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Abstract
A nonequilibrium Green’s functions (NEGF) approach for spatially
inhomogeneous, strongly correlated artificial atoms is presented and applied
to compute the time-dependent properties starting from a (correlated) initial
few-electron state at finite temperatures. In the regime of moderate-to-strong
coupling, we consider the Kohn mode of a three-electron system in a parabolic
confinement excited by a short-pulsed classical laser field treated in the
dipole approximation. In particular, we numerically confirm that this mode
is preserved within a conserving (e.g., Hartree–Fock or second Born) theory.

PACS numbers: 05.30.−d, 73.21.−b

1. Introduction

‘Artificial atoms’ (AA) are inhomogeneous quantum few-particle Coulomb systems confined
in a trapping potential and show bound discrete electronic states, as they are occurring in
real atoms [1]. Most artificial atoms are realized in an (isotropic) parabolic confinement, and
quantum dots are a synonym convention for these systems, e.g., [2, 3]. But AAs are also formed
by ions in Penning and Paul traps [4, 5], charge carriers in semiconductor heterostructures [6–8]
(quantum wells) or electrons in metal clusters [9, 10]. AAs in one- (1D) and two-dimensional
(2D) entrapment show interesting properties far from ideal Fermi-gas behavior including
ring and shell structures—see the 2D ground-state configurations for N = 2, 3, . . . , 7
electrons displayed in figure 1. This is due to the externally controllable electron–electron
interactions which can lead to the formation of strongly coupled systems including correlation
phenomena.

Previous theoretical investigations of AAs mainly concern ground-state calculations and
approaches to thermodynamic equilibrium; see [3, 6] and references therein. The aim of
this paper is to present a time-dependent theory including moderate and strong correlations.
Following a quantum statistical approach, we thereby want to consider the system’s response
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Figure 1. Examples for the one-electron ground-state (GS) density nGS
N (r) of N = 2, 3, . . . , 7

electrons in an isotropic 2D trap for β = 100 and λ = 5.0. Figures (a)–(f ) display the result of
(symmetry broken) Hartree–Fock calculations. The side length of the density plots measures 8x∗

0
with x∗

0 = √
h̄/(m∗

eω0) and E∗
0 = h̄ω0.

to a (strong) short-pulsed laser field while being embedded into an environment of finite
temperature. To this end, in sections 3 and 4, we describe the NEGF method applied
to compute the (correlated) initial state which is then propagated in time according to the
Keldysh/Kadanoff–Baym equations. In section 5, we present results for a three-electron AA
in a 1D and 2D trap geometry.

2. Model

The d-dimensional N-electron Hamiltonian of an artificial atom in a time-dependent laser field
E(t) described in the dipole approximation reads

Ĥ (t) =
N∑

i=1

(
− h̄2

2m∗
e

∇2
i +

m∗
e

2
ω2

0r2
i + eE(t)ri

)
+

N∑
i<j

e2

4πεrij

, (1)

where the effective electron mass is given by m∗
e , the frequency ω0 adjusts the confinement

strength (and hence the density in the AA), e is the elementary charge, and ε = ε0εb denotes the
background dielectric constant where εb ≈ 10 is typical for semiconductor materials. Further,
the d-dimensional electron coordinates ri originate from the trap center and rij = |ri − rj |.

Hamiltonian (1) can be rewritten in a dimensionless form, using the transformations
{E → E/E∗

0 , r → r/x∗
0 }, where E∗

0 = h̄ω0 is the confinement energy and the (oscillator)
length x∗

0 = √
h̄/(m∗

eω0) denotes the characteristic spatial one-electron extension in the AA.
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Consequently, the system is characterized by a single coupling (or Wigner) parameter λ, which
relates the characteristic Coulomb energy EC = e2/(4πεx∗

0 ) to E∗
0 according to

λ = EC

E∗
0

= e2

4πεx∗
0 h̄ω0

= x∗
0

aB

, (2)

with aB being the effective electron Bohr radius. Hamiltonian (1) then transforms into the
dimensionless form

Ĥ λ(t) = 1

2

N∑
i=1

(−∇2
i + r2

i + γ (t)ri

)
+ λ

N∑
i<j

1

rij

, (3)

with γ (t) = eE(t)/
√

h̄m∗
eω0. The coupling parameter λ adjusts the influence of electron–

electron interactions and (quantum) correlations. In the case of λ � 1, the artificial atom
behaves similar to an ideal Fermi gas. For λ ∼ 1, the equilibrium state of the AA is Fermi
liquid like, whereas in the limit λ → ∞, it is x∗

