
Correlation effects in partially ionized mass asymmetric electron-hole plasmas

V. S. Filinov,1 H. Fehske,2 M. Bonitz,3 V. E. Fortov,1 and P. Levashov1

1Institute for High Energy Density, Russian Academy of Sciences, Izhorskaya 13/19, Moscow 127412, Russia
2Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, Domstrasse 10a, D-17489 Greifswald, Germany

3Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
�Received 4 March 2006; revised manuscript received 18 August 2006; published 2 March 2007�

The effects of strong Coulomb correlations in dense three-dimensional electron-hole plasmas are studied by
means of unbiased direct path integral Monte Carlo simulations. The formation and dissociation of bound
states, such as excitons and biexcitons, is analyzed and the density-temperature region of their appearance is
identified. At high density, the Mott transition to the fully ionized metallic state �electron-hole liquid� is
detected. Particular attention is paid to the influence of the hole to electron mass ratio M on the properties of
the plasma. Above a critical value of about M =80 formation of a hole Coulomb crystal was recently verified
�Bonitz et al., Phys. Rev. Lett. 95, 235006 �2005�� which is supported by additional results. Results are related
to the excitonic phase diagram of intermediate valent Tm�Se,Te�, where large values of M have been observed
experimentally.
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I. INTRODUCTION

Strongly correlated Coulomb systems have been in the
focus of recent investigations in many fields, including dense
plasmas in space and the laboratory �1–4�, electron-hole
plasmas in semiconductors and charged particles confined in
traps or storage rings �see, e.g., �5� for an overview�. In these
systems the Coulomb interaction energy U is often larger
than the mean kinetic energy K, i.e., the coupling parameter
�= ��U�� / �K��1. Recently Coulomb and Wigner crystalliza-
tion, which may occur when ��100�1, have attracted
much attention. Coulomb crystals were observed in ultracold
trapped ions �6–8�, in dusty plasmas, and in storage rings
�9–11�.

There exist many strongly correlated Coulomb systems
where quantum effects are important. Examples are dense
astrophysical plasmas in the interior of giant planets or white
dwarf stars �12� as well as electron-hole plasmas in solids,
and few-particle electron or exciton clusters in mesoscopic
quantum dots �see �13,14� and references therein�. The for-
mation of Coulomb bound states such as atoms and mol-
ecules or excitons and biexcitons, of Coulomb liquids, and of
electron-hole droplets �15� exemplifies the large variety of
correlation phenomena that exist in these systems.

Recombination of electrons and positive charges to neu-
tral bound complexes strongly reduces the Coulomb cou-
pling and thus acts against formation of Coulomb crystals in
two-component charged particle systems. Quite recently the
conditions for the existence of Coulomb crystals in neutral
plasmas containing �at least� two oppositely charged compo-
nents have been studied �16,17�, and it was found that the
mass ratio M of positive and negative carriers plays a crucial
role. There exists a threshold value of M of about 80 in
three-dimensional plasmas. Such values are possible in semi-
conductors, which leads to the prediction of hole crystalliza-
tion in semiconducting materials with a sufficiently large ef-
fective mass asymmetry �16–20�. Such values are feasible,
e.g., in the intermediate valence Tm�Se,Te� system, which
under pressure and at very low temperature even might show

the phenomenon of excitonic Bose condensation �21�.
In the present paper we substantially extend the analysis

of previous work �16,17� on two-component partially ionized
Coulomb systems with mass ratios M varying between 1 and
about 1000, thus covering plasmas ranging from positronium
over condensed matter systems �almost� to hydrogen.
Thereby we focus on the fundamental aspects of Coulomb
correlations in two-component plasmas in dependence on M.
Special emphasis is placed on situations with M close to the
critical value for hole crystallization.

From a theoretical point of view, the complex processes
of interest which involve strong Coulomb forces and quan-
tum and spin effects are difficult to treat within the frame-
work of analytical approaches. Therefore, over the last de-
cade there has been high activity in the development of
numerical techniques capable of tackling strongly correlated
Coulomb systems �plasmas� �22–26�. A technique that is par-
ticularly well suited to describe equilibrium properties of
two-component plasmas in the strong coupling and degen-
eracy regime is the path integral quantum Monte Carlo
�PIMC� method. Remarkable progress has been obtained in
applying these techniques to Fermi systems �1,2,27–29�.
Since PIMC simulations of macroscopic Coulomb systems
are hampered by the notorious fermion sign problem, several
strategies have been developed to overcome or at least
“weaken” this difficulty �22,30,31�. Within the restricted
PIMC approach additional assumptions on the density opera-
tor were adopted, which reduce the sum over permutations to
even �positive� contributions only �30,31�. This requires the
knowledge of the nodes of the density matrix, however,
which for interacting macroscopic systems are known only
approximately �32�. Hence the accuracy of the results, in
particular in the regime of strong correlations, is difficult to
assess. An alternative approach is direct PIMC simulations
which have occasionally been attempted by various groups
�e.g., �33�� but in general were not sufficiently precise and
efficient for practical purposes. In recent years an improved
path integral representation of the N-particle density operator
has been developed �34–37� that allows for direct fermionic
path integral Monte Carlo �DPIMC� simulations of dense
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plasmas in a large range of temperatures and densities; see
�38� for an introduction.

The present paper applies the DPIMC method to electron-
hole plasmas with strong mass asymmetry. Here we consider
situations where also the heavy component �referred to as
“holes” hereafter� has to be treated quantum mechanically,
unlike for hydrogenlike plasmas. A second extension of our
previous simulations is an improved treatment of the ex-
change effects which allows us to reach higher densities and
lower temperatures, as required to study the Mott effect and
hole crystallization. Section II gives a brief overview of the
DPIMC approach for calculating thermodynamic quantities.
Details of the derivations of the basic formulas, including the
equation of state and energy, are given in the Appendix. An
extensive numerical study of strongly correlated two-
component Coulomb systems is presented in Sec. III. Here
we first give an overview of possible correlation effects in
the limits of small and very large mass ratios. Then we con-
sider in more detail the semiconductor system that is closest
to the critical value of M =80 for hole crystallization. In par-
ticular, energy and pressure, the microscopic electron-hole
configurations, the fraction of bound states, as well as vari-
ous �spin-dependent� pair distribution functions and charge
structure factors were calculated in a wide density and tem-
perature range. Finally, numerical results for the hole crystal
are presented. The main results are summarized in Sec. IV.

II. PATH INTEGRAL MONTE CARLO PROCEDURE

We consider a neutral two-component plasma consisting
of Ne=Nh=N electrons and holes in equilibrium with the

Hamiltonian Ĥ= K̂+ Ûc, containing kinetic energy K̂ and

Coulomb interaction energy Ûc parts. The thermodynamic
properties at given temperature T and volume V are then
completely described by the canonical density operator �̂

=e−�Ĥ /Z, with the partition function

Z�Ne,Nh,V;�� =
1

Ne!Nh!	�



V

dq ��q,�;�� , �1�

where �=1/kBT, and ��q ,� ;�� denotes the diagonal matrix
elements of the density operator at a given value � of total
spin z projection. In Eq. �1�, q= �qe ,qh� and �= ��e ,�h� are
the spatial coordinates and spin degrees of freedom of the
electrons and holes, i.e., qa= �q1,a , . . . ,ql,a , . . . ,qNa,a� and �a

= ��1,a , . . . ,�l,a , . . . ,�Na,a�, with a=e , p. All thermodynamic
functions can be directly computed from the partition func-
tion. The resulting equations for density matrix, pressure
�equation of state�, and internal energy are given in the Ap-
pendix.

