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Abstract
When electrons in a solid are excited to a higher energy band they leave behind
a vacancy (hole) in the original band which behaves like a positively charged
particle. Here we predict that holes can spontaneously order into a regular
lattice in semiconductors with sufficiently flat valence bands. The critical hole
to electron effective mass ratio required for this phase transition is found to be
of the order of 80.

PACS numbers: 52.27.−h, 52.25.−b

(Some figures in this article are in colour only in the electronic version)

Motivation

More than seven decades ago, Wigner predicted the existence of a crystalline state of the
electron gas in metals at low densities—the electron Wigner crystal [1]. Since then, there
has been an active search for this strong correlation phenomenon in many fields. Finally,
crystallization of electrons was observed on the surface of helium droplets [2], and it is
predicted to occur in semiconductor quantum dots [3]. There are also predictions of electron
crystallization in semiconductor heterostructures in the presence of a strong magnetic field
(which acts in favour of electron localization) but there is so far no conclusive confirmation.
The necessary condition for the existence of a crystal in these one-component plasmas (OCP)
is that the mean Coulomb interaction energy, e2/r̄ (r̄ denotes the mean inter-particle distance),
exceeds the mean kinetic energy (thermal energy 3

2kBT or Fermi energy EF in classical or
quantum plasmas, respectively) by a large factor �cr which, in a classical OCP, is given by
175 [2, 4]. In a quantum OCP at zero temperature, the coupling strength is measured by the
Brueckner parameter, rs ≡ r̄/aB (aB denotes the effective Bohr radius), the critical value of
which is rcr

s ≈ 100 [5].
On the other hand, Coulomb crystallization has been observed in neutral two-component

plasmas (TCP), e.g. in colloidal and dusty plasmas [6–9]. Besides these classical TCP crystals,
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Figure 1. Location of the classical and quantum TCP crystals and of the hole crystal in the
density–temperature plane (qualitative picture).

it is thought that in the interior of white dwarf stars and in the crust of neutron stars there exist
crystals of bare carbon, oxygen and iron nuclei which are embedded into an extremely dense
degenerate Fermi gas of electrons, see e.g. [10]. No such quantum TCP crystals have been
observed in the laboratory, despite early suggestions [11]. It is, therefore, of high interest to
analyse the necessary conditions for the existence of Coulomb crystals in a two-component
plasma to understand in which other TCP systems crystallization is possible, which is the aim
of the present paper.

Criterion for the occurrence of a hole crystal

A qualitative phase diagram which shows the location of the mentioned TCP crystals is
shown in figure 1. Note that these Coulomb crystals are very different from the common
crystals observed in classical ionic systems such as salts (e.g. NaCl) or metals which cannot
be described in terms of a simple coupling parameter. The properties of the latter systems
depend on the microscopic structure of the ionic constituents (electronegativity, in the case of
salts, and band structure, in the case of metals, etc). Here we will concentrate on plasma-like
systems which involve point-like ions (not containing deeply bound electrons).

We consider a locally neutral macroscopic system of electrons (e) and holes (h). The
equilibrium state is characterized by the dimensionless electron temperature Te = 3kBT/2EB

and the mean inter-electron distance rse = r̄e/aB, where EB = e2

4πε0εr

1
2aB

denotes the

exciton binding energy, aB = h̄2

mr

4πε0εr
e2 is the exciton Bohr radius, and εr and mr are the

background dielectric constant and the reduced mass, respectively
(
m−1

r = m−1
h (1 + M)

)
.

The dimensionless density is given by na3
B = 3

/(
4πr3

se

)
. In addition to these parameters

which also characterize an OCP, the state of the electron–hole plasma is characterized by the
mass ratio M = mh/me.

The condition for a hole crystal in a TCP follows from the OCP crystal condition, rsh � rcr
s ,

after rescaling r̄ and aB by taking into account the mass ratio yielding (M + 1)rse � rcr
s .

This Coulomb crystal of holes will survive in the presence of electrons only if holes
do not form bound states, as this would drastically reduce the correlation energy of the
holes, thus eventually reducing the coupling strength below the critical level necessary for
crystallization. At zero temperature, bound states break up due to pressure ionization at



Hole crystallization in semiconductors 4719

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 b
ou

nd
 e

le
ct

ro
ns

 a
nd

 h
ol

es

rs

  T
e
=0.0581

  T
e
=0.1355

  T
e
=0.1936  

  T
e
=0.3872

  

Figure 2. PIMC simulation results for the electron–hole bound state fraction (including excitons
and biexcitons) in a 3d semiconductor (M = 40) versus inverse density for several temperatures
given in the figure.

densities above the Mott density, i.e. rse � rMott
s ≈ 1.2. This has been confirmed by first-

principle path integral Monte Carlo (PIMC) simulations [12]. As the numerical data in
figure 2 confirm, at rse � 1.2 less than 10% of the holes are bound in excitons and biexcitons.
With increasing temperature, ionization becomes possible at lower density which we indicate
by a monotonically decreasing function 1

/
rMott

s (Te) which vanishes when Te → 1 because
there thermal ionization prevails.

