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The idea of treating quantum systems by semiclassical representa-
tions using effective quantum potentials (forces) has been success-
fully applied in equilibrium by many authors, see e.g. [D. Bohm,
Phys. Rev. 85 (1986) 166 and 180; D.K. Ferry, J.R. Zhou, Phys.
Rev. B 48 (1993) 7944; A.V. Filinov, M. Bonitz, W. Ebeling, J. Phys.
A 36 (2003) 5957 and references cited therein]. Here, this idea is
extended to nonequilibrium quantum systems in an external field.
A gauge-invariant quantum kinetic theory for weakly inhomoge-
neous charged particle systems in a strong electromagnetic field
is developed within the framework of nonequilibrium Green’s
functions. The equation for the spectral density is simplified by
introducing a classical (local) form for the kinetics. Nonlocal quan-
tum effects are accounted for in this way by replacing the bare
external confinement potential with an effective quantum poten-
tial. The equation for this effective potential is identified and
solved for weak inhomogeneity in the collisionless limit. The
resulting nonequilibrium spectral function is used to determine
the density of states and the modification of the Born collision
operator in the kinetic equation for the Wigner function due to
quantum confinement effects.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Correlated charged particles in external confinement potentials are of growing interest in many
fields of physics. Examples are valence electrons in metal clusters, e.g. [4–6], electrons in quantum
c. All rights reserved.
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dots, e.g. [7–9], dusty plasmas [10,11] or trapped ultracold atoms or ions [12,13]. Of special rele-
vance is the response of these systems to a time-dependent electromagnetic field including, in par-
ticular, high intensity fields generated by novel radiation sources like short-pulse lasers or free
electron lasers. Being exposed to such fields, the charged particle ensemble will typically be driven
far away from equilibrium. To describe these phenomena, a general nonequilibrium approach is
necessary which consistently includes field–matter interaction and many-particle and quantum
effects.

Nonequilibrium Green’s functions provide a powerful method to treat strong field effects in
quantum many-body systems, thereby fully perserving conservation laws [15a,15b]. and have been
successfully used by many authors; for an overview cf. [14–16] and references therein. Among the
central problems is that the results of many-body approximations (such as gradient expansions)
are known to be dependent on the chosen gauge. Therefore, an explicit gauge-invariant theory
[17] provides a convenient starting point from which approximations can be systematically de-
rived. This method turned out to be fruitful in many fields including semiconductor quantum
transport, e.g. [16], and dense quantum plasmas [19,20] and laser plasmas [21], for a recent over-
view see [22].

The latter results were limited to spatially homogeneous systems. For the present case of spa-
tially confined systems it is necessary to extend them to the inhomogeneous case. In many situa-
tions of trapped particles the confinement potential is varying relatively smoothly and slowly
compared to the inter-particle distance or the mean free path, which allows us to directly extend
previous works [19,20]. In previous papers [23–25] first results along this path have been presented
for valence electrons in metal clusters. The objective here is to give a brief review of this gauge
invariant nonequilibrium Green’s function representation (Sections 2.1 and 2.2), and a practical
application to obtain a quantum kinetic theory of confined particles (both fermions and bosons)
in a strong electromagnetic field. The central new feature of this analysis is the inclusion of the
quantum effects associated with both the confining potential and external fields via the introduction
of a nonequilibrium local quantum potential which generalizes earlier concepts of stationary quan-
tum potentials, see e.g. Ref. [1–3,30,31]. This is described in Section 2.3 and is used to determine the
spectral function and spectral density in the collisionless limit as a function of this potential and
arbitrary external electromagnetic field. The corresponding self-consistent equation for the quantum
potential is solved in Section 3 for a slowly varying (in space and time) confining potential. Explicit
forms for the spectral density and density of states are considered to demonstrate the quantum
effects.

The kinetic theory for the Wigner distribution in the Born approximation is considered in Section 4.
It is noted that the nonlocal quantum effects of the confining potential in this equation lead to a dif-
ferent quantum potential, using an approach similar to that of Section 3 for the spectral density. The
details of this potential are not pursued here. Instead, attention is focused on the effects of the spectral
density on the collision operator. Coulomb collisions are described by eliminating the two-time cor-
relation function via the generalized Kadanoff–Baym ansatz [18–20]. The resulting collision operator
is expressed in terms of the spectral functions. Using the results of Section 3 these are expressed in
terms of the quantum potential, showing how the Coulomb collisions are modified by quantum effects
associated with this confinement potential.
2. Gauge-invariant quantum kinetic theory of trapped particles in a strong electromagnetic field

In this paper, we consider an ensemble of N trapped correlated quantum particles subject to a
strong time-dependent classical electromagnetic field which are described by the Hamiltonian
bH ¼XN

i¼1

�
�h
i
ri �

ea

c
Aðri; tÞ

� �
þ /ðri; tÞ þ Vðri; tÞ þ

XN

j<i

e2
a

jri � rjj

( )
: ð1Þ
Here a labels the particle species, �ðp̂Þ is the single-particle energy dispersion, e.g. band structure, and
V is the confinement potential, e.g. an external trapping potential that can be time dependent.
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2.1. Kadanoff–Baym/Keldysh equations

The field theoretical description of quantum particles is based on the bosonic/fermionic creation
and annihilation operators wy and w which are defined to guarantee the spin statistics theorem
wð1Þwð10Þ � wð10Þwð1Þ ¼ wyð1Þwyð10Þ � wyð10Þwyð1Þ ¼ 0;

wð1Þwyð10Þ � wyð10Þwð1Þ ¼ dð1� 10Þ;
where t1 ¼ t01 has been assumed, and 1 � ðr1; t1; s3
1Þ. Below, we will drop the spin index as it is not rel-

evant for our analysis. The nonequilibrium state is described by the two-time correlation functions
which are statistical averages (with the initial density operator of the system) of field operator
products
g>ð1;10Þ ¼ 1
i�h
hwð1Þwyð10Þi; g<ð1;10Þ ¼ � 1

i�h
hwyð10Þwð1Þi; ð2Þ
where in nonequilibrium, g> and g< are independent from each other and contain the complete
dynamical and statistical information. In the present case, we will be interested in the one-particle
density matrix obtained from the function g< along the time diagonal according to
F1ðr1; r01; tÞ ¼ �i�hg<ð1;10Þjt1¼t01
; ð3Þ
and the spectral function from values across the diagonal in the t1—t01-plane
að1;10Þ � i�h g>ð1;10Þ � g<ð1;10Þ
� �

¼ i�h gRð1;10Þ � gAð1;10Þ
� �

; ð4Þ
where gR=A are the retarded and advanced Green’s functions
gR=Að1;10Þ ¼ �H½�ðt1 � t01Þ� g>ð1;10Þ � g<ð1;10Þ
� �

