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Abstract
Thermodynamic properties of the equilibrium strongly coupled quantum
plasmas investigated by direct path integral Monte Carlo (DPIMC) simulations
within a wide region of density, temperature and positive to negative particle
mass ratio. Pair distribution functions (PDF), equation of state (EOS), internal
energy and Hugoniot are compared with available theoretical and experimental
results. Possibilities of the phase transition in hydrogen and electron–hole
plasma from neutral particle system to metallic-like state and crystal-like
structures, including antiferromagnetic hole structure in semiconductors at low
temperatures, are discussed.

PACS numbers: 52.27.Gr, 71.35.Ee

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The family of Coulomb systems, which are dominated by Coulomb interaction, has grown
beyond conventional plasmas in space or laboratory for many years. They include electron–
hole plasmas in semiconductors, the electron gas in metals, charged particles confined in
various traps or storage rings, charged complexes or dust particles, small few-particle clusters
in mesoscopic quantum dots and so on. The equilibrium properties of warm dense matter at
high pressure are of growing importance in many fields, including shock and laser plasmas,
astrophysics, solids and nuclear matter. Among the phenomena of particular current interest
are the high-pressure compressibility of deuterium, metallization of hydrogen, plasma phase
transition, crystallization of one-component plasma (OCP) and two-component plasma (TCP)
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etc, which occur in situations where both interaction and quantum effects are relevant and
a crossover from a neutral particle system to full ionization takes place. The analytical
approaches for treatment of Coulomb systems are mainly applicable at low density and high
temperature as they are usually based on different kinds of perturbation theories. Therefore,
in treatment of strongly coupled Coulomb systems the DPIMC method is of high value,
as it avoids additional approximations although at high computational cost. This method
now allows simulations of strongly coupled Coulomb systems in a wide range of densities,
temperatures and charged particle mass ratio.

2. The direct path integral Monte Carlo method

The starting point for the description of a two-component (equilibrium) quantum plasma is
the partition function given at inverse temperature β = 1/kBT by

Z(Ne,Np, V, β) = 1

Ne!Np!

∑
σ

∫
V

dq ρ(q, σ ;β), (1)

where q = {qe, qp} and σ = {σe, σp} denote the spatial coordinates and spin degrees
of freedom of Ne electrons and Np protons (or holes) (Ne = Np), i.e. qa =
{q1,a, . . . , ql,a, . . . , qNa,a} and σa = {σ1,a, . . . , σl,a, . . . , σNa,a} with a = e, p. Of course, in
general, the exact density matrix ρ(q, σ ;β) of an interacting quantum many-particle systems
is not known but can be constructed using a path integral approach:

∑
σ

∫
V

dq(0) ρ(q(0), σ ;β) =
∫

V

dq(0) · · · dq(n) ρ(1) · ρ(2) · · · ρ(n)

×
∑

σ

∑
Pe

∑
Pp

(−1)κPe +κPp S(σ, P̂eP̂pσ ′)P̂eP̂pρ
(n+1)

q(n+1)=q(0),σ ′=σ
, (2)

where ρ(i) ≡ ρ(q(i−1), q(i);�β) ≡ 〈q(i−1)|e−�βĤ |q(i)〉 and �β ≡ β/(n + 1). The
Hamiltonian for the electron–proton plasma (Ĥ = K̂ + Û ) contains kinetic energy
(K̂) and Coulomb interaction energy (Û = Ûpp + Ûee + Ûep) parts. In (2), the
index i = 1, . . . , n + 1 labels the high-temperature ((n + 1)kBT ) density matrices ρ(i).
Accordingly, each plasma particle is represented by (n + 1) points (beads), i.e. the whole
configuration of the particles is represented by a 3(Ne + Np)(n + 1)-dimensional vector
q̃ ≡ {