0 	 aB , and quantum effects vanish in favor of
classical interaction dominated charge carriers [19]. For moderate coupling (λ � 1) the AAs
typically show spatially well-localized carrier density including Wigner molecule (Wigner
crystal-like) behavior [6]; see figure 1. Moreover, if the AA is not in its ground state (GS),
one has to take into account thermodynamic fluctuations due to a surrounding heat bath of
dimensionless temperature β−1 = kBT /E∗

0 . Below, all presented results are related to the
system of units {x∗

0 , E∗
0 } and in the definition of the NEGFs we take h̄ = 1.

3. Preparation of equilibrium states

Introducing electron annihilation (creation) operators ψ(†)(r1t1) acting in the Heisenberg
picture at a spacetime point 1 = (r1, t1), the second-quantized form of (3) reads

Hλ(t1) =
∫

ddr ψ̂ †(1)h0(1)ψ̂(1) +
∫∫

ddr ddr̄ ψ̂ †(1)ψ̂ †(1̄)w(r1 − r1̄)ψ̂(1̄)ψ̂(1), (4)

with the one-electron energy h0(1) = (−∇2
r1

+r2
1

)/
2+γ (t1)r1 and the interaction w(r1 −r1̄) =

λ|r1 − r1̄|−1 including a second spacetime point 1̄ = (r1̄, t1̄). In the following, we study
Hamiltonian (4) at finite temperatures β−1 by means of the one-particle nonequilibrium
Green function G(1, 1̄), which is defined on the Schwinger/Keldysh contour C (see,
e.g., [11, 12]) as

G(1, 1̄) = −i〈TCψ̂(1)ψ̂ †(1̄)〉, (5)

where TC denotes time ordering on C. G(1, 1̄) obeys the two-time Keldysh/Kadanoff–Baym
equation (KBE) [13]:

[i∂t1 − h(1)]G(1, 1̄) = δC(1 − 1̄) − i
∫
C

d2 W(1 − 2)G12(1, 2; 1̄, 2+), (6)

and its adjoint, where W(1 − 1̄) = δC(t1 − t1̄)w(r1 − r1̄) acts instantaneously with the contour
delta function δC , and 2+ indicates the time limit t2 → t2 + 0. Here, the two-particle Green
function,

G12(1, 2; 1̄, 2̄) = (−i)2〈TCψ̂(1)ψ̂(2)ψ̂ †(2̄)ψ̂ †(1̄)〉, (7)

appears as a generalization of the two-particle density matrix. In terms of G12,
we can formulate all relevant many-body approximations. For instance, substituting
G12(1, 2; 1̄, 2̄) → G(1, 1̄)G(2, 2̄) − G(1, 2̄)G(2, 1̄) yields the Hartree–Fock (HF)
approximation. Second- and higher-order approximations for G12 generally include
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integrations over a four-point vertex function � [15], and can be reformulated in terms of a
self-energy � accessible by diagram expansions known from ground-state many-body theory.

When in equation (4), we consider γ (t1) ≡ 0 for −∞ < t1 � t0, the AA stays in
thermodynamic equilibrium until at a time t1 > t0 γ (t1) becomes nonzero. Without loss of
generality we thereby can take t0 = 0. Specifying the time-independent single-electron part
of equation (4) as h0(r1) = h(1)|γ (t1)=0, the KBE then reduces, for t1,1̄ � 0, to the Dyson
equation

[−∂τ − h0(r1)]G
M(r1, r1̄; τ) = δ(τ ) +

∫
d2r̄

∫ β

0
dτ̄ �M

λ (r1, r̄; τ − τ̄ )GM(r̄, r1̄; τ̄ ). (8)

Here, the Matsubara Green’s function being defined as GM(1, 1̄) = GM(r1, r1̄; τ) =
G(r10 − iτ1, r1̄0 − iτ1̄), with τ = τ1 − τ1̄ ∈ [−β, β], characterizes the equilibrium (initial)
state of the AA. Further, on the right-hand side, we have introduced the self-energy �M