Of course, the exact density matrix of interacting quantum
systems is not known �particularly for low temperatures and
high densities�, but it can be constructed using a path integral

approach �39� based on the operator identity e−�Ĥ

=e−��Ĥe−��Ĥ
¯e−��Ĥ, where ��=� / �n+1�. This allows us

to express the density operator in terms of a product of �n
+1� known high-temperature density operators �at �n+1�
times higher temperature�. In the coordinate representation

this yields products of off-diagonal high-temperature density

matrices �q�k−1��e−��Ĥ�q�k�� where k=1, . . . , �n+1�. Accord-
ingly, each particle is represented by a set of �n+1� coordi-
nates �“beads”�, i.e., the whole configuration of the particles
is represented by a 3�Ne+Nh��n+1�-dimensional vector q̃
�q1,e

�0� , . . . ,q1,e
�n+1� ,q2,e

�0� , . . . ,q2,e
�n+1� , . . . ,qNe,e

�n+1� ;q1,h
�0� , . . . ,qNh,h

�n+1��.
Figure 1 illustrates the representation of one �light� elec-

tron and one �heavy� hole. The circle around the electron
beads symbolizes the region that mainly contributes to the
partition function path integral. The size of this region is of
the order of the thermal electron wavelength 	e�T�, while
typical distances between electron beads are of the order of
the electron wavelength taken at an �n+1� times higher tem-
perature. The same representation is valid for each hole but it
is not shown since, due to the larger hole mass, the charac-
teristic length scales are substantially smaller. Nevertheless,
in the simulations below, the holes are treated according to
the full bead representation. Details, including the treatment
of the spin, are noted in the Appendix.

To evaluate the density matrix, accurate results for the
high-temperature approximation are necessary. As we have
shown earlier �36�, for sufficiently high temperature, i.e., for
a large number n of time slices� each high-temperature factor
can be expressed in terms of two-particle density matrices
�p=1, . . . ,Na, t=1, . . . ,Nb, a ,b=e ,h�

�ab�qp,a,qp,a� ,qt,b,qt,b� ;��

=
�mamb�3/2

�2
���3 exp�−
ma

2�2�
�qp,a − qp,a� �2�

�exp�−
mb

2�2�
�qt,b − qt,b� �2�e−�ab

OD�xab,xab� ;��, �2�

with ab
OD�xab ,xab� ;��= �ab�xab ;��+ab�xab� ;��� /2 and the

familiar Kelbg potential �40,41� given by

FIG. 1. �Color online� Beads representation of electrons and
holes. Here 	e

2=2
�2� /me, 	�,e
2 =2
�2�� /me, ql,e

�1�=ql,e
�0�+	�,e�l,e

�1�,
and �=��. The holes have a similar beads representation, however
	�,h

2 is �mh /me�-times smaller, so their beads distribution is not
resolved in the figure.
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ab�xab;�� =
eaeb

	abxab
�1 − e−xab

2
+ �
xab�1 − erf�xab��� ,

�3�

where xab= �qp,a−qt,b� /	ab, and the error function erf�x�
= �2/�
��0

xdt e−t2. For a discussion of approximation �2� and
its accuracy, see the Appendix and the references therein.
Note that the potential OD is spin independent. Improved
approximations have been discussed in Refs. �42,43� but are
not of relevance here, since each factor �ab is used only with
a sufficiently high-temperature argument.

In our DPIMC scheme we use different types of steps,
where either electron �hole� coordinates qt,e �qp,h� or indi-
vidual electronic �hole� beads are moved until convergence
of the calculated values is reached. Using periodic boundary
conditions �PBCs� the basic MC cell �filled yellow �gray�
square in Fig. 2� is periodically repeated in the x, y, and z
directions.

As mentioned above the main contribution to the path
integral representation of the partition function comes from
configurations for which the typical size of the clouds of
electronic �hole� beads is of the order of the thermal wave-
length of electrons �holes�. At the moment our computer re-
sources allow us to consider up to about 100 electrons and
holes with several tens of beads in the basic MC cell. Due to
this limitation on the number of particles in the MC cell there
is a restriction on the size of the MC cell for a given density.
In the case of a highly degenerate plasma the thermal wave-
length and the typical size of the electronic clouds of beads

may be larger than the size of the basic MC cell. So beads of
electrons belonging to the basic MC cell can penetrate into
neighboring images of the main cell, and also electronic
beads from a neighboring cell can extend into the basic MC
cell. Due to this fact we have improved our PIMC scheme
compared to previous simulations: In our new calculations
we assume that an electron �hole� belongs to a certain cell if
its physical coordinate qt,a

0 �t=1, . . . ,Na, a=e ,h� belongs to
this cell. In Fig. 2 electron and hole clouds of beads are
marked by solid green and red lines. Only a few periodic
images of these particles are shown by related dashed lines.

Let us consider the PBCs for the calculation of pressure
and energy in more detail. For distances between beads with
the same number l in the Kelbg potentials and its derivatives
�respectively first and second summations in curly brackets
in Eqs. �A1� and �A5�� we used the standard PBCs �see Fig.
2�a��; namely, in the Kelbg potential and its derivatives, in-
stead of the distance ab between beads with the same num-
ber l of electrons i and j we take the smallest distance ab� to
one of the electron images j�. The same applies to electron-
hole and hole-hole distances. Furthermore, in calculations of
the scalar products and derivatives of the Kelbg potential
�terms C and D in Eq. �A1� and terms A and B in Eq. �A5��
the situation is more complicated due to the dependence of
the scalar products on the angle between vectors to beads of
the particle from the basic MC cell and its periodic images.
In our calculations we first of all choose, for a given particle
i, the nearest image j�, according to the distance between
coordinates qi,e

0 and qj�,e
0 only, as shown in Fig. 2�b�. ab� is

the smallest distance for all ab. Then for this pair i , j� we
calculate all scalar product terms A ,B ,C ,D and the related
derivatives of the Kelbg potential. The same is done for
electron-hole and hole-hole pairs.

In our previous calculations determinants of the exchange
matrices �cf. Eq. �A4� of the Appendix� were only computed
for particles belonging to the basic Monte Carlo cell. How-
ever, with increasing degeneracy �n	3� the ratio of the par-
ticle thermal wavelength to the size of the Monte Carlo cell
also increases. If this ratio approaches 1 exchange effects
between particles in the main MC cell and their images in the
neighbor cells have to be included. Therefore, in the present
calculations we take into account the exchange interactions
of electrons and holes from neighboring Monte Carlo cells,
namely, first from the �33−1� nearest-neighbor cells, then
from the �53−1� next-nearest-neighbor cells, and so on.
These improved calculations were tested for both an ideal
plasma and a nonideal hydrogen plasma. Excellent agree-
ment with the known analytical results for an ideal plasma
was found up to densities where the parameter n	3 reaches
values of several hundreds.

In the present simulations of dense electron-hole plasmas,
we varied both the particle number and the number of beads.
We found that in order to obtain convergent results for the
thermodynamic properties in the density-temperature range
considered below it is sufficient to simulate systems with
particle numbers of Ne=Nh=50, . . . ,100. Of course, the ac-
curacy is strongly affected by the number of beads n. To
exclude an n dependence of our calculations, the density ma-
trices in the high-temperature decomposition were always

FIG. 2. �Color online� Sketch of the boundary conditions used
for the simulations. Electron and hole clouds of beads are denoted
by large solid green and small red loop, respectively. The dashed
line shows the cell for choosing the image of particle b which is
closest to particle a. For further explanation see text.
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taken at temperatures above the exciton binding energy. In
practice, a number of about n=20 beads turn out to be suf-
ficient. In order to simplify the computations further, we in-
cluded only the dominant contribution in the sums over the
total electron and hole spin, which corresponds to s=Ne /2
electrons and k=Nh /2 holes having spin up and down, re-
spectively. The contribution of the other terms is small and
vanishes in the thermodynamic limit. Let us emphasize that
for all results presented below the maximum statistical error
is about 5%, which is sufficient for the present analysis. Note
that this accuracy can be achieved at an acceptable cost of
computer time. Of course, the error can be systematically
reduced by increasing the length of the Monte Carlo run.

