PHYSICAL REVIEW B 76, 045341 (2007)

Invariance of the Kohn center-of-mass mode in a conserving theory
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The center-of-mass (c.m.) oscillation of a many-body system in a harmonic trap is known to be independent
of the interparticle interaction. However, this is not necessarily the case if the interactions are treated approxi-
mately. Here, we prove a simple general criterion for preservation of the c.m. mode: the approximation has to
preserve density and momentum. The result equally applies to zero and finite temperatures, as well as to
nonequilibrium situations, and to the linear and nonlinear response regimes.
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I. INTRODUCTION

Interacting many-body systems in confinement potentials
are of growing interest in many fields, including ions in Pen-
ning or Paul traps,'= dusty plasmas,>® electrons and excitons
in quantum wells and dots (see, e.g., Refs. 7-9), or ultracold
atoms and molecules forming Bose condensates (see, e.g.,
Refs. 10-13 for an overview). In all these systems, the prob-
lem of collective modes is of high interest since they deter-
mine the optical and transport properties, (see, e.g., Refs. 3,
7, and 14). For example, for classical plasmas in traps the
spectrum of normal modes, including correlation effects, has
been analyzed in detail in Refs. 3 and 4. Further, the normal
mode spectrum has turned out to be an important test of the
experimental trap profile and of theoretical models as well.
In particular, the center-of-mass (c.m.) oscillation of the
trapped particles is a sensitive test for many-body theories:
possible deviations of its frequency from the trap frequency
indicate that the used approximation is inconsistent or not
appropriate or that the numerical solution of the model is
incorrect. The behavior of the c.m. or sloshing mode has
been studied for trapped quantum systems originally by
Kohn'# and Brey et al.” This issue has more recently re-
gained interest in the context of trapped Bose condensates. In
particular, the invariance of the Kohn mode by certain ap-
proximate theories has been discussed in application to vari-
ous approximations, mostly mean-field-type models (see,
e.g., Refs. 10-12).

The validity of the Kohn theorem for approximate theo-
ries will be discussed in detail in this paper. We start in Sec.
IT with a brief reminder of the Kohn theorem for the case of
an exact treatment of the pair interactions. Then, in Sec. III,
we introduce approximations for the interactions in a com-
pletely general form using nonequilibrium Green’s functions.
We then derive the conditions these approximations have to
fulfill in order not to violate the Kohn theorem. We conclude
with a discussion of the results and of their scope of appli-
cability in Sec. IV.

II. KOHN THEOREM

Let us briefly recall the contents of the Kohn theorem.
Consider a quantum N-body system in a three-dimensional
harmonic trap. A very general description for identical
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particles with mass m is provided by the Hamiltonian

I:I=EI:Ik+Ew(ri—rk), (1)
k i<k
P om
Hi= "+ —(Q7 + Qly7 + Q2)) - eE(0)r,
2m 2 ’ '

where, in addition, a homogeneous time-dependent dipole
field E is included. Introducing c.m. and relative coordinates
R=N"'Zr; and & (e.g., for two particles, é&=r,;-r,) and
masses M=Nm, w=m/N, the Hamiltonian (1) can be written
as sum of a c.m. and a relative contribution, H=H,.,, +H,,,
with

. P M
Hop= 0+ ?(Qixz + QY1+ 027) - eE()R,  (2)
7
A i M
H,p= E Z + E(infii + Qiigii + infgi)
+ E w(&—=§&), 3)
i<k

where we introduced the center of mass and relative mo-
menta Pz%VR and f)gkz%ng. Since the particle interaction

appears only in the relative Hamiltonian and [H,,, ,H,,,]=0,
the c.m. dynamics of the system (1) coincides with that of a
noninteracting system, i.e., R(s) performs the motion of a
forced three-dimensional harmonic oscillator. This is a gen-
eralization of the free c.m. oscillation (commonly called
Kohn or sloshing mode) to the case of an additional external
field. This well-known result was first obtained by Kohn for
the case where the electric field and the trap potential are
replaced by a homogeneous magnetic field'# and is now
commonly called Kohn theorem. The analogous result for
the system (1) was proven by Brey et al.’