q
(0)
1,e , . . . , q

(n+1)
1,e , q

(0)
2,e , . . . , q

(n+1)
2,e , . . . , q

(n+1)
Ne,e

; q
(0)
1,p, . . . , q

(n+1)
Np,p

}
. Further details of the

high-temperature path integral representation are given in [1, 2]. Figure 1 illustrates the
representation of one (light) electron and one (heavy) proton. The circle around the electron
beads symbolizes the region that mainly contributes to the partition function path integral.
The size of this region is of the order of the electron thermal wavelength λe(T ), while typical
distances between electron beads are of the order of the electron wavelength taken at (n + 1)-
times higher temperatures. The same representation is valid for proton. The spin gives rise to
the spin part of the density matrix (S) with exchange effects accounted for by the permutation
operators P̂e and P̂p acting on the electron and proton coordinates q(n+1) and spin projections
σ ′. The sum in (2) is taken over all permutations with parities κPe

and κPp
. In the evaluation of

the expressions obtained and their thermodynamic derivatives so far we make use of a Monte
Carlo scheme [2]. Periodic boundary conditions are applied to the basic Monte Carlo cell.
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Figure 1. Bead representation of electron and proton (hole). Here λ2
e = 2πh̄2β/me, λ

2
�,e =

2πh̄2�β/me, q
(1)
l,e = q

(0)
l,e + λ�,eξ

(1)
l,e and σ = σ ′. The proton has a similar bead representation,

however, λp and all length scales for it are
√

mp/me times smaller.

(b)(a)

Figure 2. The DPIMC (1, 2, 3) and theoretical isochors (4, 5, 6) [3, 4] for pressure (a) and
energy (b) in hydrogen plasma versus temperature; (7, 8, 9)—the relative number concentration of
hydrogen atoms [3, 4].

3. Hydrogen plasma

3.1. Pressure and energy

In figure 2, the pressure and energy dependences versus temperature along three isochors of
hydrogen plasma are shown. DPIMC calculations of isochors ne = 1020, 1021, 1022 cm−3 are
presented by symbols 1, 2, 3, respectively. Analogous EOS calculations of isochors [3, 4] are
given by lines 4, 5, 6 and relative number concentration of hydrogen atoms (on right axis of
figure 2(b)) by lines with symbols 7, 8, 9. The agreement of DPIMC and EOS in chemical
picture [3, 4] is very good for pressure and for energy at temperatures higher than 3 × 104 K.
The relative number concentration of hydrogen atoms indicates that hydrogen at T = 104 K
and ne = 1020–1022 cm−3 consists mainly of atoms.

In figure 3, the DPIMC results for pressure and internal energy of dense hydrogen are
presented. This picture shows isotherms for the temperatures 104, 3 × 104, 5 × 104, 105 K. It
is well known that for ideal plasma the energy increases with density. The non-ideal hydrogen
plasma, on the other hand, shows a significant deviation from this trend in a full agreement
with the existing analytical predictions. Nevertheless, non-ideal plasma data asymptotically
approach the standard results at low and high densities. At temperature T = 104 K, the ratio
of the pressure to ideal plasma pressure approaches 0.5 indicating that electrons and protons
form bound states (atoms). The formation of the pressure and energy minimum at intermediate
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Figure 3. The DPIMC pressure and energy isotherms of dense hydrogen versus degeneracy
parameter (λe is the electron thermal wavelength). For T = 104 K, in the range 10 � neλ

3
e � 100,

due to many-particle clusters formation, strong fluctuations of the pressure and energy occur, so,
as a consequence, the DPIMC simulation results do not converge (vertical lines).

Figure 4. Pressure (1–5) (left axis) and electrical conductivity (6, 7) (right axis) for hydrogen
at T = 104 K versus density. 1, DPIMC simulation; 2, ideal plasma; 3, DFT [5]; 4, restricted
PIMC computations [6]. Experimental data: 5, break of the quasi-isentropic curve [7]; 6, electrical
conductivity [8]; 7, electrical conductivity [9].

densities (around 1022 cm−3) is due to the overall attractive Coulomb correlations leading in
particular to the formation of atoms and molecules. At larger densities, the energy and pressure
rapidly increase which is a consequence of electron degeneracy effects: increasing overlap
of the electron wavefunctions leads to a break-up of bound states leading to the Mott effect
and increase of the exchange energy. In the region of a possible plasma phase transition, the
pressure in simulations becomes negative, indicating an instability of the homogenous plasma
state. We observe large fluctuations of pressure and energy (shown by the vertical lines)
related to the formation and decay of the many-particle clusters.

