn̂〉γ =
|〈n̂〉γ − 〈n̂〉TDSE| of the approximate to the exact density (solid
and dashed contour lines). In total, the time-dependent density
profile is more spread out due to e-e correlations, and, in
contrast to TDHF, the error 〈δn̂〉TD2ndB does not exceed values
of 0.05. Moreover, at specific times during the initial stage of
uv excitation, at t ≈ 8 and 16 a.u., the deviation from the exact
result becomes very small.

2. Time-dependent dipole moment

From the NEGF we also can access the time-dependent
dipole moment (DM) 〈d̂〉(t) = i

∫ x0

0 dxG<(xt,xt). For the he-
lium atom, the DM displayed in Fig. 5(a) implies the following:
(i) To suppress the effect of box boundary reflections we
have enlarged the simulation box to x0 = 70 a.u. and (ii) we
have modified the perturbation to a spectrally broad dipole
kick E0 cos(ωt)θ (t)x → E0δ(t)x with intensity E0 = 0.01
(3.5 × 1012 W/cm2). The latter change allows for a direct
computation of the dipole spectra via the Fourier transform
of the DM time series. Again, in Fig. 5(a), we compare
TDHF and TD2ndB to the exact solution of the TDSE. In
the second Born approximation (see the dashed-dotted line),
the time-dependent DM well approaches the TDSE result
with a general shift to a larger (main) oscillation period
compared to TDHF. Such an e-e correlation-induced period
increase may also be deduced by a thorough look at 〈n̂〉(x,t)
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FIG. 5. (Color online) Time-dependent dipole moment 〈d̂〉(t) for
the 1D helium atom. (a) TDHF (solid) and TD2ndB approximation
(dashed-dotted) versus the exact TDSE result (dashed-dot-dotted).
Note that the time evolution in case of TD2ndB starts from the
Hartree-Fock ground state. (b) Comparison of the short-time behavior
of 〈d̂〉(t) for different initial states: TD2ndB2 (dashed-dotted) refers
to the second Born approximation with Hartree-Fock initial state,
whereas the initial state for TD2ndB1 (dashed) has been computed
self-consistently.

during uv excitation of He in Figs. 3(b) and 3(c). Moreover,
Fig. 5(b) indicates how the evolution of the DM, including
e-e correlations, depends on the initial state (cf. the dashed
and dashed-dotted lines). As expected, starting from the
self-consistent initial state (TD2ndB1) produces a DM which
best matches the exact result. In contrast, the perturbation of the
Hartree-Fock ground state [TD2ndB2, equivalent to TD2ndB
in Fig. 5(a)] produces a different time response in the DM
amplitude. This, generally, leads [similar to the situation in
Fig. 3(b)] to additional excitations which are not of dipole
character.

A more detailed analysis of the DM is possible in terms
of the dipole spectrum 〈d̂〉(ω) ∝ ∫ tf

0 dte−iωt 〈d̂〉(t), with tf
being the final propagation time. However, due to the two-time
structure of the SKKBE (6), typical TD2ndB calculations are
limited to relatively short times of approximately tf <∼ 100 a.u.
even if the parallel algorithm of Sec. II C is being applied.
Consequently, a discrete Fourier transform (DFT) reveals poor
resolution [cf. the dashed line in Fig. 6(a)]. In the case of
TDHF (solid line) and TDSE (dashed-dotted line) much better
resolution can be achieved for 〈d̂〉(ω) such that, in Fig. 6(a),
one recovers the series of one-electron excitations ωi (excited
singlet states of 1D He) which converges toward the first
ionization threshold I1 = 0.755. The peaks beyond I1 indicate
transitions to eigenstates of the finite simulation box. Overall,
there is a shift concerning the first excited singlet state while
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FIG. 6. (Color online) Dipole strength 〈d̂〉(ω) for 1D He. (a) Dis-
crete Fourier transform with Hamming window from TDHF (solid)
and TDSE (dash-dotted) time series 〈d̂〉(t) of length tf = 500. The
first excited state appears at ω1 = 0.533 (TDSE) and ω

(1)
1 = 0.549

(TDHF); the second excited singlet state has frequency ω2 = 0.671.
I1 = 0.755 denotes the first ionization threshold. Note that peaks
beyond I1 are artificial box states. (b) Autoregression power spectral
density 〈d̂〉S(t) of short TDHF, TD2ndB, and TDSE time series 〈d̂〉(t)
of length tf = 55 computed from Eq. (9) with model order S = 1000.
In the TD2ndB approximation, the first excited state appears at
frequency ω

(2)
1 = 0.537.

energetically higher excitations seem to be less affected by
e-e correlations. Concentrating on the first excited state of
frequency ω1, we observe that it is overestimated by TDHF
(ω(1)

1 = 0.549)—the exact value is 0.533. Thus, it is interesting
to analyze the behavior of TD2ndB (ω(2)

