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Abstract
The dynamics of fluctuations is considered for electrons near a positive ion or for
charges in a confining trap. The stationary nonuniform equilibrium densities are
discussed and contrasted. The linear response function for small perturbations
of this nonuniform state is calculated from a linear Markov kinetic theory
whose generator for the dynamics is exact in the short time limit. The kinetic
equation is solved in terms of an effective mean field single particle dynamics
determined by the local density and dynamical screening by a dielectric function
for the nonuniform system. The autocorrelation function for the total force on
the charges is discussed.

PACS numbers: 52.27.−h, 52.25.−b, 51.10.+y, 52.58c

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Consider a system of N charges in a spherical container of radius R. An external potential
centered at the origin exerts an attractive central force. The Hamiltonian is

H =
N∑

α=1

(
1

2
mv2

α + Vc(rα) + Vb(rα) + Vw(rα)

)
+

1

2

N∑
α

N∑
γ �=α

V (rαγ ) (1)

where rα and vα are the position and velocity of charge α. The repulsive interaction
potential between particles α and γ is denoted by V (rαγ ) where rαγ ≡ |rα − rγ |. The
external ‘confinement’ potential Vc(rα) is the same for all particles, and Vw(rα) is the wall
potential that is zero inside the container and infinite otherwise. Charged systems are of direct
relevance e.g. to dusty plasmas and ions in traps. For neutral systems Vb(rα) is the interaction
of each particle with a uniform neutralizing background, corresponding to an OCP or jellium
with an attractive trap at the origin.
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An example that has been studied recently is jellium with a point positive ion of charge
number Z at the origin [1, 2]. At equilibrium the electron density is enhanced (partial
confinement) near the origin and approaches a uniform limit far from the ion, for sufficiently
large R, due to charge neutrality. An opposite extreme is a system of charges in a strong trap
such that they are localized in a finite domain away from the wall and their density vanishes
outside this domain (complete confinement). There is a continuous mapping between these
two limiting cases, controlled by the relative strengths of the repulsion between particles and
the strength and form of the confining potential. The discussion of these cases here will be
limited to classical statistical mechanics.

2. Equilibrium density

In the absence of a confining potential the equilibrium density may be uniform (charge
neutral) or nonuniform (charged). In general the confining potential will induce a nonuniform
equilibrium density in any case. Formally it is determined from the exact Yvon–Born–Green
equation [3]

dn(r1)

dr1
+ βn(r1)

dVc(r1)

dr1
= −β

∫
dr2(n(r1, r2) − n(r1)nb)

dV (r21)

dr1
, (2)

where n(r1, r2) is the joint density for two charges and nb is the density of the uniform
neutralizing background. A reasonable approximation is the hypernetted chain approximation
(HNC) [3, 4],

d

dr1

[
ln n(r1) + βVc(r1) −

∫
dr2(n(r2) − nb)c(r21)

]
= 0. (3)

The solutions to this equation are quite rich, reflecting the competition between the
attraction of Vc and the renormalized repulsion of c(r21). They have been described in some
detail for the case of the positive ion in jellium [4]. Here we report on some preliminary results
for the qualitatively different case of weakly coupled charges in a harmonic trap Vc(r) = kr2/2
with nb = 0. There is then a competition between Coulomb repulsion and trap attraction,
with charge density enhanced near the wall or near the center, respectively. These effects are
balanced when ωm = ωc, leading to a uniform density at all temperatures. Here ωm = ωp/

√
3

is the Mie plasma frequency (ω2
p = 4πnq2/m) and ωc = √

k/m is the frequency associated
with the harmonic trap. More generally, when ωc > ωm the charges are increasingly drawn
away from the wall at lower temperatures (i.e., kinetic energy relative to trap energy decreases),
approaching at T = 0 a uniform density for r < R0 = (ωm/ωc)

2/3R and zero density for
R0 < r [5]. In the opposite case of ωc < ωm the Coulomb repulsion dominates and the
particle density is enhanced at the wall. At lower temperatures the density becomes sharp at
the walls—a ‘Coulomb explosion’ that is restrained by the external walls. This behavior is
illustrated in figure 1 for ωc/ωm = 2 and for ωc/ωm = 1/2, at T = 1, 0.1 and 0.01.