III. SIMULATION RESULTS

We now apply the theoretical scheme developed in the
preceding sections to a partially ionized dense electron-hole
plasma. We will be interested in strong Coulomb correlation
effects such as bound states �excitons, biexcitons, clusters�,
their modification by the surrounding plasma, and their even-
tual breakup at high densities due to pressure ionization
�Mott effect�. Beyond the Mott density, we expect the possi-
bility of hole crystallization if the hole mass is sufficiently
large �16�. To detect these effects, we have extended our
first-principles DPIMC simulations to a large range of mass
ratios, temperatures, and densities. Below, the density of the
two-component plasma is characterized by the Brueckner pa-
rameter rs=d /aB, defined as the ratio of the mean distance
between particles d= �3/4
�ne+nh��1/3 and the exciton Bohr
radius aB=�2� /e2mr, where ne and nh are electron and hole
densities, respectively, and � is the background dielectric
constant. In what follows we compute and discuss the spatial
particle configurations, the pair distribution functions, static
structure factors, fractions of electrons and holes in bound
states, the internal energy, and the equation of state.

A. Electron-hole plasma with small (large) mass ratio M

Let us first discuss Coulomb correlations in two-
component plasmas for the limiting cases of small and very
large mass ratios. In Figs. 3 and 4 we show data for M =1
�positronium, left columns in the two figures� and M =952
�right columns, illustrating the situation typical for hydrogen
and plasmas of other chemical species�. In addition, we con-
sider the cases of small and large density, corresponding to
rs=10 �upper row� and rs=0.33 �lower row in Figs. 3 and 4�,
respectively, and temperatures well below the exciton bind-
ing energy EB=e2 /2�aB. To allow for a direct comparison
with the Tm�Te,Se� system below, we fix the effective elec-
tron mass to me=2.1m0 �m0 is the free electron mass� and the
background dielectric constant to �=25 which leads to a
binding energy EB /kB=517 K, two orders of magnitude
smaller than for positronium and hydrogen.

In Fig. 3 we present typical spin-resolved “snapshots” of
the electron-hole state in the simulation box for small and
large M �left and right columns, respectively�. One clearly
sees the influence of the hole mass on the particle probability
distribution �corresponding to the de Broglie wavelength�: In

the left part, electron and hole “clouds” have the same size,
whereas in the right part, holes have practically shrunk to
dots �negligible size compared to the interparticle distance�.
Let us first concentrate on the low-density limit rs=10, the
upper row in Fig. 3. At this density Coulomb correlations are
strong enough to give rise to bound states—excitons. They
are clearly visible in the snapshots from pairwise clustering
of electrons and hole clouds for both small and large mass
ratios. Occasionally, also clusters of three or four particles
are seen which correspond to trions �exciton ions� and biex-
citons, respectively.

FIG. 3. �Color� Snapshots of the electron-hole plasma configu-
ration in the simulation box for two mass ratios, left �right� column,
M =1 �M =952� and two densities, upper �lower� row, rs=10 �rs

=0.33�. Spin-up and spin-down electrons �holes� are marked by
yellow and blue �red and pink� clouds of dots, respectively, and the
Monte Carlo cell is given by the gray grid lines �PBCs were used�.
In the upper row, the temperature is T=100 K corresponding to
0.19EB; in the lower row, T=50 K.

FIG. 4. �Color online� Pair distribution functions �PDFs� for the
four combinations of mass ratio and density shown in Fig. 3, i.e.,
�a� M =1, rs=10 �b� M =952, rs=10 �c� M =1, rs=0.33, and �d� M
=952, rs=0.33. Full black lines e-e PDFs; dashed red lines, h-h
PDFs; dash-dotted blue lines, e-h PDFs; dotted black line,
reh

2 geh�reh�. Distances are in units of the exciton Bohr radius aB; note
the different scales in the upper and lower row.
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A quantitative analysis of the behavior is obtained by
computing the pair distribution functions �PDFs� which are
shown in the upper row of Fig. 4. They are computed in the
simulations from the density operator according to

gab�r� =
Ne!Nh!

Z
	
�



V

dq��r1,a − q1,a���r2,b − q2,b���q,�;�� .

�4�

For both mass ratios we observe a clear peak of r2geh at
about reh=1aB, corresponding to excitons. For the large mass
ratio �Fig. 4�b�� the peak is substantially higher, which is a
consequence of the increase of the binding energy by a factor
of 2 compared to the case M =1 �the reduced mass increases
from me /2 to me� which stabilizes the bound states. This
trend is also seen in the snapshots �upper panel�: The fraction
of electron clouds closely attached to holes is significantly
higher in the right figure. Further, the h-h PDFs for the large
mass ratio �Fig. 4�b�� show signatures of biexciton formation
with a peak distance of about 1.4aB. Also the e-e PDF shows
peaks, one at smaller distances, corresponding to electrons
with different spin projections located between the holes and
a weaker pronounced one at larger distances. These peaks are
not seen for M =1.

Let us now turn to the limit of high densities, the lower
row in Figs. 3 and 4. Here the influence of the mass ratio is
even more dramatic, leading to a qualitative change of the
plasma behavior. While the electrons are practically delocal-
ized over the whole simulation volume for both M, the be-
havior of the holes changes from delocalized �small mass
ratio; lower left part of Fig. 3� to fully localized �large mass
ratio; lower right part�. Obviously, in both cases no bound
states exist. Instead, we observe a Fermi-gas-like state of
electrons and holes, at small M, and a hole crystal which is
embedded into an electron Fermi gas, at large M. This inter-
pretation is confirmed by the behavior of the PDFs �lower
row of Fig. 4�. They are almost structureless at small M. In
contrast, at large M, pronounced peaks at finite r are visible
in the hole-hole PDFs, as is typical for a crystalline structure
�16�.

Thus, Figs. 3 and 4 allow us to conclude that, in order to
observe a crystal of charged particles �hole crystal� in a two-
component quantum plasma, three requirements have to be
satisfied: �i� sufficiently low temperature, �i� sufficiently high
density �which causes pressure ionization of the bound
states�, and �iii� a large mass ratio. Below, these requirements
will be studied in more detail.

The most interesting question is the role of the mass ratio.
Crystals of ions �e.g., nuclei of carbon and oxygen� in the
presence of a quantum electron gas are commonly accepted
to exist in astrophysical objects such as white dwarf stars
�12�, where the mass ratio is of the order M �104. But ion
crystallization is expected to be possible also for much
smaller mass ratios: proton crystallization �M =1836� in
dense hydrogen has been found in our previous simulations
�34� �see also Ref. �44��, and we have also found crystals of
� particles in pure helium �16�. Figures 3 and 4 indicate that
crystallization of holes should be possible even for M below
1000. Two-component plasmas with M �1000 exist in con-

densed matter systems, such as semiconductors. In most tra-
ditional semiconductors, however, typical values of M are
3–20. There have been predictions of the possibility of M
�100 in CuCl or Bi-Sb alloys under pressure �e.g., �18,20��,
but without experimental evidence so far.

B. Thermodynamic properties of electron-hole
plasmas with M=40

The largest mass ratios in condensed matter systems were
experimentally reported by Wachter and co-workers �21� for
the intermediate valent Tm�SexTe1−x� alloys under pressure.
In these materials f-d hybridization provides a narrow dis-
persive f-valence band and, as a consequence, a large effec-
tive hole mass of the order of 50–100 �bare� electron masses.
This system is of particular interest because of the long life-
time of the electron-hole plasma. Moreover, the mass ratio is
close to the predicted critical value of M �80 for hole crys-
tallization �16�.

TmSe0.45Te0.55 at ambient conditions is an indirect semi-
conductor with a gap of E�=130 meV. An excitonic level
has been observed with EB�50–70 meV below the bottom
of the d band. Applying pressure, the gap can be tuned �and
even closed�, and the material is speculated to realize in the
pressure region between 5 and 11 kbar an excitonic insulator,
at least at very low temperatures �45�, the search for which
has been run for a long time �18� �see the experimental phase
diagram in Fig. 5�. A necessary precondition is the existence
of a large number density of �up to 1020–1021 per cm3� ex-
citons of intermediate size �in order to avoid too strong over-
lap of the excitonic bound states� �21�. For pressures exceed-
ing 11 kbar exciton ionization has been observed as a result
of the Mott effect. This is the region in phase space where
hole crystallization should occur.