3.2. Hydrogen conductivity

Figure 4 presents EOS obtained by different authors for temperature T = 104 K and
experimental data on conductivity obtained by Ternovoi et al and Weir et al. In figure 4,
the diamonds (3) present data obtained by Hansen and Xu in the framework of the density
functional theory (DFT) [5]. At low density they observe large fluctuations of pressure
indicating the possible existence of a phase transition. Data obtained in the ‘fixed node
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Figure 5. Shock Hugoniot of deuterium. 1, combined Hugoniot [12]; 2, RPIMC calculations [15].
Experimental data: 3, [14]; 4, [13]; 5, [11]; 6, [16].

approximation’ [6] are presented by triangles (4). DPIMC calculations are presented by
circles (1). Break on the isotherm is related to the negative values of the calculated pressure.
On the left side of this break, homogeneous state of plasma becomes unstable giving rise to
metallic-like many particle electron–proton clusters. On the right side of this break after the
overlapping of these clusters, the plasma becomes uniform and stable again. The position
of the break on the quasi-isentrope obtained in experiments by Mochalov [7] is shown by
the squares (5); this break is supposed to be connected with a plasma phase transition. The
overlap of many-particle clusters may result in sharp increase in conductivity (6, 7), which
was observed experimentally [8, 9].

3.3. Deuterium Hugoniot

The high-pressure experimental results for the EOS are usually available in form of the shock
Hugoniot. The Hugoniot equation relates the state behind the front of the shock-wave (namely,
the density ρ, pressure P and specific internal energy E) to the initial conditions (ρ0, p0 and
E0). Figure 5 proposes a theoretical Hugoniot obtained by combining results for the EOS of
the DPIMC technique and those of the reaction ensemble Monte Carlo (REMC) simulations
performed in Rostock University. As shown by Bezkrovniy et al [10], REMC describes the
low temperature region very well and shows a good agreement with the gas gun experiments by
Nellis et al [11]. The DPIMC simulation has been performed at temperatures 104 K and higher
in a wide range of particle densities. The influence of molecular states allowed us to calculate
the Hugoniot reliably only above 8000 K. So we combined the lower part (up to 15 000 K) of
the REMC Hugoniot and the DPIMC Hugoniot [12] (above 15 000 K). We want to stress here
that these two methods are completely independent and no interpolation procedure is used.
The final Hugoniot is plotted in figure 5 and shows a maximal compressibility of approximately
4.75 as compared to the initial normal condition deuterium density. This Hugoniot is located
between the experimental values of Knudson et al [13] and Collins et al [14] and shows higher
compressibility of deuterium at pressures about 1 Mbar than most of the other theories but
lower values than [3].

4. Electron–hole plasma

Optical or electrical excitation of semiconductors allows us to create correlated electron–
hole plasmas. Alternatively equilibrium electron–hole plasma can be created, for example,
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Figure 6. PDF for T/Eb = 0.097 (left two columns) and T/Eb = 0.39 (right two columns),
respectively. The hole–electron mass ratio M = mh/me � 40 corresponds to conditions of [17].

by applying strong external pressure to the intermediate valent Tm[Se,Te] [17]. Electrons
and holes can form such bound states as excitons (with binding energy Eb), bi-excitons,
many-particle clusters. At high density, such plasma undergoes the Mott transition to the
quasi-metallic electron–hole liquid.

4.1. Pair distribution functions

As an effect of the Coulomb and Fermi repulsion, the PDF gee (solid line) and ghh (dashed line)
vanish at small distances (figure 6). Here the plasma density is characterized by the Brueckner
parameter rs defined as ratio of the mean distance between all particles d = (

3
4π(ne+np)

)1/3

to the Bohr radius aB , where ne and nh are electron and hole densities, respectively. The
decay of the electron–electron correlations is essentially different from that of the hole–hole
correlations due to the large mass difference. In the electron subsystem, quantum exchange
and tunnelling are more pronounced and compete with the growth of Coulomb repulsion.
The strong peak of geh (dotted-dashed line) is caused by excitons. This is confirmed by
considering r2geh(r) (dense dotted line), which is peaked around aB . At the same time,
gee, ghh exhibit no peak structure, i.e. there is no indication for the bi-excitons, which is a
consequence of high temperature and low density (r2ghh are presented by the rare dotted lines).
The highest peak of r2geh is observed for rs = 10. For higher density (up to rs = 5), it is
decreased due to the ionization of the excitons and beginning of recombination into bi-excitons
at rs = 6 (see also [18]).