1 ). However, as the
usual Fourier transform of the DM time series is not well
applicable, we have to rely on other methods which are not
limited by the total length of the signal, for example, harmonic
inversion (HI) [32]. Nevertheless, the best results have not
been obtained by HI techniques, but by using an autoregression
(AR) spectral analysis [33] where an autocorrelation model of
order S is applied to the time-dependent dipole moment:

〈d̂〉(t) = 〈d̂0〉 +
S∑

s=1

cs〈d̂〉(t − s�t), �t = tf

S
, (8)

with time average 〈d̂0〉 = ∫ tf
0 dt̄〈d̂〉(t̄) and AR coefficients cs

which, for example, follow from the Yule-Walker equations
[33]. The AR coefficients then give direct access to the power
spectral density (PSD) via

〈d̂〉S(ω) ∝
∣∣∣∣∣1 −

S∑
s=1

cs exp(−isωδt/2)

∣∣∣∣∣
−2

, (9)

which is periodic in ωS = 4π�t−1 = 4πS/tf . Figure 6(b)
summarizes the AR PSD result for DM time series of
fixed length tf = 55 [31]. For the first excited state, TDHF
(solid line) and TDSE (dashed-dot-dotted line) lead to well-

pronounced peaks which exactly equal the DFT result of
Fig. 6(a). In the same manner, we are now able to explore
the TD2ndB data and find ω

(2)
1 = 0.537 [cf. the dashed line

in Fig. 6(b)]. This frequency corresponds to a remarkable
improvement of 75% in the deviation of the Hartree-Fock to
the exact result. In addition, in 〈d̂〉S(ω), also the second excited
singlet state is resolved. The general shift toward smaller
frequencies ω2 is, thereby, caused by the shortness of the time
series. In summary, the AR spectral analysis, being superior
to DFT, allows for an appropriate characterization of short
〈d̂〉(t) time series. In particular, we conclude that, concerning
dynamic properties of the 1D He model, TD2ndB shows
correlation-induced features to a substantial level, though,
in the present analysis, it was not possible to show how
well two-electron excitations [12]—emerging between I1 and
I2 = 2.2383 and being absent in TDHF—are resolved in the
TD2ndB approximation. This lack is only due to the limited
propagation time, and, indeed, we expect these features of e-e
correlations to be included on a similar level.

B. Lithium hydride

By using two-time NEGFs, it is possible to describe even
more complex systems than He in nonequilibrium. As a proof
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FIG. 7. (Color online) Time-dependent one-electron density
〈n̂〉(x,t) (plotted nonlogarithmically) for the response of LiH to an
xuv field with intensity E0 = 0.75 and frequency ω0 = 1.3. Shown
are (a) the (exact) TDSE result and self-consistent (b) TD2ndB and
(c) TDHF calculations. Arrows in (c) indicate particularly strong
deviations of TDHF compared to TDSE.
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of principle, we consider the response of the neutral molecule
lithium hydride (LiH) to an xuv field of intensity E0 = 0.75
(2.0 × 1016 W/cm2) and frequency ω = 1.3 (photon energy
of 35.5 eV). LiH is a heteronuclear molecule [M = 2, Z1 = 3,
and Z2 = 1 in Eq. (7)] including four electrons and complies
with the restricted NEGF ansatz (2) when prepared as a
singlet state (i.e., with closed-shell spin configuration). Prior
to excitation, we have fixed the Li-H bond lengths db =
x0,2 − x0,1 (in terms of the Born-Oppenheimer separation of
electronic and nuclear motion) to the self-consistent values
as obtained by scanning the potential energy surface [14]:
db = 3.386 (Hartree-Fock), db = 3.505 (second Born), and
db ≈ 3.6 (exact). The resulting ground-state densities 〈n̂〉(x,0)
are indicated in Fig. 8 [cf. the lines at the bottom of the
plot (t = 0)]. Computing the LiH time evolution from the
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FIG. 8. (Color online) One-electron density 〈n̂〉(x,t) at different
times t for the response of LiH to an xuv field (with parameters as in
Fig. 7). The TDHF (solid) and TD2ndB1 result (dashed) include self-
consistent initial states (with different but fixed db) while TD2ndB2

(dotted) starts from the Hartree-Fock ground state (only shown for
t � 10). Note that the self-consistent solution of the TDSE (dashed-
dot-dotted) is not fully accurate due to lack of spatial resolution—
compare with the exact ground state (dashed-dotted line) for t = 0.
Moreover, the gray curves show the time-dependent expectation value
〈x̂〉(t) of the electron position.

TDSE in four spatial coordinates is, in contrast to helium,
already ambitious but nevertheless feasible. In comparison,
going from 1D He to the LiH model solving the SKKBE for
the one-particle NEGF is conceptually and computationally
very simple as, with the increase of particle number, only the
normalization of the Green’s function is concerned. Figure 7
reveals the picture of the xuv-induced electron dynamics
over more than three laser cycles as obtained from the
TDSE (top), the time-dependent (self-consistent) second Born
approximation (center), and the time-dependent Hartree-Fock
approximation (bottom). Thereby, we have used an FE-DVR
basis of size nb = 71 and a simulation box of x0 = 40.
As a general trend, we observe, in 〈n̂〉(x,t), that TD2ndB
is considerably superior to TDHF. In particular, the time-
dependent density between the Li and the H atom behaves
completely different than TDSE in the case of TDHF (see,
e.g., the density around x = 20 for t = 9 and t = 13 indicated
by arrows). This is essentially corrected in the TD2ndB
approximation.