The Kohn theorem is fairly obvious due to the fact that

the exact pair interaction Hamiltonian ‘712:Ei< w(é=¢§)
contains only relative coordinates and thus does not contrib-
ute to H,.,,. However, an exact treatment of the system (1) is,
in many cases, not possible and one has to resort to approxi-
mations of many-body theory. As a result, the interaction
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energy is computed approximately, \A/uﬂ \7‘1”2’=§Tr W12012,
as the trace over the pair interaction with an approximation
P12 for the two-particle density operator (see, e.g., Ref. 15).
The expectation value of the interaction energy is readily
computed using the coordinate representation of p,, and w,,

~ 1
<V?127>=§fdlldl‘zw(h—rz)Pn(l’bl‘z;I‘bl‘z;V,E,t)- 4)

Equation (4) shows that the density matrix has no simple
dependence on relative and c.m. coordinates; in general, con-
tributions of both do not separate. Even in the simplest ap-
proximation, the Hartree approximation, pf’z(rl,rz;rl,rz;t)
=n(r,;,1)n(r,,1), depends on both coordinates and not just the
distance r;—r,. Therefore, it has been concluded that pf’z
violates the Kohn theorem.!' The situation is similarly com-
plex in the Hartree-Fock (HF) approximation and even more
complicated if correlations are being included. Moreover, as
we indicated explicitly by the arguments of p in Eq. (4), in
nonequilibrium, the density matrix may also depend on the
trap potential, applied fields, and time, which further compli-
cates the analysis.

Therefore, whether some many-body approximation for
p1» correctly obeys the invariance of the c.m. mode of the
exact system is a nontrivial question which has been actively
studied over the past decade, in particular, for trapped atomic
condensates (see e.g., Refs. 1012 and 16) and electrons in
quantum dots.” Besides the Hartree approximation, several
other variants of collisionless approximations have been
studied, including the HF approximation,'® the HF-
Bogolyubov approximation,'® and the HF-Bogolyubov gen-
eralized random phase approximation,!" which were shown
to obey the Kohn theorem. Further, the time-dependent local
density approximation!” and a Tomonaga-Luttinger-type
model have been investigated.'”> For the numerous other
models, we refer to the papers cited in the above references.
However, no general criterion for the fulfillment of the Kohn
theorem has been presented so far, which would allow one to
avoid the often involved proof for any specific new approxi-
mation. This is particularly important for the treatment of
strong correlation effects in classical and quantum trapped
systems which have come into the focus of research in many
fields.

The goal of this paper is to present such a general crite-
rion. We prove that the Kohn theorem is obeyed by any
approximation of many-body theory which conserves par-
ticle number and total momentum. We further demonstrate
that the result holds independently of whether the system
was initially in the ground state, equilibrium, or nonequilib-
rium. Finally, the result equally holds for linear response and
for the case of arbitrary strong excitation.

II1. VALIDITY OF THE KOHN THEOREM IN A
CONSERVING THEORY

Our proof proceeds in three steps. First, we reformulate

the Kohn theorem in terms of ladder operators c* [Egs. (5)
and (6)]. Second, we introduce the representation of these
operators in second quantization [Eq. (9)] which are denoted
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¢*. Third, we compute the dynamics of the expectation val-
ues ¢*=(¢*) [Eq. (11)] in a given many-body approximation
and derive under what conditions it coincides with the dy-
namics éi(t) of the noninteracting system. To classify these
approximations, we use the powerful tools of nonequilibrium
Green’s functions (see, e.g. Refs. 18, 20, and 21). Use of the
equations of motion (14) allows for a very compact proof of
the Kohn theorem for many-body approximations.