FIG. 5. Excitonic phase diagram of TmSe0.45Te0.55 taken from
Ref. �21�. Measured points are designated by symbols. “Isobars” in
the semiconducting and semimetallic phases are marked as dotted
lines, whereas the isobar entering the excitonic phase is denoted by
a full line. The lower abscissa gives the corresponding energy gap
�E �here negative values refer to the metallic state�. The left bound-
ary �at high pressure� of the exciton-rich phase corresponds to the
pressure ionization �Mott effect�. For more details see Refs. �21,45�.
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In the following, we analyze this interesting system in
more detail, performing direct PIMC simulations within the
parabolic band approximation. While this is certainly a
strongly simplified model, we expect that the main trends,
related to density and temperature variation, will be repro-
duced. The simulations were performed for an e-h plasma
with me=2.1m0, mh=80m0, and �=25. Several characteristic
temperatures within the interval of the measurements by
Wachter et al. �21� �T�300 K� are chosen, which are well
below the exciton binding energy.

1. Pressure and internal energy

We first consider the behavior of pressure p and internal
energy E which are determined in our simulations exploiting
formulas �A5� and �A1�, derived in the Appendix. Figure 6
shows p and E versus the Brueckner parameter �i.e., versus
density to the power −1/3� at several fixed temperatures. At
low densities and high temperature �300 K�, p and E reflect
the classical ideal gas behavior. Reduction of density or/and
temperature lead to a significant deviation from this behav-
ior: Now p and E decrease due to the �overall attractive�
Coulomb interaction in the plasma and, in particular, due to
bound state formation of excitons and biexcitons, reaching a
minimum around rs�2–4. For higher densities, p and E
start to increase again monotonically. This is triggered by
quantum effects—the plasma behaves as a Fermi gas. At the
same time, bound states are expected to break up as a con-
sequence of the Mott effect. The behavior of bound states
will be verified below from the snapshots and pair distribu-
tion functions. The negative values of p observed at the low-

est temperature point toward an instability of the homoge-
neous plasma state against formation of droplets or clusters.
Electron-hole droplet formation in semiconductors is well
established and was observed experimentally three decades
ago �15�. This effect is similar to the so-called plasma phase
transition discussed by many authors for dense hydrogen and
other plasmas �see �46–50� and references therein�.

2. Particle configurations

Figure 7 shows snapshots of the electron-hole configura-
tion in the simulation box at different temperatures and den-
sities. According to the temperature decomposition of the
density matrix, each electron and hole is represented by sev-
eral beads. We used n=20 beads, so for the upper panels, at
T=50 K, the high-temperature density matrices are taken at a
temperature of 1000 K, being two times larger than EB. The
spatial distribution of the beads of each quantum particle is
proportional to its spatial probability distribution. Figure 7

FIG. 6. Isotherms of pressure and internal energy versus
Brueckner parameter �rs�n−1/3� for an e-h plasma with me

=2.1m0, mh=80m0, and �=25. For comparison, also results for �
=10 at T=300 K are shown. Pressure is in units of the classical
ideal pressure Pcl

id= �ne+nh�kBT.

FIG. 7. �Color� Snapshots of particle configurations at three par-
ticle densities corresponding to rs=10 �top�, 4 �center�, and 1 �bot-
tom�. Spin-up and spin-down electrons �holes� are marked by yel-
low and blue �red and pink� clouds of dots, and the Monte Carlo
cell is given by the gray grid lines �PBCs were used�. Left and right
panels show results at low �T=50 K� and high �T=200 K� tempera-
tures, respectively.
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indicates that for M �40 the typical size of the cloud of
beads for electrons is several times larger than the one for the
holes. Note that, in the present strongly correlated system,
the extension of electron and hole probability densities
maybe quite different from the de Broglie wavelength which
corresponds to the ideal case.

At low density �rs=10, top row� and temperature T
=50 K, practically all holes are closely covered by electron
beads, which means that electrons and holes form bound
states, and the e-h plasma consists mainly of excitons. This
interpretation will again be supported by the behavior of the
pair distribution functions discussed below. Raising the tem-
perature at fixed density leads to a �temperature-induced�
ionization of the bound states. As a result we find a substan-
tial number of free electrons and holes in the simulations �the
degree of ionization will be shown in Fig. 11 below�.

For intermediate densities �rs=4, middle row� we observe
the formation of biexcitons and many-particle clusters at low
temperatures �T=50 K�. Now the electron-hole system is
strongly inhomogeneous. In this case the mean distance be-
tween particles d is of the order of the electron wavelength.
At T=200 K biexcitons and many-particle clusters are absent
due to thermal breakup of exciton-exciton bound states.

At high density �rs=1� the electron wavelength exceeds
the mean interparticle distance d and even the size of the
Monte Carlo cell used in the simulations, which is seen by
the large extension of the electron bead clouds. At the same
time excitons become unstable because two electrons bound
to neighboring holes start to overlap, allowing for electron
tunneling from one exciton to another �pressure ionization,
Mott effect�, and the system transforms into a plasma of
electrons and holes. Since the hole wavelength is signifi-
cantly smaller than the electron wavelength �and may still be
smaller than d�, in a certain region of rs values the structure
of the hole beads resembles a liquid state �bottom left panel�.

3. Pair distribution functions and structure factors

Now let us discuss the behavior of the spin-averaged
electron-electron, hole-hole, and electron-hole PDFs defined
in Eq. �4�. Figure 8 shows the three functions gab�r� versus
the interparticle distance r=r1,a−r2,b for the same densities
and temperatures as in Fig. 7. Here no smoothing has been
carried out, i.e., the fluctuations of gee, ghh, and geh at small r
reflect the magnitude of the statistical errors of our simula-
tion.

As an effect of the Coulomb and Fermi �statistics� repul-
sions, gee and ghh are suppressed at small distances. Due to
the large mass difference the decay of the e-e correlations,
however, is essentially different from that of the h-h corre-
lations. The asymptotic of gee at small distances is deter-
mined mainly by electrons with opposite spin projections
�since the strong Fermi repulsion is absent�. For these elec-
tron pairs the main contribution to the repulsion comes from
the effective quantum Kelbg potential �recall that it is finite
at zero distance�, allowing for tunneling of electrons up to
zero separation. This is supported by the behavior of the
spin-dependent pair distribution shown in Fig. 10. Of course,
the tunneling effect are much more pronounced for the
lighter electrons.

The strong peak of geh at low densities �rs=10–8� is
caused by excitons. This is confirmed by considering the
function r2geh�r� which exhibits a pronounced maximum at
about 1aB, i.e., at the exciton Bohr radius. At these densities,
the functions gee and ghh exhibit no peak structure, i.e., there
is no indication of formation of bound exciton-exciton com-
plexes �such as biexcitons or electron-hole droplets�. With
increasing temperature more and more excitons dissociate,
and the maximum of r2geh is reduced.

Varying, at low temperatures, the density over three or-
ders of magnitude, the maximum of r2geh is suppressed and
finally vanishes. At about rs=6, there is evidence that recom-

FIG. 8. �Color online� Pair dis-
tribution functions gee �black solid
line�, ghh �red dashed line�, and
geh �blue dot-dashed line� at T
=50 �left two columns� and 200 K
�right two columns�. The dotted
lines show r2geh where, for better
visibility of the exciton peak, the
data are divided by a factor 120 in
�a� and �b�, by a factor of 30 in
�c�, �d�, �g�, and �h�, and by a fac-
tor of 10 in �e�, �f�, and �i–l�. Dis-
tances are in units of the exciton
Bohr radius aB.
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bination into biexcitons takes place. At the same time, the
position of the maximum in r2geh shifts from 1aB to �2–3�aB

approximately, indicating the increasing radii of the bound
states. This scenario is confirmed by the behavior of gee and
ghh: For intermediate densities �2�rs�6�, they exhibit dis-
tinct peaks at larger r, pointing toward the formation of biex-
citons and many-particle clusters. For rs�1, the fraction of
excitons is further reduced due to many-body effects �pres-
sure ionization�, and biexcitons and many-particle clusters
vanish.