In the case of low temperature and high density (rs = 4 − 2), the PDF gee and ghh

show distinct peaks close to r = 3aB , pointing towards the formation of bi-excitons and
many-particle clusters. Simulations revealed an instability of the homogeneous plasma state
for densities around rs ∼ 3. This might be due to the formation of many-particle clusters.
This instability gives strong indication for a transition from an insulator to a semi-metal phase
experimentally observed in [17].

Finally, at still higher densities (rs = 1), the many-particle clusters are fully destroyed
due to the many-body effects (pressure ionization) and simulations reveal ordering of the holes
into a liquid-like and even crystal-like structures [19].
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Figure 7. Electron–hole snapshots for rs = 0.5,M = 800, 100, 50 (from left to right,
respectively). Empty (filled) circles are electron (hole) beads.
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Figure 8. For quantum liquid-crystal hole transition, PDF gab averaged over spin projections are
shown at rs = 0.5 (a)–(d). Solid lines present gee , dashed lines—ghh, dotted-dashed lines—geh.
PDF ghh for parallel (e) and antiparallel ( f ) spin projections relate to the transition of the hole crystal
(M = 400—dashed lines) to the antiferromagnetic crystal structure (M = 100—dotted-dashed
lines) with decreasing hole mass at rs = 0.9.

5. Crystallization

Wigner (or Coulomb) crystallization appears to be a fundamental property common to all
charged particle systems. It was observed experimentally in completely different systems,
such as electrons on the surface of cold helium, ultra-cold ions in traps, in ion storage rings
and so on. The necessary condition for the existence of a crystal is the mean Coulomb
interaction energy to exceed the mean kinetic energy (thermal energy or Fermi energy).
Coulomb crystallization of the holes and quantum melting were directly verified by the results
presented in figure 7 showing snapshots of the electron–hole states in the simulation box at
fixed temperature and density, but for decreasing values of M = mh/me. In all figure parts,
the electrons form a nearly homogeneous Fermi gas—the individual electrons penetrate each
other and extend far beyond the main simulation cell (shown by the grid lines—to simulate a
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macroscopic system, this cell is periodically repeated in three (X, Y,Z) space directions). At
the same time, the hole arrangement changes dramatically. At M = 800, holes are periodically
ordered in space, at M = 100 and between M = 100 and M = 50 the holes crystal is melting,
at M = 50 the hole structure resembles liquid and at M = 1 the holes are in a gas-like state
(similar to the electrons). The figure also clearly shows the mechanism of this quantum phase
transition: with increase of M the individual hole wavefunctions shrink continuously until
at M = 800 they collapse into a dot. The crystal melts when the decay length of the hole
wavefunctions exceeds a critical size (around M = 50).

The quantum crystal-liquid transition at fixed temperature and density (rs = 0.5) is further
supported by the behaviour of the PDF, shown in figure 8(a)–(d). The figures show hole crystal
formation with increasing hole mass. These simulations indicate also that the crystal phase
is even more stable than predicted by the OCP plasma model in which the electrons are
assumed to form a strictly uniform background. The physical reason for the hole-crystal
stabilization can be understood from the behaviour of gee (figures 8(b)–(d)), which for ordered
hole structures have the sharp peaks at small distances between electrons. So the density of
the highly degenerated nearly free electrons in a hole periodic and quasi-periodic potential
field is nonuniform and has interference maxima related to the variation of modulus of the
electron wavefunctions. DPIMC calculations also show that quantum melting agrees with the
Lindemann criterion.

Figures 8(e) and ( f ) demonstrate that at fixed density and very low temperature the
electron–hole system with decreasing hole mass can form antiferromagnetic crystal-like
structure consisting of two perfect hole lattices each containing the holes with the same
spin projections. The physical reason of this phenomenon is the strong Fermi repulsion
between particles with the same spin projection. Correlation between lattices is defined only
by effective force repulsion, which is weaker at lower hole mass due to the tunnelling of the
holes.
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