λ (1, 1̄) =
�M

λ (r1, r1̄; τ) according to −iW(1 − 2)G12(1, 2; 1̄, 2+)|t1,1̄�0
= �[G](1, 2)G(2, 1̄). A

conserving many-body approximation [13], i.e. an approximation for � that preserves density
(continuity equation), total energy and momentum, can be systematically derived from a
functional � such that �(1, 1̄) = δ�[G]/δG(1̄, 1). Important examples, being second and
higher order in the interaction W(1, 1̄), are self-energies of second Born [3], GW or T-matrix
type [13, 14]. Below, we consider the �-derivable HF and second Born approximation, while
applying a fully self-consistent GW scheme [16] that accounts for a dynamically screened
Coulomb interaction, summing up an infinite series of ring diagrams, is the subject of future
work.

At a given temperature β−1, most of the equilibrium properties of the AA system (1),
e.g. total energy, one-particle density and energy spectrum, are contained in GM ; see the
formulae in section 4.2 and take the limit t1 → 0. For the numerical techniques applicable
in solving equation (8) in a matrix form, see, e.g., [3, 17, 18]. In the HF approximation, the
self-consistent solution can be written as

GM(r1, r1̄; τ) =
nb−1∑
m=0

φ∗
m(r1)φm(r1̄)g

M
mm(τ),

(9)
gM

mm(τ) = fβ(εm − μ) e−τ(εm−μ) = e−τ(εm−μ)/(eβ(εm−μ) + 1),

with interaction-renormalized (effective single-electron) HF orbitals φm(r) [19], quantum
numbers m = 0, . . . , nb − 1, discrete energies εm and a chemical potential μ. Beyond
the HF level, GM will be no longer diagonal in the functions φm, and the respective
occupation probabilities will deviate from a Fermi–Dirac distribution, fβ(εm − μ), due to
additional electron scattering processes. In particular, the inclusion of electron–electron
correlations leads to orbital-dependent energy shifts and broadening in the HF spectrum
a(ω) = ∑

m δ(ω − εm); see [3].

4. Time propagation of initial states

When for t1 > 0 the laser field is switched on and γ (t1) �= 0, the quantum state of the
AA evolves in real time according to the KBE, equation (6) and its adjoint. Thereby, being
computed from the Dyson equation (8) in a self-consistent manner, the Matsubara Green’s
function serves as an initial (Kubo–Martin–Schwinger) condition for the time propagation. In
particular, for t0 = 0, one has

G(r10 − iτ1, r1̄0 − iτ1̄) = i[GM(r1, r1̄; τ1) − GM(r1, r1̄;−τ1̄)]. (10)

Beyond the mean-field level, all relevant initial correlations are taken into account via GM

and, consequently, evolve in time, leading to a correlated N-particle dynamics.
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4.1. Solving the Keldysh/Kadanoff–Baym equations

The expansion of the NEGF in terms of a HF basis, see equation (9), also advises us to solve
the real-time KBE in a matrix form [17, 20]. This means that we generally consider

G(1, 1̄) =
nb−1∑

m,n=0

φ∗
m(r1)φn(r1̄)gmn(t1, t1̄), (11)

with time arguments t1, t1̄ on the contour C, the coefficient matrix gmn(t1, t1̄) =
θ(t1, t1̄)g

>
mn(t1, t1̄) − θ(t1̄, t1)g

<
mn(t1, t1̄) of dimension nb × nb, and steady-state HF orbitals

φm(r) which generate a complete orthonormal set. Hence, gmn(t1, t1̄) = −i
〈
TCcm(t1)c

†
n(t1̄)

〉
are just the NEGFs with respect to the operators ĉ

†
m (ĉm) that create (annihilate) an electron in

the state m. Consequently, the diagonal elements [m = n] are directly related to the occupation
numbers (probabilities) of the HF orbitals, cf equation (17), whereas the off-diagonal elements
[m �= n] are connected with ‘interband’ excitations, i.e. the transition probabilities between
the energy levels.