3. Linear response

Consider a perturbation of the nonuniform equilibrium state by an external potential of the form
Uext(t) = ∑N

α=1 Vext(rα, t) = ∫
drVext(r, t )̂n(r), where n̂(r) is the phase function representing

the particle density. Then, to linear order in Vext(r, t) the response of the average particle
density to this perturbation is [6]

δ〈̂n(r,t)〉 =
∫ t

0
dt ′

∫
dr′χ(r, r′, t − t ′)Vext(r

′, t ′), (4)
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Figure 1. Temperature dependence of densities for trap-dominated (left) and Coulomb-dominated
(right) conditions.

with the response function

χ(r, r′, t) = −β∂t 〈̂n(r)̂n(r′,−t)〉e = β∇r′ · 〈̂n(r, t)j(r′)〉e. (5)

The brackets 〈〉e denote an equilibrium ensemble average. The second equality follows
from the conservation law ∂t n̂(r, t) + ∇r · j(r, t) = 0, and the stationarity of the equilibrium
ensemble. The response function χ(r, r′, t) provides an appropriate object for studying the
possible modes of excitation that are supported by the system. An alternative equivalent
instrument is the dielectric function ε(r, r′; t) defined in analogy with electrodynamics

ε−1(r, r′; t) ≡ δ(r − r′) δ(t) +
∫

dr′′χ(r, r′′; t)V (|r′′ − r′|). (6)

4. Markov kinetic theory

The evaluation of the response function is a difficult many-body problem. The conditions of
interest include both strong confinement and possibly strong charge correlations, so there is
no small parameter available for simplifications. Instead, a non-perturbative Markov kinetic
theory has been discussed recently in this context [2]. It is based on approximating the formal
generator for dynamics in the single particle phase space by its exact form at t = 0. This leads
to a mean field theory of the linear Vlasov form, but with both the confining potential and the
charge–charge potential renormalized by the initial equilibrium correlations. The analysis of
[2] can be extended in a straightforward way to the system considered here with the result

χ(r, r′, t) →
∫ t

0
dt ′

∫
dr1ε

−1(r, r1; t − t ′)χ0(r1, r′, t ′), (7)

where χ0(r′′, r′, z) is the response function for confined particles without the interparticle
interactions (V (|r − r′|) = 0)

χ0(r, r′, t) = −βn(r)
∫

dvφ(v) e−L0tv · ∇rδ(r − r′), (8)

φ(v) is the Maxwellian, and where the generator L0 for the effective single particle dynamics
is

L0 = v · ∇r − m−1∇rVc(r) · ∇v. (9)
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The renormalized confinement potential is determined from the equilibrium density by
Vc(r) ≡ −β−1 ln n(r). Also, ε(r, r′; t) is

ε(r, r′; t) = δ(r − r′)δ(t) −
∫

dr′′χ0(r, r′′, t)V(r′′, r′), (10)

where the renormalized charge–charge potential, V(r, r′), is defined in terms of the direct
correlation function by V(r, r′) = −β−1c(r, r′).

Further progress requires evaluation of χ0(r, r′, t) whose dynamics is determined from
the effective single particle charge dynamics in the presence of the confinement potential.
This can be quite complex over the whole range of weak to strong confinement, and has been
discussed in some detail for the case of a central positive ion in jellium [2]. The autocorrelation
function for the total force on the charges was studied as a function of the charge number
on the central ion. It was found that a simple representation of the single particle trajectories
in terms of bound and free states provided an accurate analytical description from weak to
strong ion–electron interaction.

Preliminary studies of the harmonic trap suggest the possibility of a simplification in that
case as well. As noted above, the low temperature limit leads to a uniform density inside a
sphere of radius R0. Since the effective potential Vc(r) for the dynamics is determined from
this potential, χ0(r, r′, t) becomes the correlation function for free particles inside a sphere.
An exact evaluation of the force autocorrelation function in terms of all response frequencies
is possible in this case [7].
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