A. Ladder operators

The dynamics of the c.m. mode in an N-particle system
can be efficiently analyzed using the collective ladder
operators’-14

N

Ct= mQO%, ¥ ipy, (5)
k=1

where X, and p, denote coordinate and momentum operators
of particle k£ and, to simplify the notation, we restrict our-
selves to the one-dimensional case (the extension to three
dimensions is straightforward). Application of C* to the
ground state creates an excited state with excess energy #().
If the interactions are treated exactly, i.e., by the operator
V15, one verifies by direct calculation that [V}, C*]=0. As a
consequence, the dynamics of é‘i, which is given by the
Heisenberg equation of motion with the full Hamiltonian
[one-dimensional version of Eq. (1)],

d Jabrn

[H,C*]= +iQC* T iNeE(D), (6)

i
- h
is independent of the interaction terms. Identifying the c.m.
as

R=02MQ)(Ct+ (), (7)

Eq. (6) immediately confirms that R performs a driven oscil-
lation in the harmonic potential,

R+ 02R = NeE(1)IM. (8)

Thus, Eq. (6) is a convenient mathematical formulation of
the Kohn theorem.”-'

We have now to replace the exact interaction ‘712 by an
approximation V{5 and to find the conditions under which
[Vi5,C*]=0 or, equivalently, the conditions under which the

time derivative C* coincides with the right hand side of Eq.

(6).

B. Second quantization representation of the ladder operators

To introduce many-body approximations, we use the rep-
resentation of the N-body system in terms of field operators
Wi(x,,t,) and W(x,,t,), where the first (second) creates (an-
nihilates) a particle at position x; and time 7,. Further, as
usual,
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[ Oy 10), W, )2 = 8(xy = 1)),

[W(xp,10), W(xy,t) ] = [\I’T(Xl,fl),qﬁ(x;’ll)]i=0,

where [--+]_ denotes the commutator and [- - -], the anticom-
mutator corresponding to the case of bosons and fermions,
respectively. We now define the second quantization repre-

sentation of the ladder operators é'i,
EXGT) = {7 O, x )P (e, 1) W (g 1) Yoy )
with

Xy +x) O 0
¥
2 2

V(xp,x1) = mQ (10)
After action of ¥, the result of Eq. (9) is taken at equal
arguments 1= (x;,#;)=1"=(x],#;) which equal the macro-
scopic (c.m.) coordinate and time, X=(x;+x{)/2 and T
=(t;+1])/2.

Below, the central quantity of interest, which takes over

the role of C*(¢) in Eq. (6), is the ensemble average of Eq.
(9) integrated over the coordinates

C*(T)Ede(ét(X,T)>=fdX{f/t(xphr)iﬁé(l,1')}1f=1+,

(11)

where 1* denotes the limit from above for the time argument,
f7=t,+0. In the right hand side of Eq. (11), we expressed the
ensemble average of the field operator product by the one-
particle nonequilibrium Green’s function (NGF), defined as

ihG(1,1") = =(T.¥(1)Wi (1), (12)

where the plus (minus) sign refers to bosons (fermions).?

Note that G is defined on the Schwinger/Keldysh contour C,

and f‘c denotes time ordering on C (see, e.g., Refs. 15 and
21).

The use of the NGF technique'®2! has the advantage that
equilibrium and nonequilibrium averages can be treated on

equal footing, and approximations ‘A/?lz’ can be systematically
derived using Feynman diagrams. Further, as we will see
below, this formalism allows for a compact and simple
analysis of the validity of the Kohn theorem for many-
particle approximations. This is due to the two-time structure
of the NGF. Single time quantities, such as the density ma-
trix, follow immediately from the equal time limit of the
NGEF. Details of this formalism are not important for the
derivations below, and the interested reader is referred to the
text books.!>!3

C. Time dependence of the ladder operators ¢*=(T)

To verify under what conditions the c.m. mode of an ap-
proximate theory obeys the noninteracting dynamics [Eq.
(6)], we need to compute the derivative of the space inte-
grated expectation value [Eq. (11)] with respect to the c.m.
time 7,

PHYSICAL REVIEW B 76, 045341 (2007)

(1) = J dx{i’t(xl,xl/)(atl + 07z1,)iﬁc_;(1,1')}1/=1+-

(13)

The two time derivatives of G follow directly from the equa-

tion of motion of G and the adjoint equation (first equations
of the Martin-Schwinger hierarchy??),

{iho, - Hy()}G(1,1")
= iﬁf dA2W(1 =2)G5(1,2;12%) + 5-(1 = 1"),
C

(14)
{=ihd,, - H(1")}G(1,1")