: ð5Þ
The equations of motion for the two-time correlation functions are the Kadanoff–Baym/Keldysh equa-
tions (KBE) which, in the presence of a strong homogeneous electromagnetic field and an inhomoge-
neous confinement potential V, read [23]
i�h
o

ot1
� � �h

i
r1 �

ea

c
Aðt1Þ

� �
� Vð1Þ

� �
g?ð1;10Þ ¼

Z
d�r1R

HFð1;�r1t1Þg?ð�r1t1;1
0Þ

þ
Z t1

t0

d�1½R>ð1; �1Þ � R<ð1; �1Þ�g?ð�1;10Þ

�
Z t01

t0

d�1R?ð1; �1Þ g>ð�1;10Þ � g<ð�1;10Þ
� 	

; ð6Þ
and have to be fulfilled together with the adjoint equation. The l.h.s. of Eq. (6) contains all single-par-
ticle terms, whereas the r.h.s. contains all corrections due to mean field, exchange and correlations.
Further, t0 denotes the initial time where the system is assumed to be uncorrelated (otherwise, the
equations have to be supplemented with an initial correlation contribution to R, cf. [26,27]). RHF is
the Hartree–Fock self-energy (Hartree mean-field plus exchange energy) and R? are the correlation
self-energies which describe collision processes, ionization and so on.

The equations of motion for the correlation functions (6) are completely general. They include an
arbitrary electromagnetic field and confinement potential as well as any kind of correlation and scat-
tering effects. These equations can be solved directly or used, via the reconstruction ansatz, to derive a
closed equation for the density matrix (3). For the purposes here, where analogy with corresponding
classical forms are exploited, an equivalent representation, the Wigner representation, is more appro-
priate. This is obtained by first introducing the center of mass and relative variables
R ¼ r1 þ r01
2

; T ¼ t1 þ t01
2

; r ¼ r1 � r01; s ¼ t1 � t01: ð7Þ
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The Wigner representation for a function of r1; r01; t1; t01 is obtained by Fourier transform with respect
to r in the new coordinates. For example, the density matrix F1 R þ r

2 ;R � r
2 ; t


 �
� FðR; r; tÞ, for which

s ¼ 0, T ¼ t, becomes in the Wigner representation
f ðp;R; tÞ ¼ �i�hg< p;R; t1; t01

 �

jt1¼t01¼t : ð8Þ
where f ðR;p; tÞ is the Fourier transform of FðR; r; tÞ. In the presence of external electromagnetic fields,
it is useful to modify this Fourier transform to assure gauge invariance, as described in the next
subsection.

2.2. Gauge-invariant Fourier transform of the KBE

It is well known that the electromagnetic field can be introduced in various ways (gauges) which
may lead to essentially different explicit forms of the resulting kinetic equations. Although alternative
derivations are successfully applied too, gauge invariance becomes a particular problem if the result-
ing kinetic equations are treated by means of approximations, such as retardation or gradient expan-
sions, e.g. [16]. To keep the theory as general as possible and to avoid these difficulties, we will
formulate the theory in terms of correlation functions which are made explicitly gauge-invariant.

In this section, we use a co-variant 4-vector notation as it makes the following transformations
more compact and symmetric. The corresponding definitions are
Al ¼ ðc/;AÞ; xl ¼ ðcs; rÞ; Xl ¼ ðct;RÞ;
and the conventions al ¼ ða0; aÞ; al ¼ ða0;�aÞ and albl ¼ a0b0 � ab are being used.
The Kadanoff–Baym/Keldysh equations (6) remain covariant under gauge transformations vðxÞ, i.e.

under the following transformations of the potentials and field operators [23,19]
eAlðxÞ ¼ AlðxÞ � olvðxÞ; ~waðxÞ ¼ e
i
�h

ea
c vðxÞwaðxÞ; ð9Þ
leading to the gauge transform of the Green’s functions
~gaðx;XÞ ¼ e
i
�h

ea
c v Xþx

2ð Þ�v X�x
2ð Þ½ �gaðx;XÞ:
Following an idea of Fujita [17], we introduce a gauge-invariant Green’s function ~gaðk;XÞ which is gi-
ven by the modified Fourier transform
~gðk;XÞ ¼
Z

d4x

ð2pÞ4
exp i

Z 1
2

�1
2

dkxl kl þ ea

c
AlðX þ kxÞ

h i( )
gðx;XÞ: ð10Þ
Then under any gauge transform (9) it is seen that the phase factors in the transformation to ~gaðx;XÞ
cancel those in the transformation to eAlðxÞ in the modified Fourier transform, leading to the invari-
ance ~gaðk;XÞ � gaðk;XÞ.

In the following, we focus on spatially homogeneous electric fields and use the vector potential
gauge
A0 ¼ / ¼ 0; A ¼ �c
Z t

�1
d�t Eð�tÞ: ð11Þ
In this case, the time part of the transform (10) becomes the usual Fourier transform, without any field
modification. Applying first the spatial part of the transform (10) to Eq. (6) yields the gauge-invariant
quantum kinetic equation in Wigner representation [23]
i�h
o

ot1
� i�h

KA
a ðt1; t01Þ
t1 � t01

rk � �
�h
2i
rR þ k� KA

a ðt1; t01Þ
� �( )

~g?a k;R; t1; t01

 �

�
Z

dr
Z

dk1

2p�hð Þ3
e�

i
�hr k�k1ð ÞVeff R þ r

2
; t1

� 

~g?a k1;R; t1; t01

 �

¼ eI?Fa
k;R; t1; t01

 �

þeI?a k;R; t1; t01

 �

; ð12Þ
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where the Hartree mean field RH
a is local (momentum independent) and, therefore, can be included

into the effective confinement potential
VeffðR; tÞ � VðR; tÞ þ RH
a ðR; tÞ: ð13Þ
The electromagnetic field enters Eq. (12) via the field-dependent momentum
KA
aðt1; t01Þ �

ea

cðt1 � t01Þ

Z t1

t01

dt00½Aðt1Þ � Aðt00Þ� ¼ ea

t1 � t01

Z t1

t01

dt00 t01 � t00

 �

Eðt00Þ: ð14Þ
Further, the r.h.s. of Eq. (12) contains all two-particle and higher order contributions to the dynamics
in excess of the Hartree mean-field: the exchange contribution eI?Fa

and the collision integrals eI?a . The
gauge-invariant collision integrals are
eI?a ¼ Z t1

t0

d�t1
eR>

a ðk1;R; t1;�t1Þ � eR<
a ðk1;R; t1;�t1Þ

n o
~g?a ðk2;R;�t1; t01Þ

�
Z t01

t0

d�t1
eR?a ðk1;R; t1;�t1Þ ~g>a ðk2;R;�t1; t01Þ � ~g<a ðk2;R;�t1; t01Þ

� �
; ð15Þ
with k1 ¼ kþ ea
c

R t1
t01

dt0 Aðt0 Þ
t1�t01
� ea

c

R t1
�t1

dt0 Aðt0 Þ
t1��t1

and k2 ¼ kþ ea
c

R t1
t01

dt0 Aðt0 Þ
t1�t01
� ea

c

R �t1
t01

dt0 Aðt0 Þ
�t1�t01

. The equations of
motion (12) and the adjoint for the two-time correlation functions are the basis for a very general
analysis of the nonequilibrium behavior of confined quantum particles in a strong time-dependent
electric field. In principle, their direct numerical solution is possible, following previous numerical
works for spatially homogeneous charged particle systems, e.g. [14,28,29]. Alternatively, one can
use these equations as a starting point for analytical derivations. In particular, these equations directly
yield the gauge-invariant equation for the Wigner distribution function which was obtained in Refs.
[23,24].