Finally let us relate the width of the peak of geh to the
extension of the ground-state wave function ��1aB�. At low
densities �rs�6� the peak of geh is rather broad, indicating
the population of excited states, while at high densities �rs

�1� the width of the lowest peak in geh becomes signifi-
cantly smaller than the corresponding width of the ground-
state peak. At the same time the hole-hole pair distribution
function reveals an ordering of the holes into a fluid-like
state.

Figure 9 shows the variation of the static charge structure
factor, defined in reciprocal k space as

Sab�k� =



0

�

dr r2�gab�r� − 1�sin�kr�/�kr�

�

0

�

dr r2�gab�r� − 1�� . �5�

According to Eq. �5� positive �negative� values of Sab�k� in-
dicate attraction �repulsion� in momentum space; see also
Ref. �51�.

Starting at low densities �rs=10�, the negative values of
the e-e and h-h structure factors at small momenta �large
distances� originate from the strong Coulomb repulsion of
quasifree equally charged particles. The maximum of Seh, as
well as the modulations of See and Shh at finite k, are indica-
tive of exciton formation. Excitons set a new length scale in
the structure factor at about 0.2 �1/2aB�. As expected, these
signatures are washed out at higher temperatures, where ex-
citons break up. At high density �rs=1� the large mass ratio
between electrons and holes is responsible for the different
behavior of gee and ghh. This is especially true for low tem-
peratures when the electrons are perfectly delocalized but the
holes still have fluidlike short-range correlations as noted
above. The value of the normalization constant �denomina-
tor� in Eq. �5� is responsible for the different magnitude of
the Shh at T=50 and 200 K.

The e-e and h-h PDFs and structure factors presented in
Figs. 8 and 9 were averaged over the spin degree of freedom
of the particles. Our DPIMC simulations, however, allow
direct inspection of the spin effects as well. Especially for
the case of large degeneracy �n	3�1� we expect qualita-
tively different behavior of gaa

↑↑ and gaa
↑↓ at small distances,

due to the influence of the Fermi statistics. This is confirmed
by Fig. 10. In other words, we clearly see the exchange hole
known from the ideal Fermi gas, but here it appears in a

strongly interacting e-h plasma. In contrast, for the much
heavier holes the quantum statistical repulsion is much less
pronounced, and the decay of ghh for r→0 is mainly trig-
gered by the �spin-independent� Coulomb interaction.

The snapshots depicted in Fig. 7 have shown that in the
density regime 2�rs�6 the plasma contains a large fraction
of bi-excitons. Now, Fig. 10 confirms this conclusion �con-
sider, e.g., the case rs=4�. There is not much difference in
ghh

↑↑ and ghh
↑↓—both functions exhibit a similar peak at a hole-

hole distance of about 3aB. In contrast, the electron behavior
is strongly spin dependent: There is a high probability to
encounter two electrons with different spin projections be-
tween two holes �at a distance 1aB–2aB�—which is the ex-
pected behavior known from biexcitons �or the hydrogen
molecule�.

The corresponding charge structure factors clearly show
that the difference between electrons and holes with respect
to the spin correlations is most pronounced in the regime
where bound states are formed but, of course, the differences
are less important at very small and large k �corresponding to
large and small distances, respectively�. We found attraction
�repulsion� for opposite �equal� spin projections for both par-
ticles as k→0, except for the case of high densities, where
the hole fluid forms. Here, in the vicinity of the Mott transi-
tion, the difference between the structure factors for elec-

FIG. 9. �Color online� Static structure factor See �black solid
line�, Shh �red dashed line�, and Seh �blue dot-dashed line� at T
=50 �top four figures� and 200 K �bottom four figures�.
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trons and holes with same and opposite spin projections is
notably smaller; they are close to their spin-averaged values
given in Fig. 9 for T=50 K and rs=2.

4. Degree of ionization: Mott density

The above analysis of the snapshots and PDFs has indi-
cated that, in a broad range of densities, the e-h plasma is
partially ionized containing a varying fraction of free and
bound electrons and holes. The value of the critical Mott
density �corresponding to the Brueckner parameter rs

Mott�
where excitons vanish due to pressure ionization is essential
for the occurrence of hole crystallization. In particular, the
critical mass ratio was found to directly depend on rs

Mott as
Mcr+1=rs

cr /rse
Mott, where rse21/3rs and rs

cr�100 is the criti-
cal value for Coulomb crystallization in a one-component
plasma �52�. The value of rs

Mott depends in a complicated
way on the structure of the excitons �which may be quite
different for different materials� and on many-body effects
such as screening and bound-state renormalization. This is a
very complex problem that has been discussed in a variety of
approximations the accuracy of which, however, is difficult
to assess �see, e.g., Ref. �3� for an overview�. Based on our
DPIMC simulations avoiding any simplifying assumptions,
we have the possibility to obtain a consistent many-body
result for rs

Mott. To this end, we first need to find a definition
for the degree of ionization that is applicable to our simula-
tions.

The main problem of PIMC simulations in configuration
space is that there is, in principle, no clear subdivision into
bound and free “components” possible. Electron-hole corre-
lations arising from bound and scattering states contribute to
the same quantities, such as energy, equation of state, or
PDF. Note that the usual subdivision in energy space into
bound and scattering states according to negative and posi-
tive relative pair energies E� also breaks down in the case of

strong correlations: The eigenvalues E� and wave functions

���r� are being renormalized, ��→�̃�; E�→ Ẽ�. In the vi-
cinity of the Mott point, the distinction between bound and
scattering states becomes meaningless; bound state levels
merge into the scattering continuum �3�.

Nevertheless, a rough estimation of the fraction 1−�ion of
e-h bound states ��ion denotes the degree of ionization� can
be obtained by analyzing the PDF geh. In particular, at low
temperatures kBT�EB and far below the Mott density, the
plasma will consist of excitons in the ground state E1, i.e.,
geh�r����1�r��2 �see �35��. In the general case, the PDF will
contain a superposition �mixed state� of all renormalized
eigenfunctions, weighted with the Boltzmann factor,

geh�r� � 	
�

��̃��r��2 exp�− �Ẽ�� . �6�

While the scattering states are delocalized, the bound state
wave functions are localized in space leading to an increase
of geh beyond the result for an ideal plasma geh

id 1. Due to
the normalization of geh values of geh�1 at small e-h dis-
tances must be compensated by a depletion, geh�1, at larger
distances. Now, recall that geh is related to the probability
density by Peh�r��r2geh�r� which, in the case of excitons, is
strongly enhanced around reh=1aB �cf. Fig. 8�. Hence we can
use as a “pragmatic” definition of the fraction of bound states
�this idea is due to Bjerrum who used it very successfully in
the theory of electrolytes �53�� the probability of e-h pairs
being at small distances �where geh�1�

Neh
b

Neh
b + Neh

c  1 − �ion �



0

rb

r2�geh�r� − 1�dr



0

rb

r2geh�r�dr

. �7�

FIG. 10. �Color online� Spin-
resolved pair distribution func-
tions gab�r� and structure factor
Sab�k� for electrons �solid black
lines� and holes �dashed red lines�
at T=50 K. Columns �a�, �c�, �e�
�columns �b�, �d�, �f�� correspond
to antiparallel �parallel� spin pro-
jections of the particle pair.
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Here rb is the second zero of r2�geh−1� which is located to

the right of the exciton peak. By subtracting �0
rb

r2dr in the
numerator, the uncorrelated contributions are eliminated
from the full probability density. The denominator accounts
for the normalization �giving the full probability of particles
being in bound or scattering states�. Of course, this definition
is only qualitative since it does not exclude attractive scat-
tering states and thus may slightly overestimate the “true”
bound state fraction.