= ihf D2W(' =2)G(1,2;1",2%) £ 5.(1 - 1),
C

(15)

where H, is the single-particle part of the Hamiltonian (1)
and W(1-2)=w(x;—x,)8c(t;—1,), with 8- being the delta
function defined on C.'"® Equations (14) and (15) have a clear
content: while the left hand sides describe the single-particle
dynamics, interaction effects (mean field plus correlations)
are contained in the right hand sides. Here, the central quan-
tity is the two-particle Green’s function defined as

(ih)?G1(1,2:17,2") = (T (¥ (1) W (2")¥(2)),
(16)

which is a generalization of the two-particle density matrix
p12(2) which is recovered from G, by taking all time argu-
ments to be equal 7 (see, e.g., Refs. 15 and 18). Practically,
all relevant many-body approximations can be formulated in
terms of Gy,. For example, the Hartree-Fock approximation
follows  simply by  substituting  G,(1,2;1',2")
—G(1,1')G(2,2")£G(1,2')G(2,1"), whereas the Hartree
approximation is just the first term. Finally, the advantage of
the formalism of Egs. (14) and (15) is that it allows us to
generalize all approximations known from ground state
many-body theory, including diagram expansions, to arbi-
trary nonequilibrium situations.

We now proceed in computing ¢*(7) [Eq. (13)] by elimi-
nating the time derivatives of G with the help of Egs. (14)
and (15),

dy, + 0y
éi(T):-de Vx| 720y, = dy) 5

’
1

-[v(1)

m

_V(l’)]](_}(l,l’)} +iﬁdedx2{§/t(xl,xlr)
1'=1*

X[W(xl —x5) = wlxyr —xz)]Glz(l’Z; 1 /,2+)}1 =1+,
(17)

where the terms O, cancel and, in the interaction term, the
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time integration has been carried out. Further, we introduced
the total single-particle potential V(1)=mQ%x?/2—eE(t))x,.
Applying the operator ¥* under the integrals, we obtain the
single-particle contribution to Eq. (17):

axl_axlr (?x] _axlr
¢i(T) =~ f dx V| mQX =4 5 12 dy

2m

—[V(l)—V(l')]}é(l,l’)

17/=1%

. (18)
=1+

07x1_&x1r —
—hQT hG(1,1")

where a partial integration over X has been performed taking

into account that G vanishes for |X| —, and we denoted
V'(1)=dV(x,,t;)/dx,. For a harmonic confinement poten-
tial, the derivative of V yields mQ?%x; and we obtain et
=+iQdc*FieNE. Thus, the single-particle contributions to
the dynamics of the center of mass yield exactly the result
(6) of the noninteracting system, as it should be.

What is left now is to analyze the interaction contribu-
tions ¢;, to Eq. (17):

J. —

X ax ’
H(T) =it f dXdx, |:mQX ¥ ﬁ%][w(xl —Xy)

- W(.xlr —Xz)]Glz(l,z; 1 ,,2+)

17=1+

Contributions proportional to 1X vanish because the poten-
tials cancel for x;=x|. The remaining contribution involves
derivatives of the interaction potential, and the integrand can
be transformed according to

(L0, wlxr = x2) + 0, wlxyr = x2)1G1p(1,25 17, 27) 1y

1
= {ZW/(X—Xz)Glz(l,Z;1/,2+)}17=1+.

Since the force —w’(x) is an odd function of the argument,
the expression in parentheses vanishes under the integral
over the coordinates of both particles if G, is even, i.e., if

G5(1,2;1',2") =G 5(2,1;27,1). (19)

Thus, symmetry of G, with respect to the arguments of
particles 1 and 2 is sufficient for vanishing of the interaction
contribution ¢7,. Summarizing the above results for ¢, and
12, we obtain for their sum [Eq. (17)]

d . e

ch = +iQc* ¥ ieNE(1), (20)
i.e., we exactly recover the noninteracting dynamics of Eq.
(6) as was the case for the exact treatment of the interactions.
Obviously, condition (19) is fulfilled for the Hartree and HF
approximations, and the same holds for all standard many-
body approximations including the Born approximation, the
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random phase (or GW) approximation, the ladder approxi-
mation, etc.