2.3. Spectral properties of particles in a strong field

The strength of the Green’s functions approach is that both statistical and dynamical properties,
described by the Wigner function and the spectral function, are treated self-consistently. This is of par-
ticular importance if approximations are being developed. In this section, the equation for the spectral
function is obtained in the Wigner representation. The resulting approximate spectral function ob-
tained is then used to evaluate the collision operator of the kinetic equation in Section 4.

The spectral information is obtained by considering the Green’s functions ~g?a ðk;R; t1; t01Þ as a func-
tion of the relative time s, where t ¼ ðt1 þ t01Þ=2, s ¼ t1 � t01. This is determined by considering the sum
of Eq. (12) and its adjoint, and using the definition for the spectral function (4) to get
i�h
o

os
� i�h

s
KA

aþðt1; t01Þrk �
1

2ma

�h
2i
rR

� �2

þ k2 � �h
i

KA
a�ðt1; t01ÞrR

"(

þ 1
2

KA
a

2ðt1; t01Þ þ KA
a

2ðt01; t1Þ
� 


� 2kKA
aþðt1; t01Þ

��
aðk;R; s; tÞ

� 1
2

Z
dr
Z

dk1

ð2p�hÞ3
e�

i
�hrðk�k1ÞVeff R þ r

2
; t1

� 

þ e

i
�hrðk�k1ÞVeff R þ r

2
; t01

� 
n o
aðk1;R; s; tÞ

¼ ��hIm eI>Fa
ðk;R; t1; t01Þ �eI<Fa

ðk;R; t1; t01Þ þeI>a ðk;R; t1; t01Þ �eI<a ðk;R; t1; t01Þ
� 


; ð16Þ
where a parabolic dispersion relation has been used. The vectors KA
a�ðt1; t01Þ are related to that of (14)

by
KA
a�ðt1; t01Þ �

1
2

KA
aðt1; t01Þ � KA

aðt01; t1Þ
h i

¼ ea

2s

Z tþs
2

t�s
2

dt00 t � s
2
� t00

� 

� t þ s

2
� t00

� 
h i
E t00ð Þ: ð17Þ
The result (16) is still completely general, including strong field effects, spatial inhomogeneities and
correlations.
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The left side of (16) describes the ‘‘kinetics” of the spectral function with respect to s. In addition to
the effects of the external electromagnetic field this describes the single particle effects of the kinetic
energy and the effective potential Veff R þ r

2 ; t1

 �

. This is non-local due to quantum effects resulting
from the non-commutation of kinetic and potential energy. However, if this confining potential is con-
stant, or sufficiently smooth, in both space and time then a local approximation can be made
1
2

Z
dr
Z

dk1

ð2p�hÞ3
e�

i
�hrðk�k1ÞVeff R þ r

2
; t1

� 

þ e

i
�hrðk�k1ÞVeff R þ r

2
; t01

� 
n o
aðk1;R; s; tÞ

! VðR; tÞaðk;R; s; tÞ: ð18Þ
Also in this limit the nonlocal terms proportional to gradients of aðk;R; s; tÞ can be neglected. The
resulting local form can be solved exactly in the collisionless limit to get
aðk;R; s; t; EÞ ¼ e
� i

�h
k2

2ma
þVeff Rþr

2;t1ð Þ

 �

sþ
e2
a

2ma

R tþs
2

t�s
2

d�t
R �t

t
dt00Eðt00 Þ

� 
2

�1
s

R tþs
2

t�s
2

d�t
R �t

t
dt00Eðt00 Þ

� �2
" # !

: ð19Þ
In the absence of external fields, the corresponding spectral density (Fourier transform with respect to
s) is the expected sharp result
aðk;R;x; t; AÞ ! 2p�hdð�hx� �ðk;RÞÞ; �ðk;RÞ ¼ k2

2ma
þ Veff ðR; tÞ: ð20Þ
More generally, much of the simplicity of the local form can be retained without losing the important
quantum effects by the introduction of a ‘‘quantum potential” Veff

Q ðk;R; s; tÞ that absorbs all non-local
terms of (16). This is accomplished by writing (16) in the form
i�h
o

os
� 1

s
KA

aþðt1; t01Þrk

� �
� k2

2ma
þ Veff

Q ðk;R; s; tÞ þ
1
2

KA2

a ðt1; t01Þ þ KA2

a ðt01; t1Þ
� 


� 2kKA
aþðt1; t01Þ

" #( )
a

¼ ��hIm eI>Fa
ðk;R; t1; t01Þ �eI<Fa

ðk;R; t1; t01Þ þeI>a ðk;R; t1; t01Þ �eI<a ðk;R; t1; t01Þ
� 


;

ð21Þ
where a ¼ aðk;R; s; tÞ. This will be exactly equivalent to (16) if the quantum potential is defined by
Veff
Q ðk;R; s; tÞ �

1
2

Z
dr
Z

dk1

ð2p�hÞ3
e�

i
�hrðk�k1ÞVeff R þ r

2
; t1

� 

þ e

i
�hrðk�k1ÞVeff R þ r

2
; t01

� 
n o aðk1;R; s; tÞ
aðk;R; s; tÞ

þ 1
2ma

�h
2i

� �2

ðrR ln aðk;R; s; tÞÞ2 þr2
R ln aðk;R; s; tÞ

� 
"

� �h
i

KA
a�ðt1; t01Þ � rR ln aðk;R; s; tÞ

�
ð22Þ
However, its local form is now more suitable for approximations. For example, in the collisionless limit
the solution to (21) is found to be
aðk;R; s; t; EÞ ¼ e
� i

�h
k2

2ma
sþ
R s

0
ds0Veff

Q ðkþjðs;s0 ;tÞ;R;s0 ;tÞþ
e2
a

2ma

R tþs
2

t�s
2

d�t
R �t

t
dt00Eðt00Þ

� 
2

�1
s

R tþs
2

t�s
2

d�t
R �t

t
dt00Eðt00 Þ

� �2
" # !

