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Abstract. In this contribution, we discuss the finite-element discrete variable representa-
tion (FE-DVR) of the nonequilibrium Green’s function and its implications on the descrip-
tion of strongly inhomogeneous quantum systems. In detail, we show that the complemen-
tary features of FEs and the DVR allow for a notably more efficient solution of the two-time
Schwinger/Keldysh/Kadanoff-Baym equations compared to a general basis approach. Particu-
larly, the use of the FE-DVR leads to an essential speedup in computing the self-energies.

As atomic and molecular examples we consider the He atom and the linear version of
H+

3 in one spatial dimension. For these closed-shell models we, in Hartree-Fock and second
Born approximation, compute the ground-state properties and compare with the exact findings
obtained from the solution of the few-particle time-dependent Schrödinger equation.

1. Introduction
In the last decade, the application of the nonequilibrium Green’s function (NEGF) to describe
strongly inhomogeneous quantum systems has started to become an actively considered subject.
Thereby, various finite and localized systems have challenged attention and different many-
body approximations have been applied. Recent state-of-the-art approaches discuss small atoms
and molecules [1, 2], few-electron quantum dots [3, 4] and quantum dots coupled to leads [5],
molecular junctions [6], and Hubbard nanoclusters [7]. In part, these works also include the
monitoring of the system’s temporal evolution which, accounting for correlation and memory
effects, requires to solve the two-time Schwinger/Keldysh/Kadanoff-Baym equations [8, 9, 10]
(SKKBE).

To solve the SKKBE for homogeneous quantum systems [11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22] has become routine. However, this still does not hold for finite, localized and
inhomogeneous systems. The reason is, that in contrast to homogeneous systems where one
spatial coordinate or momentum drops out of the NEGF, the inhomogeneity claims adequate
resolution in both coordinates or momenta. To meet these requirements all above mentioned
works rely on an expansion of the NEGF in one-particle orbitals: for atomic and molecular
systems, linear combinations of Slater-type or Gauss-type orbitals are being used (also in
connection with tight-binding models), whereas for other classes of problems e.g. potential-
eigenstate basis functions are being utilized. Beyond a basis ansatz, alternatives such as
direct grid (finite-difference) methods do not exist as they are computationally very expensive.
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Nevertheless, also basis approaches are so far limited to relatively small basis sets. Generally,
the numerical complexity involved in the description of the binary interactions does not permit
to extend nonequilibrium calculations to much larger basis dimensions than a guide number of
nb < 50 orbitals. This explains the low resolution in the description of photoionization processes
of model atoms [23, 24] using nonequilibrium Green’s functions.

In this contribution, we—for the first time—develop a grid-based approach in the frame of
the finite-element discrete variable representation (FE-DVR), e.g. Refs. [25, 26, 27, 28] and
references therein. This method leads to specially-designed, flexible basis sets which are capable
to combine the advantages of pure grid and standard basis approaches, see Sec. 2 and also
Ref. [29]. In particular, it allows for a very efficient treatment of the binary interactions and, in
turn, a drastic simplification of higher-order self-energy expressions, which, generally, require the
main effort in all NEGF calculations. As a result, only O(n2

b) semi-analytical matrix elements of
the interaction energy operator are required to compose the second Born self-energy. This has to
be compared to a general basis representation of the NEGF: There, O(n4

b) matrix elements are
involved, cf. [4]. As a consequence, the use of the FE-DVR enables more efficient calculations
at less storage memory and computing time and provides the basis to consider also spatially
extended hamiltonians, where particles may occupy large domains in coordinate space.