IV. CONCLUSION

Thus, we can formulate the main conclusion of this paper:
any many-body approximation specified by G, obeys the
Kohn theorem if two conditions are fulfilled.

(A) G simultaneously obeys the first equation of the
Martin-Schwinger hierarchy and its adjoint [Egs. (14) and
(15)].

(B) Gy, obeys the symmetry (19).

Note that our derivation did not involve information on
the type of pair interaction w and is thus valid for arbitrary
pair potentials. Also, no specific ensemble had to be specified
for the average (in the Green’s function); therefore, the deri-
vation is valid for N-body systems originally in the ground
state, at finite temperature, or in nonequilibrium.

Obviously, our result is trivially generalized to the three-
dimensional (two-dimensional) case by using three (two)
types of ladder operators, one for each of the independent
c.m. modes. Also, while our derivation was performed for a
single component system, generalizations to multicomponent
systems, including Bose condensates or mixtures of fermions
and bosons, are straightforward by using the corresponding
matrix (Nambu) Green’s functions (see, e.g., Ref. 10).

Our result can also be directly extended to many-particle
systems in a homogeneous magnetic field where, instead of
the c.m. oscillation, the cyclotron rotation (CR) is observed.
Again, it is known that the CR with w,=eB/(mc) is not
altered by pair interactions if they are treated exactly.'* The
question of invariance of the CR under an approximation V{5
can be analyzed exactly as above: one only has to replace the

ladder operators c* by the combinations of the total momen-
tum P.=P,+iP, with P=(p,,p,+%,p.), for a B field in the
z direction.'* The result is again that any many-body ap-
proximation obeying conditions (A) and (B) will preserve
the CR.

Interestingly, conditions (A) and (B) are exactly the two
criteria of Baym and Kadanoff known to be sufficient for
conservation of density (continuity equation), momentum,
and total energy.'3?* These so-called conserving approxima-
tions are, therefore, also the ones which obey the Kohn theo-
rem. Frequently, many-body approximations are classified by
the self-energy 2, instead of the two-particle Green’s func-
tion Gy,. The relation is very simple:'>'® iff.d2W(1
=2)G5(1,2;1",2%)=[d23(1,2)G(2,1"). Alternatively, one
can show? that conditions (A) and (B) are equivalent to
existence of a functional @ such that 3(1,1')
=6D[G]/8G(1',1). Thus, we may conclude that any such
“d-derivable approximation” for the self-energy fulfills the
Kohn theorem.

This result has important implications not only for
Green’s functions theory but also for other classes of ap-
proximations, such as the ones used in time-dependent den-
sity functional theory (TDDFT). It was recently proven?® that
any exchange correlation functional of TDDFT which is de-
rived from a ®-derivable approximation satisfies the so-
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called zero-force theorem. Thus, conditions (A) and (B) are
suitable for constructing TDDFT approximations which pre-
serve the c.m. mode.!”

In summary, we have shown that the independence of the
c.m. oscillation in a harmonic potential of the particle inter-
action is fulfilled not only for the exact problem but also for
a broad class of approximations of many-body theory. There-
fore, for a reasonable theoretical modeling of trapped classi-
cal or quantum systems, including ultracold ions, dusty plas-
mas, nanostructures, or quantum gases, it is crucial to use
approximations that conserve density, total momentum, and
total energy. These conserving approximations have been
shown to obey the Kohn theorem in all situations of practical
importance, for weak and strong correlations, for weak or
strong time-dependent homogeneous excitation, and for sys-
tems initially in the ground state, in equilibrium, and in non-
equilibrium. Finally, our result establishes an important test
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for computer simulations of correlated many-body systems
in nonequilibrium (see, e.g., Refs. 19, 20, 27, and 28). Since
the center-of-mass motion R(7) coincides with that of nonin-
teracting particles [Eq. (8)], any initial (ground state or
equilibrium?®) density profile ny(r) =n(r,t=0) should retain
its shape over the whole volume once initially only the c.m.
mode is excited, i.e., n(r,t)=ny(r—R(z)). This is a very sen-
sitive test for the quality of any numerical code for trapped
classical or quantum many-body systems.
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