Inserting expression (11), equation (6) and its adjoint then transform into integro-
differential equations for the matrix elements gmn(t1, t1̄) = (g)mn(t1, t1̄):

[i∂t1 − h(t1)]g(t1, t1̄) = δC(t1 − t1̄) +
∫
C

dt̄ Σ(t1, t̄ )g(t̄ , t1̄), (12)

g(t1, t1̄)[−i∂t1̄ − h(t1̄)] = δC(t1 − t1̄) +
∫
C

dt̄ g(t1, t̄)Σ(t̄ , t1̄), (13)

where the single-carrier energy is given by hmn(t1) = ∫
ddr1 φ∗

m(r1)h(1)φn(r1), and in the
adjoint equation (13) the operators are acting to the left. The explicit form of the self-energy
matrix �mn(t1, t1̄) at the HF level is

�HF
mn(t1, t1̄) = −iλδC(t1 − t1̄)

nb−1∑
k,l=0

[wmn,kl − wml,kn]g<
kl(t1, t1̄), (14)

with the two-electron integrals wmn,kl defined as

wmn,kl =
∫ ∫

ddr ddr̄ φ∗
m(r)φ∗

k (r̄)w(r − r̄)φn(r)φl(r̄). (15)

The detailed structure of Σ(t1, t1̄) = ΣHF(t1, t1̄) + Σcorr(t1, t1̄) in the second (order) Born
approximation is given, e.g., in [3, 20, 21].

For the real-time arguments in g(t1, t1̄), it is useful to introduce relative and center-of-mass
(c.m.) variables, tc.m. = (t1 + t1̄)/2 and trel. = t1 − t1̄. The Green’s functions with respect to
the c.m. time then account for the statistical (thermodynamic) properties of the artificial atom,
see definitions (16)–(19), while quantities with respect to trel. carry the dynamical (spectral)
information, cf a(ω) as defined at the end of section 4.2. Moreover, we note that equations
(12) and (13) can, in the HF approximation, be further simplified to a single-time equation
involving only tc.m.. More technical and numerical details for the time propagation of the
Green’s function matrix are to be found in [17, 20].

4.2. Dynamical quantities

The spatial one-particle density in the AA and the HF orbital-resolved occupation probability
of the state m are
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〈n̂〉 (r1, t1) = −iG(1, 1+) = −i
nb−1∑

m,n=0

φ∗
m(r1)φn(r1)g

<
mn(t1, t1), (16)

〈n̂m〉 (t1) = g<
mm(t1, t1). (17)

In a conserving approximation, the electron number N(t1) = ∑
m 〈n̂m〉 (t1) in the AA is

preserved in agreement with the continuity equation, i.e. ∂t1〈n̂〉(1) + div〈j〉(1) = 0 with the
current density 〈j〉(1) = − 1

2

{[∇r1 − ∇r1̄

]
G<(r1t1, r1̄t1)

}
r1=r1̄

.
The relevant energies involved are the kinetic and the potential energy:

〈Êkin+pot〉(t1) = −i
nb−1∑

m,n=0

[tmn + vmn(t1)]g
<
nm(t1, t1), (18)

with the corresponding definitions tmn = ∫
ddr1 φ∗

m(r1)
[−∇2

r1

/
2
]
φn(r1) and vmn(t1) =∫

ddr1 φ∗
m(r1)

[
r2

1

/
2 + γ (t1)r1

]
φn(r1), the HF energy

〈ÊHF〉(t1) = − i

2

nb−1∑
m,n=0

�HF
mn(t1)g

<
nm(t1, t1), (19)

and the correlation energy 〈Êcorr〉(t1) = − i
2

∫
C dt̄ Tr{Σcorr(t1, t̄)g(t̄ , t+

1 )}.
Other interesting quantities are, e.g., the time-dependent dipole moment 〈d̂〉(t1) =

−ie
∫

ddr1{r1G
<(r1t1, r1̄t1)}r1=r1̄

or the one-particle spectral function [3] a(ω, tc.m.) =
i
∑

m

∫
dtrel.eiωtrel. [g>

mm(t1, t1̄) − g<
mm(t1, t1̄)].

5. Numerical results

In this section, we study the dynamical properties of a three-electron AA, when, initially in
thermodynamic equilibrium, the system is excited by a single few-cycle laser pulse described
in the dipole approximation, cf equation (3). More precisely, the field is linearly polarized in
the x-direction and has the time dependence

γ (t) = E0 e−(t−tl )
2/(2τ 2

l ) cos(ωl(t − tl)), (20)

where E0 = El/
√

2π denotes the amplitude of the electric field, the Gaussian envelope is
centered at tl , the pulse duration (variance) is given by τl , and the oscillation frequency is ωl ;
cf figures 3(a)–(c).