After the outline of the method, we, in Sec. 3, apply the FE-DVR representation of the NEGF
to compute the ground-state properties of atomic and molecular models. First, in Sec. 3.1, we
discuss the one-dimensional (1D) helium atom [30, 31, 32, 33, 34, 35, 36, 37], where we focus on
technical details such as grid size, DVR basis size, and convergence in the case of the Hartree-
Fock and second Born approximation. The benchmarking results shown are also of relevance
for time-dependent calculations, as they define and border the requirements to resolve explicit
correlation effects (within a NEGF approach) e.g. the two-electron resonances [38] which are
embedded in the one-electron continuum of the atom and are going to be occupied during laser-
atom interactions—see also [39] in the present volume. Finally, we consider the linear molecular
ion H+

3 in the symmetric 1D singlet configuration [40, 41] as an example of a two-electron
molecule and vary the interatomic distance to record the binding-energy curves in Hartree-Fock
and second Born approximation, see Sec. 3.2. From this we can extract the minimum ground-
state energies and the respective bond-lengths, which are compared to the findings from the
few-particle time-dependent Schrödinger equation.

2. The nonequilibrium Green’s function in FE-DVR representation
For the description of the NEGF using finite elements together with the discrete variable
representation [42] (DVR), we consider the general N -electron Hamiltonian

ĥ =
N∑

i=1

(
t̂i + v̂i

)
+

∑
i<j

ûij , (1)

with the kinetic energy t̂i = −∇2
i /2, the time-dependent potential energy v̂i = v(xi, t), and

the pair interaction energy ûij = u(|xi − xj |) formulated in atomic units. The one-particle
nonequilibrium Green’s function with space-time arguments 1 = (x, t) and 1′ = (x′, t′) reads

G(1, 1′) = −i
〈
TCψ(1)ψ†(1′)

〉
, (2)

where spin is omitted, ψ(1) and ψ†(1′) are electron field operators, and TC denotes time-ordering
on the full Keldysh contour [9] C. According to system (1), G(1, 1′) obeys the SKKBE [8, 9, 10]

{i ∂t −H(1)} G(1, 1′) = δC(1− 1′) +
∫
C
d2Σ[G](1, 2)G(2, 1′) , (3)
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Figure 1. Interval [0, x0], as discretized in FE-DVR representation with a number of ne finite
elements and ng generalized Gauss-Lobatto points (per element). nb denotes the dimensionality
of the extended basis covering the whole interval.

with addition of its adjoint equation. Further, H(1) is the one-electron (kinetic plus potential)
energy, Σ(1, 1′) denotes the self-energy, and equilibrium initial correlations are treat in the mixed
Green’s function approach [43, 44, 45], cf. Sec. 2.3.

The favorable aspects of the FE-DVR representation have been successfully used for the
time-dependent Schrödinger equation (TDSE) by Rescigno [25] and others, e.g. [28]. There, the
accuracy of the DVR [46] on the one hand and the sparse character of FEs on the other led to
an efficient TDSE code which is well parallelizable. In our case, this hybrid approach allows us
to rewrite the SKKBE (3) in a highly effective matrix notation using optimal combinations of a
grid and a local basis.

2.1. Grid-based ansatz
On a predefined spatial 1D interval I = [0, x0], we expand the nonequilibrium Green’s function
of hamiltonian (1) as

G(1, 1′) =
∑
i1m1

∑
i2m2

χi1
m1

(x)χi2
m2

(x′) gi1i2
m1m2

(t, t′) , x, x′ ∈ I , (4)

with time-dependent complex coefficients gii′
mm′(t, t′) and real basis functions χi

m(x). Outside the
interval I, we assume the NEGF to vanish. All indices i (superscripts), ranging 0, 1, . . . , ne − 1
in Eq. (4), are linked to a grid of length x0 composed of ne finite elements, see Fig. 1. All
indices m (subscripts), ranging 0, 1, . . . , ng − 1, are connected to locally defined basis functions
χi

m(x) which are constructed as follows: First, we divide the interval I into finite elements with
boundaries x0 = 0 < x1 < x2 < . . . < xne−1, xne = x0. To each FE [xi, xi+1], we then attach a
local DVR basis using the generalized Gauss-Lobatto (GGL) points [25] xi

m and weights wi
m:

xi
m =

1
2
{(
xi+1 − xi

)
xm +

(
xi+1 + xi

)}
, (5)

wi
m =

wm

2
(
xi+1 − xi

)
, (6)

with the standard Gauss-Lobatto points xm (and weights wm). For the special case of Legendre
interpolating functions, the points xm are defined as roots of the first derivative of Legendre
polynomials Pn(x) according to

d
dx
Png(x)