: ð23Þ
where the momentum dependence of the quantum potential appears shifted by jðs; tÞ
jðs; s0; tÞ �
Z s

s0
ds00 1

s00
KA

aþ t þ s00

2
; t � s00

2

� �
¼ ea

2

Z s

s0
ds00 1

s002

Z tþs00
2

t�s00
2

dt000ðt � t000ÞEðt000Þ: ð24Þ
For our present analysis, where we are interested in the effect of intense electric fields and quantum
effects of the confinement potential on the spectrum, these are all accounted for in this simple form.
As was found in many investigations, in the case of strong fields inclusion of all external fields into the
spectral function together with Hartree–Fock effects is crucial for a correct modeling of the many-par-
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ticle behavior; see e.g. [29]. We expect that a detailed self-consistent treatment of the collision and
correlation effects on the spectral function can be avoided. Correlation effects lead to an energy shift
and broadening which is generally well understood. These effects can be added to the collisionless re-
sult in perturbation theory. Therefore, although the introduction of the quantum potential in (21) is
general, the collisionless solution (23) is a useful practical result as is illustrated in the following
sections.

3. Approximate quantum potential

It remains to determine an explicit form for the quantum potential from an approximation to the
definition (22). The definition is only implicit since it depends on the unknown spectral density. A self-
consistent equation in the collisionless limit is obtained by using the result (23) in (22)
Veff
Q ðk;R; s; tÞ �

1
2

Z
dr
Z

dk1

ð2p�hÞ3
e�

i
�hrðk�k1ÞVeff R þ r

2
; t1

� 

þ e

i
�hrðk�k1ÞVeff R þ r

2
; t01

� 
n o
� exp � i

�h
s

2ma
ðk2

1 � k2Þ þ
Z s

0
ds0 Veff

Q ðk1 þ jðs; s0; tÞ;R; s0; tÞ
���

� Veff
Q ðkþ jðs; s0; tÞ;R; s0; tÞ



o
þ 1

2ma

1
4

Z s

0
ds0rRVeff

Q ðkþ jðs; s0; tÞ;R; s0; tÞ
� �2

"

þ i�h
4

Z s

0
ds0r2

RVeff
Q ðkþ jðs; s0; tÞ;R; s0; tÞ � KA

a�ðt1; t01Þ

�
Z s

0
ds0rRVeff

Q ðkþ jðs; s0; tÞ;R; s0; tÞ
�

ð25Þ
Here, we obtain a practical solution to this equation by considering first the limit �h! 0. This is similar
in spirit to the time independent WKB approximation. The details are described in Appendix A with
the final result
Veff
Q ðk;R; s; t; �h ¼ 0Þ ¼ 1

2
Veff R þ zðk;R; tÞ; t þ s

2

� 

þ Veff R � zðk;R; tÞ; t � s

2

� 
� 

þ 1

8ma

Z s

0
ds0rRVeff

Q ðkþ jðs; s0; tÞ;R; s0; t; �h ¼ 0Þ
� �2

þ 1
2ma

KA
a�ðt1; t01Þ �

Z s

0
ds0rRVeff

Q ðkþ jðs; s0; tÞ;R; s0; t; �h ¼ 0Þ ð26Þ
with
zðk;R; s; tÞ ¼ rk/ðk;R; s; tÞ ¼ s k
ma
þ
Z s

0
ds0rkVeff

Q ðkþ jðs; s0; tÞ;R; s0; t; �h ¼ 0Þ: ð27Þ
Next, we assume Veff R þ r
2 ; t1


 �
is a smooth function of r so that an expansion about R can be per-

formed. This in turn induces an expansion of Veff
Q in the gradients of Veff
Veff
Q ðk;R; s; tÞ ¼ V ð0ÞQ ðk;R; s; tÞ þ kV ð1ÞQ ðk;R; s; tÞ þ k2V ð2ÞQ ðk;R; s; tÞ þ � � � ; ð28Þ
where the formal parameter k (set equal to unity at the end) is introduced to represent the order of the
gradient in Veff . The coefficients V ð0ÞQ are identified by substitution of (28) into (27), expanding
Veff R � zðk;R; tÞ; t � s

2


 �
in a similar way, and equating powers of k. The analysis is straightforward

for the general case, but to simplify the results, in the following, we will assume a slowly varying
in time confining potential for which soVeff ðR; tÞ=ot 	 VeffðR; tÞ and consequently set
Veff R � zðk;R; tÞ; t � s

2


 �
! Veff ðR � zðk;R; tÞ; tÞ. Furthermore, we consider the case of a constant elec-

tric field EðtÞ ¼ E. In this case, the quantum potential up through second order is found to be (see
Appendix A for details)
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Veff
Q ðk;R; s; t; �h ¼ 0Þ ! VeffðR; tÞ þ s2

8m2
a
rRVeffðR; tÞ
� 
2

þ k � rRð Þ2VeffðR; tÞ � 2eaE � rRVeff ðR; tÞ
� �

þ s4

3
ea

4ma
E � rR

� �2

VeffðR; tÞ: ð29Þ
These results provide the explicit form for the quantum potential, exact in the collisionless limit at
�h ¼ 0 up through second order in the gradients of the confining potential. It describes both the leading
non-local effects and their coupling to arbitrary external fields.

Use of this approximate quantum potential in (23) gives the corresponding self-consistent spectral
function. Calculation of the spectral function in (23) requires evaluation ofR s

0 ds0Veff
Q ðkþ jðs; tÞ;R; s0; tÞ. It follows from the definition in (24) that jðs; s0; tÞ vanishes for a constant

electric field. The spectral function is then found to be
aðk;R; s; t; Þ ! e�
i
�h

k2

2ma
þ VeffðR; tÞ

 !
sþ Xðk;R; t; EÞs3 þ YðR; t; EÞs5

 !
; ð30Þ
with
Xðk;R; t; EÞ ¼ 1
24ma

rRVeff ðR; tÞ
� 
2

þ 1
ma
ðk � rRÞ2VeffðR; tÞ � 2eaE � rRVeff ðR; tÞ þ ðeaEÞ2

� �
ð31Þ

YðR; t; EÞ ¼ 1
240m2

a
ðeaE � rRÞ2VeffðR; tÞ: ð32Þ
The corresponding spectral density is obtained by Fourier transformation with respect to s
aðk;R;x; t; EÞ ¼ 2p�h
a