As the response characteristics �(ωl) of the quantum system we define the amount of
energy that has been absorbed from the laser field for a fixed frequency ωl , i.e.

�(ωl) = 〈Êtot〉ωl
(t → ∞) − 〈Êtot〉(0). (21)

This quantity together with the time-dependent occupation probabilities 〈n̂m〉(t) allows for
the determination of (off)resonant nonequilibrium behavior (and nonlinear effects); see
sections 5.1 and 5.2.

The nonequilibrium behavior of the quantum system (1) is theoretically well known.
Driven by the laser field, the AA exactly responds according to the excitation of the center-of-
mass (Kohn or sloshing) mode. This is obtained from the Kohn theorem, and its generalization
to the case of an additional external dipole field; see [22] and references therein. Its statement
is that, independent of dimensionality, the center-of-mass coordinate R(t) = N−1 ∑

i ri (t) of a
parabolically confined, interacting electron system performs (equivalently to a single particle in
the AA) the motion of a forced harmonic oscillator, ¨|R| + ω2

0|R| = NeE(t)/m∗
e . Furthermore,
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this effect is accompanied by a rigid translation of the density profile 〈n̂〉 (r), since the particle
interaction appears only in the relative Hamiltonian and [Hc.m., Hrel.] = 0. The key point in
the present study is, however, that the Kohn theorem also holds when the interaction is treated
approximately, as long as density, total energy and momentum are preserved (the conserving
approximation), and also applies to zero and finite temperatures—for the proof see [22].

The following mean-field results for 1D and 2D have been obtained from NEGF
calculations with up to nb = 40 HF orbitals. The main limitations of the approach
are thereby (i) the basis size, which sets the dimension of the time-evolution matrix
U(t1) = exp(−i[h(t1) +ΣHF(t1)]t1) to be computed in each time step (diagonalizing h +ΣHF),
and (ii) the two-electron integrals wij,kl , equation (15), that generally require large memory
resources (scaling with n4

b) and need to be processed very frequently in the self-energy
expression Σ(t1, t1̄). With more than 50 000 time steps needed to achieve convergence, this
results in computing times of typically several hours on a single machine. For the correlated
time evolution of the AA in the second Born approximation, the propagation must be carried out
in the whole two-time plane (t1, t1̄). This is an even more intricate task as one needs to compute
all the higher-order collision integrals on the rhs of the KBE. However, these calculations are
currently near completion—examples are to be found in [17], and for applications on real
atoms and small molecules see [18, 20, 21].

5.1. The 1D case

For the 1D AA calculations in equilibrium and nonequilibrium, we, in equation (15), have
replaced the pure Coulomb interaction w(x − x̄) by λ[(x − x̄)2 + α2]−1/2 with α = 0.1 as
a regularization parameter. This is necessary to make the integrals wmn,kl finite1 and, in a
physical interpretation, allows for a small transversal spread of the wavefunction [2]. For
α � 0.1, all considered quantities are found to be converged, whereas for α ≈ 1, screening
effects are expected to be large leading to lower total energies. In 2D, we used α ≡ 0 as the
integrals converge.

We consider three electrons in a 1D artificial atom at β = 2. With λ = 2.0 the system
is tuned into the crossover regime between Fermi liquid-like and crystal-like behavior. The
equilibrium properties can be read from figure 2 for the HF and second Born approximation.
For the HF energy spectrum and the corresponding distribution function fβ(εm − μ) of
the equilibrium (initial) state, including its collisional renormalization in the second Born
approximation, see figure 2(a). The one-electron density 〈n̂〉(x) is displayed in figure 2(b).
Compared to the HF result (the solid curve, 〈ÊHF

tot 〉 = 8.790), here the inclusion of electron–
electron scattering (the dashed curve, 〈Ê2ndB

tot 〉 = 8.941) leads to a considerable reduction of
the density modulation, which is accompanied by an increase of the total energy of about
1.7%.