∣∣∣∣
x=xm

= 0 , (7)

and the weights wm are given by

wm =
2

ng(ng + 1)[Png(xm)]2
, (8)
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where ng denotes the total number of basis functions per element. In our approach, we keep the
number of basis functions constant in each FE [47]. However, in order to combine the locally
defined DVR basis functions to a continuous basis set, the FE-DVR space is being spanned by
two classes of functions—’bridge’ and ’element’ functions, see also Ref. [29]. The bridge function
(the case m = 0 in Eq. (9)) extends over two adjacent FEs and ensures communication between
the grid domains i and i + 1. In particular, it guarantees the continuity of the NEGF. The
’element’ functions are zero at and outside the respective element boundaries. Using definitions
(5) and (6), the basis functions have the explicit form

χi
m(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f i
ng−1(x) + f i+1

0 (x)√
wi

ng−1 + wi+1
0

, m = 0 (’bridge’ function)

f i
m(x)√
wi

m

, else (’element’ function)

, (9)

and are orthonormal in the sense of the generalized Gauss-Lobatto quadrature. In Eq. (9), the
so-called Lobatto shape functions[25, 48] f i

m(x) are defined as

f i
m(x) =

⎧⎪⎪⎨
⎪⎪⎩

∏
m̄�=m

x− xi
m̄

xi
m − xi

m̄

, xi ≤ x ≤ xi+1

0 , x < xi and x > xi+1

, (10)

and obey f i
m(xi′

m′) = δii′δmm′ . As in the last finite element ne−1 (i.e. in the element [xng−1, x0])
no bridge function is needed due to the boundary condition of vanishing G(1, 1′) outside the
interval I, the total FE-DVR set consists of

nb = neng − 1 . (11)

basis functions. Finally, we note, that a generalization of Eq. (9) to higher dimensions (2D and
3D) is, in principle, possible by using a product ansatz for the coordinate functions [27].

2.2. Matrix elements of the kinetic, potential and interaction energy operators
With representation (4) of the NEGF, the SKKBE will transform into an equation of motion
for the matrix g(t, t′) with elements gi1i2

m1m2
(t, t′), cf. Sec. 2.3. Obviously, this equation involves

also the kinetic, potential and interaction energy operator of Eq. (1) in matrix form, which we
specify in the following. Thereby, integrations over coordinate space are performed by using
the generalized Gauss-Lobatto quadrature rule, and case differentiations arise from the basis
functions χi

m(x) being split into element and bridge functions.
First, let us consider the potential and the kinetic energy in FE-DVR representation: The

potential-energy matrix is given by

vi1i2
m1m2

(t) =
∫ x0

0
dxχi1

m1
(x) v(x, t)χi2

m2
(x)

= δi1i2 δm1m2 ṽ
i1
m1

(t) , (12)

with

ṽi
m(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v(xi
m, t) , m > 0

v(xi
ng−1, t)w

i
ng−1 + v(xi+1

0 , t)wi+1
0

wi
ng−1 + w0

i+1

, m = 0
. (13)
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This implies that the potential energy is diagonal with respect to elements i and local DVR basis
indices m, and that, consequently, it can be represented by a vector of dimension nb. Moreover,
Eq. (12) holds true also for any other local operator. As the operator of the kinetic energy
is non-local in coordinate space, the matrix elements ti1i2