I
k2

2ma
þ VeffðR; tÞ

� 

� �hx

h i
a

;b

8<:
9=;; ð33Þ
where
Iðx; yÞ ¼ 1
p

Z 1

0
ds cos xsþ 1

3
s3 þ ðysÞ5

� �
; ð34Þ
and
a ¼ ð3�h2Xðk;R; t; EÞÞ1=3
; b ¼ 1

a
ð�h4YðR; t; EÞÞ1=5

: ð35Þ
This is a simple result easily explored numerically. Some analytic limits follow directly. In the absence
of both gradients of Veff ðR; tÞ and electromagnetic fields, a; b! 0, and the sharp delta function result
of Eq. (20) is recovered. If gradients of Veff ðR; tÞ are neglected but an arbitrary constant field is applied,
a! ðð�heaEÞ2=8maÞ1=3, b! 0, and
aðk;R;x; t; EÞ ! 2p�h
a

Ai
k2

2ma
þ Veff � �hx

h i
a

8<:
9=;; ð36Þ
where AiðxÞ is the Airy function. It is seen that the electric field broadens the sharp distribution, but it

is still peaked at �hx ¼ k2

2ma
þ Veff . Finally, in the absence of electric fields, b! 0, the quantum effects

represented by the spatial variation of Veff ðR; tÞ leads to the same result as (36), but with
a! �h2

8ma

1
ma
ðk � rRÞ2VeffðR; tÞ þ rRVeffðR; tÞ

� 
2
� �" #1=3

: ð37Þ
This is shown in Fig. 1.



3166 A. Fromm et al. / Annals of Physics 323 (2008) 3158–3174
Interestingly, the quantum correction to the potential enters into the spectral function in the same
way as the constant electric field. Both lead to a broadening of the main peak of the spectral function
around �hx, i.e. the sharp single-particle energy is smeared out, so that the Heisenberg uncertainty
principle is no longer violated. In addition there arise smaller side peaks. The bigger a, the more the
spectral function shifts towards higher energies. This is readily understood. The electric field acceler-
ates the electrons and thus increases their energy. Similarly in an inhomogeneous confinement poten-
tial a quantum particle acquires an additional kinetic energy which arises from spatial compression of
its wave function, which is proportional to the local curvature of Veff . Additionally, for bigger a the
peaks become lower and broader. Because of this also energies below the classical single-particle en-
ergy k2

2ma
þ Veff become possible. Note that there occur negative values of the spectral function.

Although this is unexpected [16], this is not in contrast with sum rules. In particular the sum ruleR
dxaðxÞ ¼ 2p is fulfilled for (33).

3.1. Density of states

With the knowledge of the spectral function one can directly calculate the density of states (DOS)
using in the 3D case a parabolic dispersion:
Fig. 1.
local sin
observe
uncerta
qðxÞ ¼ � 1
p

Im TrgRðk;R;xÞ
� 	

¼ 1

ð2p�hÞ4
Z

dk
Z

dRaðk;R;x; t; EÞ

¼ q0

8p2�h

Z
dk̂
Z

dR
Z 1

0
d��1=2að�;R;x; t; EÞ; ð38Þ
with q0 ¼ 4
ffiffiffi
2
p

pm3=2
a =ð2p�hÞ3 and the unit vector bk � k=k. Consider first the local approximation with

the spectral density given by (20)
aðk;R;x; t; EÞ ¼ 2p�hdð�þ VðR; tÞ � �hxÞ;
to get
qðxÞ ! qð0ÞðxÞ ¼ 4pq0HðxÞ
Z Rmð�hxÞ

0
dRR2ðVeff ðRmÞ � VeffðRÞÞ1=2; ð39Þ
Spectral function aðk;R;x; t; aÞ, Eq. (36), at fixed time t and a fixed phase space point ðk;RÞ such that the dimensionless
gle-particle energy �aðk;R; tÞ ¼ 1. The ideal spectral function would have a singularity at �hx ¼ 1 (dashed line), which is
d in the limit of vanishing inhomogeneity a � ð3�h2dVQ Þ

1
3 ! 0. With increasing inhomogeneity, due to the Heisenberg

inty principle, the main peak broadens and shifts towards higher energies.
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where Rmð�hxÞ is determined from the solution to
Fig. 2.
dimens
VeffðRmÞ ¼ �hx: ð40Þ
Next, consider the addition of a homogeneous electric field but without the quantum confinement ef-
fects due to gradients of the potential. In this case, the spectral function is given by (36)
aðk;R;x; tÞ ¼ 2p�h

�h2 e2
a E2

0
8ma

h i1
3

Ai
½�þ Veff � �hx�

�h2 e2
a E2

0
8ma

h i1
3

8>><>>:
9>>=>>;; ð41Þ
leading to the DOS
qðxÞ !
Z 1

�1
dzqð0ÞðzÞ �h

�h2 e2
a E2

0
8ma

h i1
3

Ai
�hðz�xÞ

�h2 e2
a E2

0
8ma

h i1
3

0BB@
1CCA; ð42Þ
where qð0ÞðzÞ is the local form (39). To illustrate in more detail consider the special case of a harmonic
oscillator potential VeffðRÞ ¼ ma

2 X2R2. In this case, (39) becomes
qð0ÞðxÞ ¼ 1
2�hX

h2HðhÞ; h ¼ x
X
: ð43Þ
A numerical evaluation of (42) then yields the result shown in Fig. 2 for varying intensities of the elec-
tric field strengths. One can see that through the presence of a constant electric field there exist non-
vanishing contributions of the density of states for negative energies, the bigger, the higher the inten-
sity of the field is. Looking at the Hamiltonian of such a system this is easily explained:
bHðp; qÞ ¼ p2

2ma
þma

2
X2q2 þ e0Eq ¼ p2

2ma
þma

2
X2 qþ e0E

maX
2

� �2

� e2
0E2

2maX
2 : ð44Þ
A constant electric field shifts the energy minimum from 0 to � e2
0E2

2maX2, so that negative energy values
become possible [16].

Now let us analyze the change of the DOS due to quantum confinement effects. Therefore, we com-
pare the classical density of states (39) with the DOS that includes the non-local correction (37). Using
the spectral function (36) with a given by (37) and the harmonic oscillator confining potential we ob-
tain for the field free case
qðhÞ ¼ 2
p�hX

Z 1

�1
dx
Z 1

0
da
Z 1

0
db

ðabÞ1=2

1
4 ðx2aþ bÞ
� 	1=3 Ai

aþ b� h½ �
1
4 ðx2aþ bÞ
� 	1=3

( )
; ð45Þ
Density of states for a classical particle system in a constant electric field and a harmonic oscillator potential for different
ionless field strengths, where # ¼ e2

0 E2
0

mX2 ;
1

�h;X.
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where the change of variables a ¼ �
�hX and b ¼ VðRÞ

�hX has been made. This integral can be computed
numerically. The consideration of a quantum potential leads – analogously to a constant electric field
– to finite values of the DOS at small negative energies. More generally, since the modifications of the
quantum potential have the same effect on the spectral function as the constant electric field and
therefore causes the same behavior of the DOS. However, a simple interpretation of this effect in terms
of a Hamiltonian like in (44) is not possible in this case.