For specific times t , Fig. 8 allows for a direct and
more detailed comparison of the exact and approximate
one-electron densities close to the atomic nuclei. As in
Fig. 5, TD2ndB1 (dashed-dotted line) means that the initial
state is uncorrelated (thus on the Hartree-Fock level), while
TD2ndB2 (dashed line) refers to self-consistent ground-state
preparation. Following the time evolution, TD2ndB2 leads
to the correct changes toward the TDSE solution, including
strong depopulation of electrons around the hydrogen atom
for t > 10. Also, the TD2ndB2 density is smoother whereas
TDHF shows additional maxima being absent in both the
TD2ndB approximation and the exact result (dashed-dot-
dotted line) (see, e.g., the density for t = 7.5 at x ≈ 20).
In addition, we observe that starting from the correlated
(TD2ndB2) or uncorrelated ground state (TD2ndB1) does not
make much density difference for later propagation times
t >∼ 5. Averaging over coordinate space allows us, moreover,
to trace the time-dependent expectation value of the electron
position 〈x̂〉(t), which, being initially close to the Li nucleus,
starts to oscillate with the xuv field (cf. the gray lines in
Fig. 8). Thereby, TD2ndB, again, gives consistent results,
although, for later times, deviations to TDSE increase. To
this end, we note that the solution of the full four-particle
TDSE could have been performed only with restricted spatial
resolution whereas the NEGF results are converged. Thus,
comparisons should be drawn carefully. Nevertheless, for
confirming the main trends (when e-e correlations are being
included in the NEGF calculation), the TDSE result is fully
adequate.

IV. CONCLUSION

The (x)uv laser-induced, short-time electron dynamics in
the 1D helium and lithium hydride model has been investigated
using a NEGF approach. To this end an efficient grid-based
approach of Ref. [14] was extended to nonequilibrium situa-
tions. Starting from initial states with different degrees of e-e
correlation and self-consistency, we have shown that NEGFs
are well applicable to resolve the time dependence and that
dynamic correlation effects are approximated to a substantial
and valuable level already in the case of TD2ndB. This
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is obtained from (i) analyzing the few-cycle (one-electron)
density response of He and LiH to strong laser fields and
(ii) exploring spectral properties such as the singly-excited
spectrum of 1D He (cf. Sec. III). Overall, results at the TD2ndB
level are found to be closer to exact solutions of the TDSE
than to the TDHF. Thereby, the present restriction of NEGF
calculations to examples of two- and four-electron systems
stems from the availability of exact reference data which
allows for a proof of principle. Exact solutions of the TDSE for
N >∼ 4 are essentially at the limit concerning spatial resolution
whereas a solution of the SKKBEs is not explicitly sensitive
to the particle number. This potential of direct extension to
larger model atoms or molecules (where exact calculations
are impossible) affirms the power of the present NEGF
approach.

As the TD2ndB results show important time-dependent
features, we believe that the present analysis will stimulate
and support further investigations of strong-field laser-atom
interactions based on the two-time NEGF approach. Moreover,
due to the distributed memory concept (Sec. II C), which is
capable of organizing the huge demand of RAM involved in
the memory kernel, we are now able to perform the two-time
propagation of the SKKBEs in an optimized and efficient
way. This issue, in future work, will enable more extended
calculations with increased FE-DVR basis size (nb) and longer
propagation times (tf ) and, hence, fortifies a quantum kinetic
approach to atoms and molecules and their interaction with
(strong) laser fields.
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APPENDIX: SELF-ENERGIES

For a complete discussion of the matrix equation (6) in
Sec. II B, we, here, give the definitions of the self-energies:
(i) In the time-dependent Hartree-Fock approximation
(TDHF), the self-energy is given by 	ξ [g,u] = δC(t −
t ′)	HF

ξ [g,u] with

	
HF,i1i2
ξ,m1m2

[g,u](t,t ′) = −iξδi1i2
m1m2

∑
i3m3

ũi1i3
m1m3

gi3i3
m3m3

(t,t+)

+ iũi2i1
m2m1

gi2i1
m2m1

(t,t+),

(ii) in the time-dependent second Born approximation
(TD2ndB), it is 	ξ [g,u] = δC(t − t ′)	HF

ξ [g,u] + 	2ndB
ξ [g,u],

where

	2ndB,i1i2
m1m2

[g,u](t,t ′)

=
∑
i3m3

∑
i4m4

ũi1i4
m1m4

ũi2i3
m2m3

{
ξgi1i2

m1m2
(t,t ′)gi4i3

m4m3
(t,t ′)

−gi1i3
m1m3

(t,t ′)gi4i2
m4m2

(t,t ′)
}
gi3i4

m3m4
(t ′,t).
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