m1m2
are not diagonal. We follow the

derivation of Ref. [25] and obtain the kinetic-energy matrix as

ti1i2
m1m2

= −1
2

∫ x0

0
dxχi1

m1
(x)∇2 χi2

m2
(x) (14)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 δi1i2 t̃

i1
m1m2

[
wi1

m1
wi1

m2

]−1/2
, m1 > 0, m2 > 0

1
2

(
δi1i2 t̃

i1
ng−1,m2

+ δi1i2−1 t̃
i2
0m2

) [
wi1

ng−1 + wi1+1
0

]−1/2
, m1 = 0, m2 > 0

1
2

(
δi1i2 t̃

i1
m1ng−1 + δi1i2+1 t̃

i1
m10

) [
wi1

m1

(
wi2

ng−1 + wi2+1
0

)]−1/2
, m1 > 0, m2 = 0

δi1i2

(
t̃ i1
ng−1,ng−1 + t̃ i1+1

00

)
+ δi1i2−1 t̃

i2
0,ng−1 + δi1i2+1 t̃

i1
ng−1,0

2
[(
wi1

ng−1 + wi1+1
0

)(
wi2

ng−1 + wi2+1
0

)]1/2
, m1 = m2 = 0

Here, the case differentiations lead to the matrix having a block-diagonal form [27], and the
quantity t̃ i

m1m2
is given by

t̃ i
m1m2

=
∑
m

df i
m1

(xi
m)

dx
df i

m2
(xi

m)
dx

wi
m , (15)

which involves the first derivatives of the Lobatto shape functions at the GGL points, see also
Ref. [25].

Next, let us focus on the matrix elements of the binary-interaction operator û (the two-
electron integrals) which are carrying a set of four index-pairs (i,m) and are defined by

ui1i2,i3i4
m1m2,m3m4

=
∫ x0

0
dx

∫ x0

0
dx′ χi1

m1
(x)χi3

m3
(x′)u(|x− x′|)χi2

m2
(x)χi4

m4
(x′) . (16)

In a general basis approach, the two-electron integrals [Eq. (16) with all index-pairs replaced
by single indices] often require a careful analysis, as they are not analytically accessible and
have to be numerically precomputed for all combination of indices, e.g. [4]. Although symmetry
relations [49] help to restrict oneself to a subset of indices, the effort scales with O(n4

b) and
thus can be huge for larger basis sets. On the contrary, using the FE-DVR, the evaluation of
the two-electron integrals turns out to be much simpler. In particular, the integrals can be
performed in a semi-analytical way such that Eq. (16) reduces to

ui1i2,i3i4
m1m2,m3m4

= δi1i2δi3i4δm1m2δm3m4 ũ
i1i3
m1m3

. (17)

where the kernel matrix ũ is symmetric and follows as

ũi1i2
m1m2

=
∑
i3m3

αi3
m3
βi1i3

m1m3
βi2i3

m2m3
. (18)

To obtain Eq. (18), we have used the separable form of the discretized interaction potential
u(|x− x′|), and, correspondingly, the quantities αi

m denote the eigenvalues of the matrix

U(im)(i′m′) = u(|xi
m − xi′

m′ |) =
∑
i3m3

αi3
m3
β̃m3m

i3i β̃m3m′
i3i′ , (19)
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and βii′
mm′ are related to the eigenvectors β̃ii′

mm′ :

βii′
mm′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β̃i′i
m′m , m > 0

β̃i′i
m′(ng−1)w

i
ng−1 + β̃

i′(i+1)
m′0 wi+1

0

wi
ng−1 + w0

i+1

, m = 0
. (20)

In comparison with any single-electron matrix element (such as the kinetic or potential energy),
in FE-DVR, the calculation of the binary-interaction matrix elements involves just an additional
but numerically elementary matrix diagonalization. Furthermore, besides the fact that with
Eq. (17) the two-electron integrals attain a very simple form independent of the specific pair-
interaction potential, only a single matrix of dimension nb × nb needs to be stored in the
code. This memory-friendly property is based on the high degree of diagonality determined
by the product of Kronecker deltas and represents a main attractive feature of the FE-DVR
representation. Particularly, this aspect opens the way towards efficient NEGF calculations,
since Eq. (17) has direct consequences for the structure of the self-energies, see the following
Section.