Starting from the HF Green’s function GM(r1, r1̄; τ), the AA was now propagated in time
under the presence of a laser field (centered at tl = 25) with amplitude El = 0.5 and frequency
ωl = 1.25ω0. What happens to the orbital occupations and the energies for different pulse
durations τl is shown in figures 3 and 4. In all cases, gradually, the HF orbitals m < 3 become
depopulated and the states m � 3 analogously become populated with the preservation of N(t).
Oscillations of the increased total, kinetic and potential energy, and 〈n̂m〉(t) thereby occur with
twice the confinement frequency. In figures 3(a) and 4(a), respectively, the laser excitation is
such that the N-particle dynamics is decelerated after the pulse has passed. Consequently, we

1 In homogeneous systems, the integrals appearing in the interaction kernel (the rhs of equations (12) and (13)) may
diverge at large electron–electron distances r1 − r1̄. However, in finite systems, this is generally not the case since
the one-electron density 〈n̂〉(r1) vanishes for r1 → ∞.
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Figure 2. Thermodynamic properties of N = 3 charge carriers in the 1D AA with λ = 2.0 and
β = 2. (a) HF distribution function fβ(εm −μ) (the solid curve) and renormalization at the second
Born level (the dashed curve). For comparison, the dotted curve shows the ideal system (λ ≡ 0)

with energies ε0
m = m + 1/2. The triangle marks the position of the HF (ideal) chemical potential

μ = 6.1692 (μ0 = 2.9989). (b) Density profile 〈n̂〉(x) for the ideal system as well as for the HF
and second Born approximation.
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Figure 3. Nonequilibrium behavior of the N = 3 AA system (1D) with parameters λ = 2.0
and β = 2. (a)–(c) show the mean-field dynamics of the HF orbital occupation probabilities
〈ni〉 (t) at a near-resonant laser frequency ωl = 1.25ω0 and three different pulse durations τl . The
corresponding pulse shapes γ (t) are indicated above the figures.

nearly recover the initial state characterized by 〈n̂m〉(0) and 〈Êtot〉(0). Also, for different pulse
durations, i.e. different spectral profiles of the laser, the maximum laser energy absorption
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Figure 4. For the laser-irradiated artificial atom [ωl = 1.25ω0] also considered in figure 3, (a)–
(c) show the mean-field dynamics of the relevant energy contributions in dependence of the pulse
duration. For τl = 10, the AA returns after the excitation is almost into its initial state (off-resonant
situation). Whereas, in figures (b) and (c) the spectral width of the laser frequency is essentially
increased compared to (a), leading to the AA remaining in an excited state of the Kohn mode (the
resonant case). Potential and kinetic energies thereby oscillate out of the phase with exactly double
confinement frequency ω0, while the HF energy stays constant.
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Figure 5. Response characteristics �(ωl), equation (21), for the pulsed-laser excitation of N = 3
electrons in the 1D artificial atom. The system parameters are as in figure 2. The AA shows
resonance behavior at the confinement frequency only, i.e. for ωl = ω0, and responds via the c.m.
motion (Kohn mode)—rigid translation of the whole density. With increasing pulse durations τl

(sharpened laser frequency) the resonance curves become more and more peaked.
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Figure 6. Thermodynamic initial state of the 2D artificial atom (N = 3) at λ = 2.0 and β = 2 (in
the HF approximation). (a) Single-electron density profile 〈n̂〉(r) which is rotationally symmetric.
(b)–(g) Energetically lowest spatial, HF states φm(r) with orbital energies ε0, . . . , ε5 where ε1 and
ε2 as well as ε3 and ε4 are degenerate. The arrows in (c) and (d) mark the direction of polarization
of the laser field γ (t), equation (20).
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Figure 7. Mean-field dynamics of the HF orbital occupation probabilities 〈n̂m〉 (t) = nm for three
charge carriers in a 2D artificial atom with the coupling parameter λ = 2.0 and inverse temperature
β = 2. The laser frequency is again near resonant, ωl = 1.25ω0, and the pulse duration is τl = 5.
In the initial state the occupation numbers n1 and n2, n3 and n4 as well as n6 and n7 are practically
pairwise degenerate, compare with the energy spectrum displayed in figure 6.

is observed at the confinement frequency ω0, cf the response function �(ωl) in figure 5. In
addition, the single resonance peak at ωl = ω0 sharpens with the increase of τl . Consider
now the spatial dynamics. We observe in all cases that the center of mass of the AA, R(t),

performs a harmonic oscillation with frequency ω0 while the whole density profile itself is
translated rigidly. Accompanying this fact, EHF is constant in time; see figure 4. Thus, we
numerically confirm that the Kohn theorem is satisfied.
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5.2. The 2D case