Critical mass ratio for the hole crystal

Combining the above expression for rse with the existence of pressure ionization yields the
criterion for the existence of a TCP crystal in the presence of a neutralizing background of
quantum electrons as

M � Mcr(Te) = rcr
s

rMott
s (Te)

− 1, (1)

which exists in a finite electron density range [n(1), n(2)] given by

n(1)(Te) = 3

4π

[
1

rMott
se (Te)

]3

, n(2)(Te) = n(1)(Te)K
3, (2)

where K = (M + 1)/(Mcr + 1). The crystal exists below a maximum temperature T ∗, which
is estimated by the crossing point of the classical and quantum asymptotics of an OCP crystal
[3]: T ∗ = 6(M + 1)

/(
�crrcr

s

)
. According to equation (1), the critical hole to electron mass

ratio is given by 83 at zero temperature. This value decreases with increasing temperature
(due to the lower Mott density).

Of course, the critical mass ratio and the density and temperature limits carry some
uncertainty arising from the uncertainty of the Mott density and the critical value of the
Brueckner parameter. In fact, the transition from an exciton gas to a hole crystal may involve
many intermediate states with liquid-like behaviour, e–h droplets (phase separation) [13], an
analysis of which is beyond the present work. We estimate that these effects give rise to an
uncertainty of the minimum density (Mott density), n(1), of the order of 30%. Further, the
error of rcr

s is about 20% [5], thus the critical parameters carry an uncertainty of about 50%.
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Figure 3. Mean-square relative hole–hole distance fluctuations (normalized to the mean inter-
particle distance) as a function of the mass ratio M for Te = 0.096 and rs = 0.63. Symbols are
simulation results; the line is the best fit.

For particular systems, more accurate predictions are possible if the Mott parameter rMott
s is

known, e.g. from computer simulations.

Simulation results

Note that the complex processes of interest pose an extreme challenge to the simulations:
They must self-consistently include the full Coulomb interactions, exciton and biexciton
formation in the presence of a surrounding plasma, pressure ionization and the quantum and
spin properties of electrons and holes. We therefore have performed extensive direct fermionic
path integral Monte Carlo (PIMC) simulations of a 3d e–h plasma which are based on our
previous results for dense hydrogen–helium plasmas [14], e–h plasmas [13] and electron
Wigner crystallization [3]. While the so-called sign problem prohibits PIMC simulations of
the ground state of a fermion system, here we restrict ourselves to temperatures at the upper
boundary of the hole crystal phase, i.e. Te = 0.06, . . . , 0.2. Studying mass ratios in the range
of M = 1, . . . , 2000 and densities corresponding to rse = 0.6, . . . , 13, the simulations cover
a large variety of 3d Coulomb systems—from positronium, over typical semiconductors to
hydrogen.

Our main results concern the relative distance fluctuations of holes shown in figure 3.
Here we have fixed density and temperature in such a way that bound state formation is
not possible and vary the mass ratio from hydrogen to e–h plasmas. At M = 2000, the
distance fluctuations are small and they remain almost unchanged when M is reduced. Around
M = 100, a drastic increase is observed which is a clear indication of spatial delocalization of
the holes. In fact, analysing the microscopic configuration in the simulation box and the pair
distribution functions [15] clearly confirms this interpretation. At large M, the holes form a
crystal which is embedded into a high-density delocalized quantum electron gas. This crystal
vanishes (melts) between M = 100 and M = 50 which is in very good agreement with the
estimate of equation (1).

The predicted critical mass ratio is larger than in most conventional semiconductors.
However, similar mass ratios have already been reported in intermediate valence
semiconductors, such as Tm(Se, Te) [16]. For example, for M = 100 (using εr = 20)
the parameters are n(1)

e (0) = 1.2×1020 cm−3, n(2)
e (0) = 2.1×1020 cm−3 and T ∗ ≈ 9K . Hole

crystallization could be verified experimentally by means of neutron scattering.
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Discussion

Let us briefly mention earlier discussions of the possibility of hole crystallization. This effect
was first mentioned by Halperin and Rice [11] who mention that the original suggestion is
due to Herring. First rough estimates of the critical hole to electron mass ratio were given by
Abrikosov who found Mcr = 100 [17] and Mcr = 50 in his text book [18]. This estimate is,
apparently, based on assuming a hole lattice constant of one exciton Bohr radius. In our first-
principle simulations no such assumptions are made, but the results are surprisingly close (we
find a maximum lattice constant of about 0.9aB [15]). Abrikosov also stresses the favourable
conditions a hole crystal would have for superconductivity. This is certainly one of the most
interesting future questions, although our predictions for the critical temperature for the hole
crystal seem to limit the prospects for high-temperature superconductivity in these materials.
We also mention the recent estimate of Mcr = 20 by Saarela et al [19], who also predict the
existence of a proton crystal. The latter was first observed in our simulations [20].
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