2.3. Equations of motion
Once all relevant matrix elements are known with respect to the chosen FE-DVR basis (9),
we can start to solve the Schwinger/Keldysh/Kadanoff-Baym equations (3) for the one-particle
Green’s function G(1, 1′) expanded in the form of Eq. (4). This implies, though, the SKKBE in
the matrix form of the finite-element discrete variable representation:

∑
im

{
i∂tδ

i1i
m1m − hi1i

m1m(t)
}
gii2
mm2

(t, t′) = δC(t− t′) +
∑
im

∫
C
dt2 Σi1i

m1m(t, t2) gii2
mm2

(t2, t′) , (21)

Σi1i2
m1m2

(t, t′) = δC(t− t′) ΣHF,i1i2
m1m2

(t) + Σcorr,i1i2
m1m2

(t, t′) , (22)

where we have denoted δii′
mm′ = δii′δmm′ , h(t) = t + v(t), and Eq. (21) has to be supplied

with its adjoint equation. Further, Eq. (22) separates the self-energy matrix Σi1i2
m1m2

(t, t′) into a
time-local Hartree-Fock part (ΣHF) and a contribution Σcorr that accounts for electron-electron
(e-e) correlation and memory effects. However, as an exact treatment of e-e correlations is
impractical, we have to apply many-body approximations for which the second Born diagrams
provides one of the most basic models. Hence, besides the general form of the HF self-energy

ΣHF,i1i2
m1m2

(t) = −i

{
σ δi1i2

m1m2

∑
i3m3

gi3i3
m3m3

(t, t+) ũi1i3
m1m3

− gi2i1
m2m1

(t, t+) ũi2i1
m2m1

}
, (23)

where t+ denotes t→ t+ ε≥0 we, in second Born approximation, have

Σcorr,i1i2
m1m2

(t, t′) =
∑
i3m3

∑
i4m4

{
σ gi1i2

m1m2
(t, t′) gi3i4

m3m4
(t, t′) − gi1i4

m1m4
(t, t′) gi3i2

m3m2
(t, t′)

} ×
× gi4i3

m4m3
(t′, t) ũi1i4

m1m4
ũi2i3

m2m3
. (24)

Eqs. (23) and (24) involve the spin degeneracy factor σ ∈ {1, 2}, the matrix elements ũi1i2
m1m2

of
Eq. (17) and show a very simple form compared to the situation when a general basis is applied,
e.g. [4]. The reason for this is the subtle structure of the FE-DVR. In detail, the Hartree
term is completely diagonal [including a single sum over nb elements] and the exchange term
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involves only a product of two matrix elements. For the second-order Born terms, the degree of
simplification is even more drastic: In a general basis representation, two sums are required for
each full vertex point in the second-order self-energy diagrams and, additionally, a single sum
is needed for the start- and the end-point. This leads to a scaling with O(n6

b). However, in our
case, due to the diagonality of the two-electron integrals, cf. Eq. (17), the evaluation reduces
remarkably to a scaling with O(n2

b) per matrix element.
For the atomic and molecular model calculations to be outlined as first benchmarks of the

method in Sec. 3, we, in this contribution, restrict ourselves to the (equilibrium) ground-state
properties. For completeness, we give a short summary of the main computational steps. First,
in the FE-DVR picture, the Hartree-Fock equilibrium Green’s function, denoted g0(τ), follows
from

h0,i1i2
m1m2

[g0(0−)] = ti1i2
m1m2

+ vi1i2
m1m2

+ Σ0,i1i2
m1m2

[g0(0−)] , (25)

where g0,i1i2
m1m2(τ) is the HF approximation of gi1i2

m1m2
(t, t′)|t−t′=0+iτ with τ ∈ [−β, 0] and β is the

inverse temperature, and Σ0 is defined via Eq. (23), but with g being replaced by matrix g0.
Thereby, Eq. (25) has to be solved to self-consistency by iteration and as result we obtain

g0,i1i2
m1m2

(τ) =
∑
im

cii1mm1
fβ(εim − μ) e−τ(εi

m−μ)cii2mm2
. (26)

Here, the vector εim contains the energy eigenvalues of h0, the matrix cii
′

mm′ summarizes the
corresponding eigenvectors, and the chemical potential μ is determined by normalization of the
Fermi distribution: N =