4. Kinetic equation for the distribution function

In this section, we analyze the effect of the quantum potential of the last section on the collision
integral in the kinetic equation for the Wigner distribution. The gauge-invariant kinetic equation
for the single-time distribution function is derived by computing the difference of the gauge-invariant
kinetic equation (12) and its adjoint for g< taken at equal times t1 ¼ t01. Relation (3) then allows us to
express g< in terms of the Wigner distribution [23]
o

ot
þ k

ma
rR þ eaEðtÞrk

� �
~f aðk;R; tÞ þ

2
�h

Z
dr
Z

dk1

ð2p�hÞ3
sin

r � ðk� k1Þ
�h

� �
� Veff R þ r

2
; t

� 

~f aðk1;R; tÞ ¼ eIaðk;R; tÞ þeIFa ðk;R; tÞ; ð46Þ
where eIaðk;R; tÞ � �2Re½eI<a ðk;R; tÞ� and eIFa ðk;R; tÞ � �2Re½eI<Fa
ðk;R; tÞ�. Here E is the total electric field

(external plus induced) that obeys Maxwell’s equations, which have to be solved self-consistently
with the kinetic equation (46).

The non-local contribution from Veff in Eq. (46) is still completely general and does not use any
assumptions on the space dependence of the confinement potential. The present form applies even
to sharp spatial changes and can be used with any form of pseudo-potentials. Analytical simplifica-
tions are possible if the potential is only weakly inhomogeneous. Then one can eliminate the integra-
tions by expanding Veff around the center of mass coordinate, e.g. [14]. With this, the integral term in
Eq. (46) becomes
2
�h

Z
d3r

Z
d3k1

ð2p�hÞ3
sin

r � ðk� k1Þ
�h

� �
Veff R þ r

2
; t

� 

~f aðk1;R; tÞ

¼ �ðrRVeffðR; tÞÞ � rk
~f aðk;R; tÞ þ Oð�h2V 000effÞ: ð47Þ
As in the last section the non-local quantum effects can be incorporated in the classical form by writ-
ing (46) in the equivalent form
o

ot
þ k

ma
rR þ eaEðtÞrk � ðrRV

eff
Q ðR; tÞÞ � rk

� �
~f aðk;R; tÞ ¼ eIaðk;R; tÞ þeIFaðk;R; tÞ;
with the identification of Veff
Q ðR; tÞ by
ðrRV
eff
Q ðR;k; tÞÞ � rk

~f aðk;R; tÞ ¼
2
�h

Z
d3r

Z
d3k1

ð2p�hÞ3
sin

r � ðk� k1Þ
�h

� �
Veff R þ r

2
; t

� 

~f aðk1;R; tÞ:

ð48Þ

Clearly, the requirements of a local classical form in the equation for the spectral function and that for
the kinetic equation lead to different quantum potentials in each case: Eqs. (22) and (48). The quan-
tum potential (48) for the kinetic equation is more formal since it depends on the specific nonequilib-
rium state considered. Still it is a potentially useful concept if there is a relevant reference state. For
example, if the states considered are near equilibrium ~f aðk1;R; tÞ can be represented by the equilib-
rium distribution. More practically, this can be chosen as the ideal gas equilibrium state (first order
perturbation theory in the potential) to give
ðrRV
eff
Q ðR;k; tÞÞ � k̂ok

~f ð0Þa ðkÞ ¼
2
�h

Z
d3r

Z
d3k1

ð2p�hÞ3
sin

r � ðk� k1Þ
�h

� �
Veff R þ r

2
; t

� 

~f ð0Þa ðk1;R; tÞ:

ð49Þ
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In the non-degenerate limit this is the Wigner form for the off diagonal Kelbg quantum potential [32].
Eq. (48) provides the basis for more general representations in non-perturbative and far from
equilibrium states. However, the explicit form for these non-local quantum effects will not be
considered further here.

We consider now the collision integrals of (46). Performing the gauge-invariant Fourier transform
on the r.h.s. of the kinetic equation which contains all two-particle quantities related to mean field and
correlation effects in local approximation – analogously to the homogeneous case [19,20] with R being
an additional parameter – one sees that the Hartree–Fock-contribution vanishes and the collision inte-
gral is of the form
eIaðk;R; tÞ ¼ �2Re
Z t

t0

d�t eR>
a ðk

A
a ;R; t;�tÞ~g<a ðk

A
a ;R;�t; tÞ � eR<

a ðk
A
a ;R; t;�tÞ~g>a ðk

A
a ;R;�t; tÞ

n o� �
; ð50Þ
where the superscript ‘‘A” denotes that all momenta are shifted, according to kA
a � ka þ KA

aðt;�tÞ, etc.
The local approximation can be used if the characteristic length scales of the scattering processes
are small compared to the characteristic scale of the confinement potential. Otherwise gradient cor-
rections have to be taken into account [23]. Note that the momentum arguments in all functions
are shifted by the field-dependent momentum KA which reflects the explicit field-dependence of
the two-particle scattering process. This leads to the so-called intracollisional field effect and to non-
linear phenomena including collisional harmonics generation (inverse) bremsstrahlung, multiphoton
excitation and ionization, etc. [19,20].

Collecting all terms together, we obtain the kinetic equation in local approximation
o

ot
þ k

ma
rR � rRV

eff
Q ðR;k; tÞ � eaEðtÞ

� 

rk

� �
~f aðk;R; tÞ

¼ �2Re
Z t

t0

d�t eR>
a ðk

A
a ;R; t;�tÞ~g<a ðk

A
a ;R;�t; tÞ � eR<

a ðk
A
a ;R; t;�tÞ~g>a ðk

A
a ;R;�t; tÞ

n o� �
: ð51Þ
We emphasize that this equation is very general. It applies to arbitrary nonequilibrium situations in
strong electromagnetic fields with arbitrary amplitude and time-dependence and a weakly inhomoge-
neous confinement potential. A particular collision process is specified by the appropriate choice of
the self-energies. Due to the gauge-invariant derivation, the resulting kinetic equation is gauge-invari-
ant as well.

4.1. Collision integral

In this section, we analyze the collision integrals in the kinetic equation (51) for the case of Cou-
lomb scattering. The main goal here is to see the effects of the electric field, the confinement potential
and primarily of the quantum potential on the collision process.