An analogous ratio can be defined for the hole-hole bound
state �biexciton� fraction

Nhh
b

Nhh
b + Nhh

c =



rb�

rb

r2�ghh�r� − 1�dr



rb�

rb

r2ghh�r�dr

, �8�

with �rb� ,rb� being the interval where r2�ghh�r�−1� is posi-
tive.

We expect that the definition �7� is well suited for a nu-
merical determination of the Mott density as the density
where the plasma becomes dominated by free particle behav-
ior. We will identify rs

Mott as the density where the bound
state fraction falls below 5–10 %, i.e., �ion=90–95 %.

Figure 11 presents our DPIMC results for the e-h bound
state fraction according to Eqs. �7� and �8�. At low densities
�rs�6� and low temperatures �T�100 K� practically all
electrons and holes are bound in excitons, i.e., biexcitons and
many-particle clusters are absent. Increase of temperature,
T�100 K, leads to a strong ionization of excitons, i.e., free
particles dominate. In the intermediate density regime �2
�rs�6� and for low temperatures �T�100 K�, the largest
fraction �up to about 20%� of h-h bound states �biexcitons
and many-particle clusters� is observed. It is interesting to
note that at higher temperatures �T�100–300 K� the exci-
ton fraction increases a bit for higher density.

A decrease of the bound state fraction below 5% is ob-
served for rs�1 which we, therefore, identify with the Mott
density rs

Mott�1 with an error of about 30% �which corre-
sponds to rse�1.2 which was used in Ref. �16��. From this
result, we confirm the value of the critical mass ratio �see
above� Mcr�83 which is in the range of previous predic-
tions, e.g., �19,20�. Since also the value for rs

cr is expected to
have an error of about 20%, a total uncertainty of about 50%
has to be expected. This means that hole crystallization
might occur already substantially below M �80 which un-
derlines again the interest in the Tm�SexTe1−x� system.

Let us, therefore, come back to the experimental phase
diagram Fig. 5. There the excitonic-rich phase should exist
up to a temperature of about 250 K. Then it is of course
interesting to calculate the temperature dependence of the
e-h bound state fraction in this regime �cf. the results for rs
=10 in Fig. 11�c��. Although our simulations do not exhibit a
sharp transition from an excitonic to an ionized “phase,” we
can again formally use a bound state fraction of 10% as the
boundary of the exciton-dominated phase. Then, at low den-

sity, e.g., for rs=10, these bound states will be stable up to
T=150–250 K. Note that these values are quite sensitive to
� which is not precisely known. We therefore have per-
formed simulations for two slightly different values. Increase
of � leads to more weakly bound excitons and consequently
reduces the ionization temperature. The same tendency is
observed if the mass ratio M is lowered. Figure 11 shows
that the ratio of temperatures corresponding to �ion=50% is
the same as the corresponding ratio of the reduced masses

FIG. 11. Fraction of the electron-hole �a� and hole-hole bound
states �b� versus Brueckner parameter rs for different temperatures
and dielectric constants. �c� illustrates the temperature-induced
breakup of excitons for different mass ratios and dielectric
constants.
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mr=memh / �me+mh� �keeping � fixed�. For example, a ratio
of about 2 is observed for the data for mh=80 and mh=2.1,
and 1.5 for those for mh=80 and mh=4.2. Clearly, as ex-
pected for an isolated exciton, the binding energy is propor-
tional to mr. Note, however, that in the present case the ex-
citons are embedded into an e-h plasma which influences the
bound state spectrum, so the recovery of the single-exciton
behavior is not a trivial result.

We can also give a rough estimate of the critical electron
density where the transition from an insulator �built up of e-h
bound states� to a �semi�metal takes place, again using a
value of �ion=90% as a criterion. The critical value of rs

�1 corresponds to a particle density of the order of
1021 cm−3 which is in reasonable agreement with the esti-
mates from the experiments.

C. Increased hole localization with increasing mass ratio

After we have confirmed the pressure-induced breakup of
excitons and determined the Mott parameter rs

Mott in
Tm�SexTe1−x� with a mass ratio of M �40, we can now re-
turn to the question of strong h-h correlations at high density
and the possibility of hole crystallization. To this end we
have performed DPIMC simulations at low temperatures and
high densities, well above the Mott point, and varied the
mass ratio over two orders of magnitude.

Figure 12 shows the results for rs=0.5 and kBT /EB

=0.064 with M ranging from 5 to 400. To simplify the analy-
sis we do not mark electrons and holes having different spin
projections with different colors �we found that, for hole
crystallization, spin effects are of minor importance�. Since
the density is an order of magnitude higher than the Mott
density, electrons and holes are in the plasma state. For all
values of M the electrons are completely delocalized, form-
ing a Fermi gas which is very weakly correlated. At the same
time, the nature of the hole state changes drastically with
increasing M. Initially �M =5�, the holes are also in a Fermi-
gas-like state where individual holes penetrate each other. An
increase of M up to 50 leads to continuously growing hole
localization. At M =50 individual holes can be distinguished:
Their de Broglie wavelength 	h becomes smaller than the
average distance between two holes, dh. A further increase of
M to 100 leads to an additional reduction of 	h by a factor �2
�with dh unchanged� and, consequently, to hole localization.
The holes form a regular lattice—a Coulomb crystal �bottom
left part of Fig. 12�. Increasing the mass ratio further, the
lattice becomes more rigid �bottom right part of Fig. 12�,
until the holes become practically pointlike �cf. Fig. 4�.
Based on these simulation results we can conclude that, at
these values of density and temperature, hole crystallization
occurs between M =50 and M =100, which is in surprisingly
good agreement with the analytical estimate for Mcr based on
the Mott density obtained above for the same parameters.

Obviously, the snapshots allow for a very rough determi-
nation of the critical mass ratio only. A more accurate esti-
mate can be obtained by analyzing the relative distance fluc-
tuation of the holes in dependence on M. These results,

reported in Ref. �17�, confirm the above result for Mcr. We
also have studied the thermal properties of the hole crystal
which arise due to the temperature dependence of rs

Mott. As
seen from Fig. 11�a� the bound state fraction isotherms have
reached saturation at about 60 K �corresponding to slightly
more than 0.1EB�. Thus our result for Mcr will not change
significantly at lower temperatures, thus reflecting the
ground state behavior. The full phase diagram of the hole
crystal was published in Ref. �16�.

IV. DISCUSSION

In this paper we have presented a numerical �computer
simulation� analysis of strong Coulomb correlations in dense
three-dimensional two-component plasmas at rather low
temperatures. We were in particular interested in systems
with a mass ratio M �40 which is intermediate between the
“usual” semiconductors �M �2–10� and “conventional”
plasmas �such as hydrogen with M �1836�. Two-component
Coulomb systems with this mass ratio behave in many as-
pects like plasmas, with the main difference that quantum
and spin properties of the heavy particles �holes� cannot be
neglected. Such systems might be realized in intermediate
valence semiconductors under pressure.

FIG. 12. �Color� Snapshots of the electron-hole plasma at high
density �rs=0.5� and T /EB=0.064. The pictures show the spin-
averaged electron �yellow� and hole �red� bead configurations for
different values of the mass ratio M �from top left to bottom right�
5, 12, 25, 50, 100, and 400.
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From a plasma physics standpoint these are very interest-
ing materials because they allow one to investigate nontrivial
high-density phenomena of current interest, such as pressure
ionization �Mott effect�, the plasma phase transition, and the
metal-insulator transition. These effects exist in “conven-
tional” plasmas only above a density of the order of 1 g cm−3

which, meanwhile, can be achieved in laser or ion beam
compression experiments, but only for short periods of time,
which makes precision measurements of the plasma proper-
ties very difficult. The same physical effects can be observed
in the above mentioned semiconductor materials under sta-
tionary �equilibrium� conditions at densities and tempera-
tures that are easily accessible in experiments. In fact, the
�qualitative� phase diagrams of dense plasmas and electron-
hole plasmas are readily translated from one to another by
rescaling the binding energy and the Bohr radius �54,55�. For
this reason, the phase diagram of Tm�Se,Te�, shown in Fig.
5, is of interest also for the physics of dense partially ionized
plasmas.