∑
im fβ(εim − μ). Eq. (26) solves a simple differential equation, see

e.g. [4], and corrections due to e-e correlations in second Born approximation are obtained by
insertion into the Dyson equation [43] (the SKKBE in the limit t − t′ = 0 + iτ) for the full
Matsubara Green’s function gM (τ):

gM,i1i2
m1m2

(τ) = g0,i1i2
m1m2

(τ) + I(2) i1i2
m1m2

(τ) , (27)

I(2) i1i2
m1m2

(τ) =
∑
im

∫ β

0
dτ̄ g0,i1,i

m1m(τ − τ̄) I(1) ii2
mm2

(τ̄) ,

I(1) i1i2
m1m2

(τ) =
∑
im

∫ β

0
dτ̄

{
ΣM,i1i

m1m (τ − τ̄) − δ(τ − τ̄) Σ0,i1i
m1m

}
gM,ii2
mm2

(τ̄) ,

where ΣM (τ) = δ(τ)ΣHF(τ) + Σcorr(τ) with gM instead of g in Eqs. (23) and (24). The
convolution integrals in Eq, (27) are performed in sequence by direct integration. This has been
found to be more stable and controllable than the method applied before in Refs. [2, 4]. Once
the self-consistent gM (τ) is computed, we have direct access to many observables, e.g. the one-
electron density is obtained as n(x) =

∑
i1m1

∑
i2m2

χi1
m1

(x)χi2
m2

(x)gM,i1i2
m1m2 (0−). The total energy

is computed similar as in Refs. [43, 4]. Overall, in order to ensure the atoms and molecules being
in the ground state, we set the inverse temperature β = 100.

3. Performance for atomic and molecular models
As first benchmarks and preparatory work for the investigation of the temporal evolution of
small atoms and/or molecules following an external (e.g. laser-induced) perturbation, we here
consider their equilibrium-(initial-)state preparation within the FE-DVR context. As examples,
we focus on the He atom and the linear molecular ion H+

3 , modeled in one spatial dimension.
For both two-electron systems, the Coulomb potential is considered in the regularized form
u(|x− x′|) = [(x− x′)2 + 1]−1/2 which, from the physical point of view, allows for a transverse
extension of the few-particle wave function. Furthermore, e-e correlations are treated in second
Born approximation.
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Figure 2. a) Convergence of the Hartree-Fock ground-state energy for the 1D helium atom
against basis dimension nb. As indicated, each curve corresponds to a different arrangement of
the FEs within a total interval of 200 a.u. length. For the upper set of lines the FEs are equally
distributed, whereas for the lower set the central FE is one atomic unit wide, and the width of
neighboring elements is linearly increasing towards the boundaries. In addition, the number of
local DVR basis functions has been varied between ng = 2 and 15, see numbers on the curves.
b) He ground-state energy in second Born approximation (nb = 202) with respect to different
τ -grid parameters u and p.

3.1. The 1D helium atom
The helium atom is the most elementary closed-shell two-electron system. In one spatial
dimension, it is well modeled by the nucleus potential v(x) = −Z [(x− x0/2)2 + ρ]−1/2, where
the atomic number is Z = 2, x ∈ [0, x0], and ρ is a regularization parameter. In this setup, the 1D
helium atom serves as a fundamental ’testing ground’ for multi-electron calculations [36, 37, 39]
and provides many features of the single- and double-ionization dynamics including the so-
called knee structure [34, 35]. Considering the singlet state, we refine the model and set σ = 2
in Eqs. (23) and (24), and used ρ = 1.