To obtain a closed equation for the Wigner distribution the two-time correlation functions have to
be expressed by the distribution function via the so-called reconstruction ansatz. Its original form due
to Baym and Kadanoff [15] was generalized by Lipavsky et al. [18] to nonequilibrium systems, prop-
erly accounting for causality and retardation effects. The latter ansatz was further generalized to a
gauge-invariant form including strong electromagnetic fields [19,20]. Here we account, in addition,
for a weakly inhomogeneous confinement potential:
;

~g>a ðk;R; t1; t01Þ ¼ ~gR
a ðk;R; t1; t01Þ~f>a ðk� KA

a ðt01; t1Þ;R; t01Þ � ~f>a ðk� KA
a ðt1; t01Þ;R; t1Þ~gA

a ðk;R; t1; t01Þ
n o

;

~g<a ðk;R; t1; t01Þ ¼ � ~gR
a ðk;R; t1; t01Þ~f<a ðk� KA

a ðt01; t1Þ;R; t01Þ � ~f<a ðk� KA
a ðt1; t01Þ;R; t1Þ ~gA

a ðk;R; t1; t01Þ
n o

ð52Þ
where f> � 1� f and f< � f .
It is reasonable to start with the simplest approximation for Coulomb scattering – the static second

Born approximation. The gauge-invariant expression for the self-energy in local approximation is gi-
ven by [20]
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eR?a ðka;R; t; t0Þ ¼ �
�h2

ð2p�hÞ6
X

b

Z
dkbd�ka d�kb

j Vðka � �kaÞj2dðka þ kb � �ka � �kbÞ~g?a ð�kb;R; t; t0Þ~g?b ð�kb;R; t; t0Þ~g7a ðkb;R; t0; tÞ; ð53Þ
which, using (50), leads to the collision integral
eIaðka;R; tÞ ¼ �2Re
�h2

ð2p�hÞ6
X

b

Z
dkb d�ka d�kb j Vðka � �kaÞj2dðka þ kb � �ka � �kbÞ

"

�
Z t

t0

d�tf~g>a ð�kA
a ;R; t;�tÞ~g>b ð�kA

b ;R; t;�tÞ~g<b ðk
A
b ;R;�t; tÞ~g<a ðk

A
a ;R;�t; tÞ � ð>$<Þg

�
: ð54Þ
where kA
aðt;�tÞ ¼ ka þ KAðt;�tÞ. Now we express the two-time correlation functions by the Wigner dis-

tributions using the generalized Kadanoff–Baym ansatz (52)
eIaðka;R; tÞ ¼ �2
�h2

ð2p�hÞ6
Re
Z

dkb d�kad�kb j Vðka � �kaÞj2dðka þ kb � �ka � �kbÞZ t

t0

d�t ~gR
að�kA

a ;R; t;�tÞ~gR
bð�kA

b ;R; t;�tÞ~gA
bðk

A
b ;R;�t; tÞ~gA

aðk
A
a ;R;�t; tÞ

~f>a ð�kQ
a ;R;�tÞ~f>b ð�k

Q
b ;R;�tÞ~f

<
b ðk

Q
b ;R;�tÞ~f<a ðk

Q
a ;R;�tÞ � ð>$<Þ

n o
; ð55Þ
where the shift of the momentum arguments in the distribution functions is now given by
kQ

a � ka þ Q aðt;�tÞ with Q A
aðt; t0Þ ¼ KA

aðt; t0Þ � KA
aðt0; tÞ. What is left now is to evaluate the spectral infor-

mation of the four propagators which determines the energy balance of the scattering event in the
combined external and confinement fields. Therefore, using the propagator from the approximate
spectral function (30), which includes quantum effects via the quantum potential
~gR=Aðk;R; t;�tÞ ¼ � i
�h

H½�ðt1 � t01Þ�e
� i

�h
k2

2ma
þVeff ðR;tÞ


 �
sþXðk;R;t;EÞs3þYðR;t;EÞs5


 �
: ð56Þ
Here s ¼ t � �t, and T ¼ ðt þ �tÞ=2. The result for the product of two propagators which has to be com-
puted in the collision term (55) is
~gA
aðk

A
a ;R;�t; tÞ~gR

að�kA
a ;R; t;�tÞ~gA

a ðk
A
a ;�t; tÞ~gR

a ð�kA
a ; t;�tÞ ! 1

�h2 e
i
�hsðeaðka ;R;E;sÞ�eað�ka ;R;E;sÞÞ; ð57Þ

eaðka;R;E; sÞ � ðk
A
aðsÞÞ

2

2ma
1þ s2 1

6ma
ðbkAðsÞ � rRÞ2VeffðR; tÞ

� �
; ð58Þ
and analogously for particle b. In Eq. (58) bkA
a denotes a unit vector in the direction of kA

a

With these propagators the collision term including quantum confinement effects becomes
eIabðka;R; tÞ ¼
2

ð2p�hÞ6
1

�h2

Z
d�kadkbd�kbjVabðka � �kaÞj2dðka þ kb � �ka � �kbÞZ t

t0

d�t cos
s
�h
½eaðka;R;E; sÞ þ ebðkb;R;E; sÞ � eað�ka;R;E; sÞ � ebð�kb;R;E; sÞ�

n o
f<ð�kQ

a ;R;�tÞf<ð�k
Q
b ;R;�tÞf

>ðkQ
b ;R;�tÞf>ðk

Q
a ;R;�tÞ � ð>$<Þ

n o
: ð59Þ
As in the homogeneous case, the field drops out of the energy balance of scattering of particles with
same charge to mass ratio since the field does not change their distance. In contrast, in the case of elec-
tron ion scattering the field changes the energy balance; see [19].

We see from Eq. (59) that the confinement potential does in fact have an influence on the scattering
process. The collision integral contains, in addition to the difference of kinetic energies of the particle
pair, a term proportional to the local curvature of the effective confinement potential in (58)
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The effect of the quantum potential on the scattering process can be analyzed more closely in the
field free case. In the limit E! 0 we can evaluate the integral over time in the Markov limit [14].
Neglecting the time dependence of the distribution functions compared to the correlation time and
extending the �t-integration to infinity, the integration can be performed using the integral represen-
tation of the airy function. As a result the collision integral becomes
Iabðka;R; tÞ ¼
2

ð2p�hÞ6
p
�h

Z
d�kadkbd�kbjVabðka � �kaÞj2dðka þ kb � �ka � �kbÞ

� 1
aab

Ai
D�ab

aab

� �
f<ð�ka;R;�tÞf<ð�kb;R;�tÞf>ðkb;R;�tÞf>ðka;R;�tÞ � ð>$<Þ
� �

; ð60Þ
with
aab ¼
�h2

4
�a

ma
ðbka � rRÞ2 �

��a

ma
ðb�ka � rRÞ2

� �
VaðR; tÞ þ ða! bÞ

� �" #1=3

;

and D�ab ¼ �a þ �b � ð��a þ ��bÞ. The Airy function is peaked at D�ab ¼ 0, i.e. the dominant spectral
weight falls on scattering processes which conserve the kinetic energy of the particle pair, as in the
case of a homogeneous system (in the Markov limit). The latter case is recovered by the limit
rVðR; tÞ ! 0 using the relation lim�!0