In this paper, we concentrated on the central part of this
phase diagram, where a large fraction of bound states exists,
on the Mott transition and on the high-density effects �hole
crystallization�. A theoretical treatment of these effects is
very difficult, because many-body effects such as bound state
formation, screening, and quantum effects have to be taken
into account self-consistently. While for such complex sys-
tems analytical methods fail, our first-principles path integral
Monte Carlo approach is well suited. In order to avoid addi-
tional approximations, which are particularly questionable in
the region of the Mott point, we have used direct fermionic
simulations. With an improved treatment of the spin statistics
we were able to present reliable simulations. Restricting the
simulations to temperatures above 6% of the exciton binding
energy and densities to values not significantly higher than
the Mott density allowed us to avoid serious difficulties aris-
ing from the fermion sign problem.

Most notably, we have shown that, above the Mott point,
two-component plasmas with large mass anisotropy show in-
teresting Coulomb correlation phenomena: with increasing
density holes can undergo a phase transition to a Coulomb
liquid and to a Wigner crystal which are embedded into a
degenerate electron Fermi gas. Such crystals are expected to
exist in white dwarf stars where the mass ratio exceeds 104.
However, crystal formation in a two-component plasma
should be possible also for the light elements, such as hydro-

gen �34,44� and helium and, more generally, for plasmas
with mass ratios as low as 80 �cf. �16��. This should be
possible to achieve in the semiconductor materials an-
nounced in this paper. More subtle questions, such as the
symmetry of the crystal and its energy, cannot yet be an-
swered conclusively, mainly because of the yet too small size
of the simulations �50 electrons and 50 holes are presently
feasible�. Therefore, in order to obtain more accurate data,
e.g., for the internal energy of a macroscopic two-component
plasma at very high density, a significant increase of the
simulation size would be highly desirable.
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APPENDIX: USED ESTIMATORS FOR THE ENERGY
AND EQUATION OF STATE

In this appendix we briefly summarize the main formulas
used in the path integral Monte Carlo simulations of a two-
component electron-hole plasma. They involve the pair ap-
proximation for the N-particle density matrix and the use of
effective quantum pair potentials �Kelbg potential; see Eq.
�3�� �56�.

1. Estimator for the total energy

The formula used in this paper for the calculation of the
total energy is �56�

�E =
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with C�rpt
l �= �rpt

l �ypt
l � /2�rpt

l �, C�qpt
l �= �qpt

l � ỹpt
l � /2�qpt

l �,
D�xpt

l �= �xpt
l �yp

l − ỹt
l� /2�xpt

l �, and �ab�x�������ab�x ,���� /
�������=��. Further, �¯�¯� denotes the scalar product, and
qpt, rpt, and xpt are differences of two coordinate vectors:
qptqp,h−qt,h, rptqp,e−qt,e, xptqp,e−qt,h, rpt

l =rpt+ypt
l ,

qpt
l =qpt+ ỹpt

l , xpt
l xpt+yp

l − ỹt
l, ypt

l yp
l −yt

l, ỹpt
l  ỹp

l − ỹt
l, with

yt
l=�	e	k=1

l �t
�k� and ỹp

l =�	h	k=1
l �̃p

�k�.
The density matrices �sk appearing in Eq. �A1� are given

by

�sk = CNe

s CNh

k e−�U�
l=1

n

�
p=1

Ne

�
t=1

Nh

�p
l �̃t

l det��pt
n,0�sk, �A2�

where

U =
1

n + 1	
l=0

n

�Ue�Xe
�l�,��� + Uh�Xh

�l�,��� + Ueh�Xh
�l�,Xe

�l�,���� ,

�A3�

and �t
lexp�−
��t

�l��2�, �̃p
l exp�−
��̃p

�l��2�. Here, we intro-
duced the dimensionless variables ��k�= ��h

�k� ,�e
�k��, and �a

2

ma / �2
�2���=1/	�,a
2 .

Notice that the density matrix �A2� does not contain an
explicit sum over the permutations and thus no sum of terms
with alternating signs. Instead, the whole exchange problem
is contained in the following determinant which is a product
of exchange matrices of electrons �index s� and holes �index
k� where s �k� denotes the number of electrons and holes
having the same spin projections �for more details, we refer
to Ref. �57��:

��pt
n,0�sk = �e−�
/�	e

2���ra − rb� + ya
n�2�s � �e−�
/�	e

2���ra − rb� + ya
n�2�Ne−s

� �e−�
/�	h
2���qa − qb� + ỹa

n�2�k

� �e−�
/�	h
2���qa − qb� + ỹa

n�2�Nh−k. �A4�

2. Estimator for the equation of state

The formula used in this paper for computation of the
equation of state is �56�

�pV

Ne + Nh
= 1 −

1

Ne + Nh

�3Z�−1

	h
3Nh	e

3Ne
� 	

s=0

Ne

	
k=0

Nh 
 dq�0�d��1�
¯ d��n��sk�q�0�,��1�, . . . ,��n�,��

� �	
p=1

Nh

	
t=1

Ne

�xpt�
���eh

��xpt�
+ 	

p�t

Nh

�qpt�
���hh

��qpt�
+ 	

p�t

Ne

�rpt�
���ee

��rpt�

+ 	
l=1

n �	
p=1

Nh

	
t=1

Ne

B�xpt
l �

���eh

��xpt
l �

+ 	
p�t

Ne

A�rpt
l �

���ee

��rpt
l �

+ 	
p�t

Nh

A�qpt
l �

���hh

��qpt
l � � −

�

det��pt
n,0�sk

� � det��pt
n,0�sk

��
�

�=1
� ,

�A5�

with B�xpt�= �xpt
l �xpt� / �xpt

l �, A�rpt
l �= �rpt

l �rpt� / �rpt
l �, and A�qpt

l �
= �qpt

l �qpt� / �qpt
l �.

Equations �A1� for the total energy and �A5� for the pres-
sure are readily understood: the first terms on the right-hand
side correspond to the classical ideal gas part. The ideal
quantum contribution, in excess of the classical one, plus all
correlation contributions are contained in the integral terms.
The Coulomb correlation contributions arise from the terms
with the Kelbg potentials ab, whereas the exchange contri-
butions arise from the derivatives of the exchange matrix
�last term�.

While there exist many alternative representations of the
thermodynamic functions, the main advantage of the present
expressions Eqs. �A1� and �A5� for energy and pressure is
that the explicit sum over permutations has been converted
into the spin determinant which can be computed very effi-
ciently using standard linear algebra methods. Furthermore,
each of the sums in curly brackets in Eqs. �A1� and �A5� is
bounded when the number of high-temperature factors in-
creases �n→��. Note that Eqs. �A1� and �A5� contain the
important limit of an ideal quantum plasma in a natural way
�36,58,43,37�.

�1� Strongly Coupled Coulomb Systems, edited by G. Kalman
�Pergamon Press, Oxford, 1998�.

�2� Proceedings of the International Conference on Strongly
Coupled Plasmas, edited by W. D. Kraeft and M. Schlanges
�World Scientific, Singapore, 1996�.

�3� W. D. Kraeft, D. Kremp, W. Ebeling, and G. Röpke, Quantum

Statistics of Charged Particle Systems �Akademie-Verlag, Ber-
lin, 1986�.

�4� Kinetic Theory of Nonideal Plasmas, edited by M. Bonitz and
W. D. Kraeft, special issue of J. Phys.: Conf. Ser. 11 �2005�.

�5� D. H. E. Dubin and T. M. O’Neill, Rev. Mod. Phys. 71, 87
�1999�.

CORRELATION EFFECTS IN PARTIALLY IONIZED MASS… PHYSICAL REVIEW E 75, 036401 �2007�

036401-13



�6� D. J. Wineland, J. C. Bergquist, W. M. Itano, J. J. Bollinger,
and C. H. Manney, Phys. Rev. Lett. 59, 2935 �1987�.