Further, for the equilibrium calculations, we have used a FE-DVR basis that covers a total
interval of 200 a.u. length. This corresponds to a domain that is about 100 times larger than
the characteristic extension of the ground-state wave function or density, cf. Ref. [29]. Such
a grid extension is more than adequate to resolve the ground-state features of the model (to
be discussed here) but will become crucial, when the helium atom is perturbed by external
fields and, in turn, electrons start to occupy highly excited or continuum states. In this sense,
our results are benchmarks also with relevance for the computation of the system’s temporal
evolution. In particular, a grid with an extension of about 200 a.u. should be well capable to
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resolve the two-electron resonance states embedded within the one-electron continuum of dipole
spectra. This follows from the performance of the few-particle time-dependent Schrödinger
equation (TDSE) using absorbing potentials, e.g. [50] and references therein. We note, that also
in the FE-DVR approach, such imaginary one-electron potentials that damp reflections at the
interval boundaries are easily implemented, just allowing the matrix elements vi1i2

m1m2
in Eq. (12)

to be complex.
The explicit partitioning of the interval into finite elements has been organized as follows:

(case I) the interval is divided into equidistant segments, (case II) the central FE has a width
of one atomic unit and the width of the surrounding elements is linearly increasing towards the
interval boundaries. The effect of these segmentations on the Hartree-Fock ground-state energy
convergence of the helium atom is displayed in Fig. 2 a) as function of the total basis size. In
case I, for equidistant FEs, the convergence is relatively slow with nb and strongly depends on
the number of elements as well as on the number of local DVR basis functions used (see the
different symbols and lines). Consequently, more than nb > 550 functions are needed for the HF
energy to deviate by less than 10−4 Ha from the converged HF result EHF

limit = −2.2242096 Ha.
In case II, the situation is completely different as essentially more basis functions are available
in the center region of the interval. This enables a superior representation of the Matsubara
Green’s function GM (x, x′; τ) in coordinate space, and leads to adequate convergence at 200 to
300 FE-DVR basis functions with an error reduced by several orders of magnitude compared
to case I. Furthermore, the ground-state energy depends less on the number of elements. For
completeness, we note that, besides the total energy, an additional indicator for the basis quality,
is to look at how well the potential v(x) can be expanded into the chosen FE-DVR basis.

For case II with ne = 29 and ng = 7, we have computed the ground-state energy in second
Born approximation. Thereby, all quantities are found to be well converged with respect to the
basis size, compare with the HF case in Fig. 2 a). The time-argument τ in the Matsubara Green’s
function (τ ∈ [−β, 0]) has been discretized using a uniform power mesh [51] with parameters u
and p—for definition see e.g. Refs. [4, 43]. Fig. 2 b) indicates the convergence with respect to
these parameters, where the total number of τ -grid points is given by 2up + 1. At β = 100, a
mesh parameter p ≥ 10 ensures the particle number N =

∑
im gM,ii

mm (0−) being sufficiently stable
during iteration of the Dyson equation (27). Particularly, with more than 1000 grid points it is
possible to compute the ground-state energy to relatively high precision, E2ndB = −2.233419 Ha.
As result, the electron-electron correlations lower the total energy accounting for 66% of the
correlation energy and, hence (improving the HF result), approaches the exact ground-state
energy which is −2.2382578 Ha. For the discussion of other observables such as the one-electron
density in HF and second Born approximation, the reader is referred to Ref. [29].

3.2. The linear molecule H+
3

With more than two nuclei, the molecular ion H+
3 can, in 1D, only be realized in its linear

version [52], where the H-H bonds are oriented parallel to each other. Hence, the electrons move
along the molecular axis and the one-electron potential is modeled as

vd(x) =
[
(x− (x0 − d)/2)2 + 1

]−1/2
+

[
(x− (x0 + d)/2)2 + 1

]−1/2
+ [x2 + 1]−1/2 +

5
d
, (28)

where d/2 denotes the interatomic distance, and the last term (offset) collects all internuclei
interaction energy contributions. For the ground-state NEGF calculations, the coordinate space
has been constrained to an interval of 50 a.u. with a grid of ne = 13 FE being linearly increasing,
starting from a one atomic unit wide central element. In total, nb = 142 FE-DVR basis functions
have been used.