1
�Ai x

�


 �
¼ dðxÞ, leading to the well-known classical result
Iabðka; tÞ ¼
2

ð2p�hÞ6
p
�h

Z
d�kadkbd�kbjVabðka � �kaÞj2dðka þ kb � �ka � �kbÞdð�a þ �b � ��a � ��aÞ

f<ð�ka;�tÞf<ð�kb;�tÞf>ðkb;�tÞf>ðka;�tÞ � ð>$<Þ
� �

: ð61Þ
A larger effect of the inhomogeneity on the scattering process occurs on short-time scales of the order
of the correlation time where the Markov limit fails, e.g. [14,33]. Then the energy broadening arising
from the finite collision duration is additionally increased due to the inhomogeneity of the
confinement field, so that collisions that do not conserve the one-particle energy become possible
(see Fig. 1).

Aside from Coulomb scattering, there are numerous physical situations where the presence of an
inhomogeneous field will have an even more pronounced effect on the microscopic scattering proba-
bility. The most important one is inelastic scattering. Indeed if particles, after the collision appear in a
different quantum state (energy level or band) with a different dispersion (effective mass), the quan-
tum potential will be different before and after the collision, even if the external field is independent of
the quantum state. This effect should be directly observable in confined quantum systems undergoing
e.g. collisional excitation or ionization.

5. Discussion

Weak inhomogeneity covers a broad class of many-particle systems of current interest, including
electrons in quantum dots, ultracold ions in traps, valence electrons in metal clusters and so on. In this
paper, a quantum potential for particle systems in a weakly inhomogeneous confinement potential
and a strong electromagnetic field – that means a nonequilibrium quantum potential – has been de-
rived. With this momentum-dependent quantum potential the spectral function for systems of
trapped quantum particles in a strong electric field has been calculated, obeying Heisenberg’s uncer-
tainty principle. With the spectral function the density of states has been computed, now permitting
the existence of negative energy values because of quantum confinement effects. Special attention has
been devoted to an investigation of the modification of the collision term in the Boltzmann equation
including the quantum potential. Due to quantum confinement effects the sharp peak of the energy
balance in the classical case is smeared out. Because of the gauge-invariant expression for the GKBA
and the self-energies in Born approximation an analysis of the collision terms including the homoge-
neous electric field is straight forward.
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Appendix A. Approximate quantum potential

In this appendix, the derivation of (26) for the quantum potential at �h ¼ 0 is outlined. Next, its spe-
cialization to a slowly varying confinement potential is described, leading to (29).

Eq. (25) at �h ¼ 0 becomes
Veff
Q ðk;R; s; t; �h ¼ 0Þ ¼ lim

�h!0

1
2

Z
dr
Z

dk

ð2p�hÞ3
e�

i
�hrðk�k1ÞVeff R þ r

2
; t þ s

2

� 

þ e

i
�hrðk�k1ÞVeff R þ r

2
; t � s

2

� 
n o
e�

i
�hð/ðk1 ;R;s;tÞ�/ k;R;s;tð ÞÞ þ 1

8ma

Z s

0
ds0rRVeff

Q ðkþ jðs; tÞ;R; s0; t; �h ¼ 0Þ
� �2

þ 1
2ma

KA
a�ðt1; t01Þ �

Z s

0
ds0rRVeff

Q ðkþ jðs; tÞ;R; s0; t; �h ¼ 0Þ; ðA1Þ
where for notational simplicity /ðk;R; s; tÞ has been introduced
/ðk;R; s; tÞ � s
2ma

ðk2Þ þ
Z s

0
ds0Veff

Q ðkþ jðs; tÞ;R; s0; tÞ: ðA2Þ
The limit �h ¼ 0 in the first term requires some care of (A1). First write
Z
dr e�

i
�hr�ðk1�kÞVeff R þ r

2
; t � s

2
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¼
Z
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i
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ð2p�hÞ3dðk1 � kÞ: ðA3Þ
Next, perform the k integration
lim
Z

dk

ð2p�hÞ3
Z

dr e�
i
�hr�ðk1�kÞVeff R � r

2
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In the last line integrations by parts have been performed, and it has been recognized that terms with
second or higher derivatives of / are at least of order �h and vanish in the limit indicated. Also, to com-
bine the powers of rk1 / and rR it must be understood that rR is taken at constant /. Summing the
series gives
lim
Z

dk

ð2p�hÞ3
Z

dr e�
i
�hr�ðk1�kÞVeff R � r

2
; t � s
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e�
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Finally, (A1) becomes (26) of the text
Veff
Q ðk;R; s; t; �h ¼ 0Þ ¼ 1

2
Veff R þrk/; t þ

s
2
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þ Veff R �rk/; t �

s
2

� 
� 

þ 1

8ma

Z s

0
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� �2

þ 1
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Z s

0
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where the function rk/ is now
rk/ðk;R; s; tÞ ¼ s k
ma
þ
Z s

0
ds0rkVeff

Q ðkþ jðs; s0; tÞ;R; s0; t; �h ¼ 0Þ: ðA7Þ
Note that the equation is real and therefore admits real solutions.
Now specialize to the case in which both the electromagnetic field and the confining potential are

slowly varying in time, such that
KA
a�ðt1; t01Þ ! �

1
2

eaEðtÞs; jðs; s0; tÞ ! 0; Veff R �rk/; t �
s
2
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! VeffðR �rk/; tÞ: ðA8Þ
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Q ðk;R;s0;t;�h¼0Þ; ðA9Þ

rk/ðk;R; s; tÞ ¼ s
k

ma
þ
Z s

0
ds0rkVeff

Q ðk;R; s0; t; �h ¼ 0Þ: ðA10Þ
Clearly, Veff
Q ! 0 as Veff ! 0, so the second and third terms are proportional to gradients of Veff . If this

confining potential is slowly varying in space, and expansion in the gradients of Veff is possible. It fol-
lows directly that the results to second order in these gradients is
Veff
Q ðk;R; s; t; �h ¼ 0Þ ¼ VeffðR; tÞ þ 1

2
s k

ma
� rR

� �2

VeffðR; tÞ þ � � � þ s2 1
8ma

ðrRVeffðR; tÞ þ � � � Þ2

� s2 1
4ma

eaEðtÞ � rRVeffðR; tÞ þ s4 1
3

ea

4ma
EðtÞ � rR

� �2

Veff ðR; tÞ þ � � �

ðA11Þ
This gives (29) of the text.
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