�7� F. Diedrich, E. Peik, J. M. Chen, W. Quint, and H. Walther,
Phys. Rev. Lett. 59, 2931 �1987�.

�8� W. M. Itano, J. J. Bollinger, J. N. Tan, B. Jelenkovic, and D. J.
Wineland, Science 279, 686 �1998�.

�9� Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys., Part 2 33,
L804 �1994�.

�10� H. Thomas and G. E. Morfill, Nature �London� 379, 806
�1996�.

�11� M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgart-
ner, P. Ludwig, A. Piel, and A. Filinov, Phys. Rev. Lett. 96,
075001 �2006�.

�12� For details, see, e.g., L. Segretain, Astron. Astrophys. 310, 485
�1996�.

�13� A. V. Filinov, M. Bonitz, and Yu. E. Lozovik, Phys. Rev. Lett.
86, 3851 �2001�.

�14� A. Filinov, M. Bonitz, and Yu. E. Lozovik, J. Phys. A 36,
5957 �2003�.

�15� For reviews, see, e.g., Electron-Hole Droplets in Semiconduc-
tors, edited by C. D. Jeffries and L. V. Keldysh �Nauk, Mos-
cow, 1988�; J. C. Hensel, T. G. Phillips, and G. A. Thomas,
Solid State Phys. 32, 88 �1977�; 95, 235006 �2005�.

�16� M. Bonitz, V. S. Filinov, V. E. Fortov, P. R. Levashov, and H.
Fehske, Phys. Rev. Lett. 95, 235006 �2005�.

�17� M. Bonitz, V. S. Filinov, V. E. Fortov, P. R. Levashov, and H.
Fehske, J. Phys. A 39, 4717 �2006�.

�18� B. I. Halperin and T. M. Rice, Rev. Mod. Phys. 40, 755
�1968�.

�19� First rough estimates of the critical hole to electron mass ratio
were given by A. A. Abrikosov who found M =100 �20� and
M =50 in Fundamentals of the Theory of Metals �North-
Holland, Amsterdam, 1988�. More recently an estimate of
Mcr=20 was reported by M. Saarela, T. Taipaleenmäki, and F.
V. Kusmartsev, J. Phys. A 36, 9223 �2003�.

�20� A. A. Abrikosov, J. Less-Common Met. 62, 451 �1978�.
�21� P. Wachter, B. Bucher, and J. Malar, Phys. Rev. B 69, 094502

�2004�.
�22� R. Egger, W. Häusler, C. H. Mak, and H. Grabert, Phys. Rev.

Lett. 82, 3320 �1999�, and references therein.
�23� D. Klakow, C. Toepffer, and P.-G. Reinhard, Phys. Lett. A

192, 55 �1994�; J. Chem. Phys. 101, 10766 �1994�.
�24� W. Ebeling and F. Schautz, Phys. Rev. E 56, 3498 �1997�.
�25� M. Bonitz et al., J. Phys.: Condens. Matter 8, 6057 �1996�.
�26� M. Bonitz, Quantum Kinetic Theory �B. G. Teubner, Stuttgart,

1998�.
�27� V. M. Zamalin, G. E. Norman, and V. S. Filinov, The Monte

Carlo Method in Statistical Thermodynamics �Nauka, Mos-
cow, 1977� �in Russian�.

�28� The Monte Carlo and Molecular Dynamics of Condensed Mat-
ter Systems, edited by K. Binder and G. Cicotti �SIF, Bologna,
1996�.

�29� Classical and Quantum Dynamics of Condensed Phase Simu-
lation, edited by B. J. Berne, G. Ciccotti, and D. F. Coker
�World Scientific, Singapore, 1998�.

�30� D. M. Ceperley, in The Monte Carlo and Molecular Dynamics
of Condensed Matter Systems �Ref. �28��, pp. 447–482.

�31� D. M. Ceperley, Rev. Mod. Phys. 65, 279 �1995�.

�32� B. Militzer and E. L. Pollock, Phys. Rev. E 61, 3470 �2000�.
�33� As an example we mention the work of Imada who analyzed

various estimators and high-temperature approximations going
beyond the simple Trotter decomposition; see, e.g., M. Imada,
J. Phys. Soc. Jpn. 53, 2861 �1984�.

�34� V. S. Filinov, M. Bonitz, and V. E. Fortov, JETP Lett. 72, 245
�2000�.

�35� V. S. Filinov, V. E. Fortov, M. Bonitz, and D. Kremp, Phys.
Lett. A 274, 228 �2000�.

�36� V. S. Filinov, M. Bonitz, W. Ebeling, and V. E. Fortov, Plasma
Phys. Controlled Fusion 43, 743 �2001�.

�37� V. S. Filinov, M. Bonitz, V. E. Fortov, W. Ebeling, H. Fehske,
D. Kremp, W. D. Kraeft, V. Bezkrovny, and P. Levashov, J.
Phys. A 39, 4421 �2006�.

�38� Introduction to Computational Methods for Many Body Stys-
tems, edited by M. Bonitz and D. Semkat �Rinton Press,
Princeton, NJ, 2006�.

�39� R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path
Integrals �McGraw-Hill, New York, 1965�.

�40� G. Kelbg, Ann. Phys. 12, 219 �1963�.
�41� W. Ebeling, H. J. Hoffmann, and G. Kelbg, Contrib. Plasma

Phys. 7, 233 �1967�, and references therein.
�42� A. V. Filinov, V. O. Golubnychiy, M. Bonitz, W. Ebeling, and

J. W. Dufty, Phys. Rev. E 70, 046411 �2004�.
�43� W. Ebeling, A. Filinov, M. Bonitz, V. Filinov, and T. Pohl, J.

Phys. A 39, 4309 �2006�.
�44� Recently, proton crystallization was analyzed by B. Militzer

and R. L. Graham, J. Phys. Chem. Solids 67, 2136 �2006�.
�45� F. X. Bronold and H. Fehske, Phys. Rev. B 74, 165107 �2006�.
�46� G. E. Norman and A. N. Starostin, Teplofiz. Vys. Temp. 6, 410

�1968�; �High Temp. 6, 394 �1968��; 8, 413 �1970�; 8, 381
�1970�.

�47� W. Ebeling and W. Richert, Phys. Lett. 108A, 80 �1985�; Phys.
Status Solidi B 128, 167 �1985�.

�48� M. Schlanges, M. Bonitz, and A. Tschttschjan, Contrib. Plasma
Phys. 35, 109 �1995�.

�49� D. Beule et al., Phys. Rev. B 59, 14177 �1999�; Contrib.
Plasma Phys. 39, 21 �1999�.

�50� V. S. Filinov, V. E. Fortov, M. Bonitz, and P. R. Levashov,
Pis’ma Zh. Eksp. Teor. Fiz. 74, 422 �2001� �JETP Lett. 74,
384 �2001��.

�51� H. Fehske, V. S. Filinov, M. Bonitz, P. Levashov, and V. E.
Fortov, J. Phys.: Conf. Ser. 11, 139 �2005�.

�52� This value was obtained by D. M. Ceperley and B. J. Alder,
Phys. Rev. Lett. 45, 566 �1980�. A slightly different value was
reported by M. D. Jones and D. M. Ceperley, ibid. 76, 4572
�1996�.

�53� N. Bjerrum, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 7, No. 9
1 �1926�.

�54� M. Bonitz et al., J. Phys. A 36, 5921 �2003�.
�55� M. Bonitz, Physik Journal 7/8, 69 �2002�.
�56� The derivation of the results in the Appendix and a discussion

of the main approximations involved can be found in the
supplementary e-print at cond-mat/0702049.

�57� V. S. Filinov, High Temp. 13, 1065 �1975�; 14, 225 �1976�.
�58� An energy estimator similar to Eq. �A1� has been derived by V.

F. Herman, E. J. Bruskin, and B. J. Berne, J. Chem. Phys. 76,
5150 �1982�.

FILINOV et al. PHYSICAL REVIEW E 75, 036401 �2007�

036401-14