The total binding energy Eb of the singlet state is shown in Fig. 3 a) against distance d
for the exact solution of the TDSE (dotted [and triangles]), the Hartree-Fock (dashed) and the
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Figure 3. a) Binding-energy curves for the linear H+
3 molecule in one spatial dimension for

different approximations. The dotted line corresponds to the exact solution obtained from the
few-particle time-dependent Schrödinger equation (TDSE). The triangles denote the binding
energy of Ref. [40]. b) One-electron density at the equilibrium bond-lengths 2db: 4.3654 (HF),
4.5579 (second Born), and 4.7698 (exact). The dots indicate the self-consistent positions of the
nuclei. The gray curves indicate the corresponding potential vd(x) [scaled by 0.35 and shifted].

second Born approximation (solid). Over a broad range of internuclear distances, the second
Born approximation, thereby, accounts for about 60-70% of the correlation energy, and—leading
overall to a larger bond—essentially improves the HF result.

Furthermore, with a value of −1.3396 Ha, H+
3 has the same dissociation threshold as the

1D hydrogen molecule [29], but, in addition, leaves behind a positively charged hydrogen ion.
However, we note, that the Hartree-Fock and the second Born approximation, cannot resolve
this threshold. The reason is that the H+

3 molecule dissociates into open-shell fragments—two
hydrogen atoms and a single hydrogen ion. These cannot be represented within a spin-restricted
calculation (with σ = 2), and, hence, lead to a strong deviation of Eb in the limit of large d.
Regardless of this failure of the ansatz, the NEGF calculations are well capable to describe the
behavior of Eb around the minima in the binding energy curves. Also, the equilibrium positions
are consistently reproduced, and the correct trend is observed when e-e correlations are being
included: the bond-length db shifts to larger nuclear separations, for the specific values obtained
see caption of Fig. 3.

The electron ground-state density of the molecular ion is displayed in Fig. 3 b) together with
schematic curves for the spatial potentials vd(x), where d is twice the equilibrium internuclear
distance, cf. Eq. (28). In HF approximation (dashed curve), the density shows a pronounced
maximum in the central region of the molecule, whereas the exact density (dotted curve) is
essentially less peaked. However, also the exact result does not indicate onset of electron
localization, i.e. does not show separated maxima in nH+

3
(x). In second Born approximation,

corresponding to a lower total energy (cf. Fig. 3 a)), we resolve the correct trend of this density
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reduction. Moreover, replacing the self-consistent bond-lengths by the corresponding length
obtained from the TDSE (dash-dotted curves) only slightly improves the results for the Hartree-
Fock and the second Born approximation. This explains that the substantial differences in the
density profiles are unambiguously due to e-e correlation effects.

4. Conclusion
The FE-DVR ansatz (4) provides an elegant and very efficient way to treat binary interactions in
NEGF calculations for inhomogeneous quantum systems. To this end, the method uses a flexible
combination of grid (FE) and basis (DVR) strategies, which allows for simple, (semi)-analytical
formulas for the matrix elements of the kinetic-, potential- and, especially, the interaction-energy
operator, cf. Sec. 2.2. Further, for the most basic model that accounts for particle-particle
correlations—the second Born approximation—the use of a FE-DVR basis enables remarkable
scaling properties: Only O(n2

b) summations are required for the computation of a single matrix
element of the second-order self-energy instead of O(n6

b) summations that are needed in a general
basis approach.

Also, we emphasize that the FE-DVR space can, e.g. via finite-element variations, be well
adjusted to the problem considered and, thus, allows for an efficient expansion of the NEGF
[also for spatially extended hamiltonians] and quick convergence of the observables of interest.
This has been exemplified for the He atom and the triatomic molecule H+

3 in Sec. 3.1 and 3.2.
In addition, the method is found to be stable also for large grids [large basis sets with nb > 500]
and also for larger particle numbers N ≤ 20, considering interacting fermions in a harmonic
trap potential.

Finally, we believe that the FE-DVR method is attractive also for other classes of many-
body approximations, such as GW or T -matrix calculations, as it will likewise simplify the
computation of self-energy contributions of higher than second order. Moreover, though we, in
this contribution, focused on the solution of the Dyson equation, the formalism presented is, in
particular, well applicable in nonequilibrium situations solving the full two-time SKKBEs which
will be demonstrated in a forthcoming publication.
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