For the three-electron AA in 2D, we have chosen the same system parameters, λ = 2.0 and
β = 2—however, no regularization parameter α was needed in the two-electron integrals
wmn,kl . The (almost) rotationally symmetric density profile for the equilibrium state is shown
in figure 6 and indicates a ring-like structure. It is instructive to note that the HF solution of the
Dyson equation leads to orbitals φm(r) that are in general arbitrarily oriented in space; compare
figures 6(b)–(g). Together with the energetically degenerate states m = 1 and 2 (m = 3 and 4,
etc), this has the following consequence on the dipole excitation. As degenerate orbitals can
be differently oriented relative to the laser field, in the time evolution of the artificial atom this
degeneracy is lifted. In the present case, the orbitals m = 1 and m = 2 (see figures 6(c) and
(d)) are almost aligned with the diagonals (dotted lines), nevertheless the small deviations are
sufficient to clearly influence the evolution of the occupation numbers 〈n̂m〉(t); see 〈n̂1〉 and
〈n̂2〉 as well as 〈n̂3〉 and 〈n̂4〉 in figure 7.

6. Conclusion and outlook

We have presented an analysis of femtosecond relaxation of few-particle artificial atoms during
and after a short laser pulse. The method of NEGF was shown to be efficient to describe the
dynamics even in the range of strong Coulomb correlations. The numerical solution of the
KBE reveals that the c.m. (Kohn or sloshing) mode is well reproduced already for the most
simple many-body ansatz, the HF approximation. Besides partial compensation of interband
transitions, we expect no qualitative change in the presented results, when higher order effects,
e.g. correlations at the second Born level, are being included during time propagation. The
amount of compensation is thereby determined by the influence of correlations on the one-
electron spectrum [3] which undergoes shifting and broadening in the discrete HF energies.
Moreover, the collisional renormalization is typically small for quantum systems in traps
[3, 17].

Numerically, the c.m. mode excitation can serve as a very sensitive test for the NEGF
calculation (and any other numerical code) involving quantum many-body approximations
[22]. To investigate the correlated dynamics within the frame of the second Born approximation
is the subject of ongoing work.
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[2] Jauregui K, Häusler W and Kramer B 1993 Europhys. Lett. 24 581–7
[3] Balzer K, Bonitz M, van Leeuwen R, Dahlen N E and Stan A 2008 Phys. Rev. B submitted

(arXiv:cond-mat/08102425)
[4] Wineland D J, Bergquist J C, Itano W M, Bollinger J J and Manney C H 1987 Phys. Rev. Lett. 59 2935
[5] Brey L, Johnson N F and Halperin B I 1989 Phys. Rev. B 40 10647
[6] Filinov A V, Bonitz M and Lozovik Yu E 2001 Phys. Rev. Lett. 86 3851

Filinov A V, Lozovik Yu E and Bonitz M 2000 Phys. Stat. Sol. (b) 221 231
[7] Kouwenhoven L P, Austing D G and Tarucha S 2001 Rep. Prog. Phys. 64 701
[8] Jefferson J H and Häusler W 1997 arXiv:cond-mat/9705012
[9] de Heer W A 1993 Rev. Mod. Phys. 65 611

11

http://dx.doi.org/10.1038/379413a0
http://dx.doi.org/10.1209/0295-5075/24/7/013
http://www.arxiv.org/abs/cond-mat/08102425
http://dx.doi.org/10.1103/PhysRevLett.59.2935
http://dx.doi.org/10.1103/PhysRevB.40.10647
http://dx.doi.org/10.1103/PhysRevLett.86.3851
http://dx.doi.org/10.1088/0034-4885/64/6/201
http://www.arxiv.org/abs/cond-mat/9705012
http://dx.doi.org/10.1103/RevModPhys.65.611


J. Phys. A: Math. Theor. 42 (2009) 214020 K Balzer and M Bonitz

[10] Manninen M and Reimann S M 2007 arXiv:cond-mat/0703292
[11] Bonitz M 1998 Quantum Kinetic Theory (Stuttgart: B G Teubner)

Kremp D, Bornath Th, Bonitz M and Schlanges M 1999 Phys. Rev. E 60 4725
[12] Keldysh L V 1964 Zh. Eksp. Teor. Fiz. 47 1515

Keldysh L V 1965 Sov. Phys.—JETP 20 235
[13] Kadanoff L P and Baym G 1962 Quantum Statistical Mechanics (New York: Benjamin)
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