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Crystallization in Two-Component Coulomb Systems

M. Bonitz,1 V. S. Filinov,1,2 V. E. Fortov,2 P. R. Levashov,2 and H. Fehske3

1Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
2Institute for High Energy Density, Russian Academy of Sciences, Izhorskay 13/19, Moscow 127412, Russia

3Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, Domstrasse 10a, D-17489 Greifswald, Germany
(Received 21 July 2005; published 2 December 2005)
0031-9007=
The analysis of Coulomb crystallization is extended from one-component to two-component plasmas.
Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum
crystals. In the latter case, a critical mass ratio of the two charged components is found, which is of the
order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spon-
taneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in
white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase
diagram of two-component Coulomb crystals is presented and is verified by first-principles computer
simulations.
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Crystallization is one of the most fundamental many-
particle phenomena in charged particle systems. After the
prediction of a highly correlated state of the electron gas—
the electron Wigner crystal [1]—there has been an active
search for this phenomenon in many fields. Crystallization
of electrons was observed on the surface of helium droplets
[2] and is predicted to occur in semiconductor quantum
dots [3]. Moreover, crystals of ions have been observed in
traps [4] and storage rings [5] and are expected to occur in
layered systems [6]. The necessary condition for the ex-
istence of a crystal in these one-component plasmas
(OCPs) is that the mean Coulomb interaction energy
e2=�r (�r denotes the mean interparticle distance) exceeds
the mean kinetic energy (thermal energy 3

2 kBT or Fermi
energy EF in classical or quantum plasmas, respectively)
by a factor � larger than �cr, which in a classical OCP is
given by 175 [2,7]. In a quantum OCP at zero temperature,
the coupling strength is measured by the Brueckner pa-
rameter rs � �r=aB (aB denotes the effective Bohr radius)
with a critical value for crystallization of rcr

s � 100 (160)
for fermions (bosons) [8].

The vast majority of Coulomb matter in the Universe,
however, exists in the form of neutral plasmas, containing
(at least) two oppositely charged components [two-
component plasma (TCP)]. Coulomb crystallization in a
TCP has been observed as well, e.g., in colloidal and dusty
plasmas [9,10], and it is predicted to be possible in laser-
cooled expanding plasmas [11]. The lattice of heavy par-
ticles is immersed into a structureless gas of the light
component which does not affect the former. Besides these
classical TCP crystals, it is expected that, in the interior of
white dwarf stars and in the crust of neutron stars, there
exists an entirely different type of TCP crystals [12]:
crystals of bare nuclei (e.g., fully ionized carbon, oxygen,
iron) which are embedded into an extremely dense degen-
erate Fermi gas of electrons. No such quantum TCP crys-
tals have been observed in the laboratory, despite early
suggestions [13]. It is an open question what classical and
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quantum TCP crystals (being separated by 15–20 orders of
magnitude in density) have in common and if there exists
an integrative phase diagram.

This Letter aims to answer these questions. We show
that, in fact, a common phase diagram of Coulomb crystals
in a generic neutral TCP (consisting of electrons and point-
like ions [14]) exists which is governed by five parame-
ters—density and temperature (as in the OCP case) and,
additionally, by the asymmetry of the heavy (h) and elec-
tron (e) components with respect to three fundamental
properties: mass, charge, and temperature, M � mh=me,
Z � Zh=Ze, and � � Te=Th, respectively. We show that
classical TCP crystals require a critical charge ratio Z,
whereas quantum TCP crystals exist only if the mass ratio
M exceeds a critical value of about 80. As a consequence,
we predict the existence of quantum TCP crystals of pro-
tons in a dense hydrogen plasma and crystals of holes in
semiconductors.

Let us consider a locally neutral system of electrons and
Z-fold charged heavy particles. The stationary state of the
TCP is characterized by the dimensionless electron tem-
perature Te � 3kBT=2EB and mean interelectron distance
rse � �re=aB, where EB denotes the e-h binding energy, and
the dimensionless density is given by na3

B � 3=�4�r3
se�.

Classical crystal.—For the existence of a Coulomb
crystal in the presence of a classical gas of electrons, we
first require that the heavy component is able to form a
classical OCP crystal, i.e.,

�h � �cr; (1)

and, second, that the electrons do not destroy that crystal,
e.g., as a result of screening of the heavy particle interac-
tion. However, the main obstacle for the crystal turns out to
be the formation of e-h bound states (atoms, excitons, etc.)
because this drastically reduces the h-h correlation energy
causing violation of condition (1). Therefore, we require
that no significant fraction of heavy particles is trapped in
Coulomb bound states, for which a conservative estimate is
6-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.235006


PRL 95, 235006 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
2 DECEMBER 2005
given by Te � 1, stating that the electrons have sufficiently
high kinetic energy to escape the binding potential Veh.
Making use of charge neutrality, ne � nhZ, and the defi-
nitions of � and Te, we find from Eq. (1) that the classical
TCP Coulomb crystal exists between the temperatures T�1�e
and T�2�e , given by

T�1�e � 1 and T�2�e �rse� �
3�Z2=3

�cr

1

rse
; (2)

and only if the ion charge exceeds a critical value
Zcr��; rse� � ��

crrse=3��3=2, which is independent of the
mass ratio M.

Quantum TCP crystal and critical mass ratio.—In the
presence of quantum electrons, the condition for crystal-
lization of the heavy particles follows from the quantum
OCP result, rsh � rcr

s . To be specific, we will concentrate
on hydrogenlike Coulomb bound states, where EB �
Ze2=�8��0�raB� and aB � @

24��0�r=�mrZe
2� [�r and

mr are the background dielectric constant and the reduced
mass m�1

r � m�1
h �1�M�]. Since rcr

s refers to the critical
interparticle distance in units of the hydrogenic aHB [8], we
first transform to the relevant effective Bohr radius aB.
Further, we eliminate rsh by expressing �rh by �re again
using charge neutrality. Then the OCP result can be rewrit-
ten as

Z4=3�M� 1�rse � rcr
s : (3)

This crystal of heavy particles will survive in the presence
of electrons only if, as in the classical case, bound states are
unstable, which, at zero temperature, occurs due to pres-
sure ionization at densities above the Mott density, i.e.,
rse 	 rMott

s � 1:2 (see below). With increasing tempera-
ture, ionization becomes possible at lower density which
we indicate by a monotonically decreasing function
1=rMott

s �Te�, which vanishes when Te ! 1 because there
thermal ionization prevails. Combination of (3) with the
existence of pressure ionization allows us to eliminate rse,
yielding the criterion for the existence of a TCP crystal in
the presence of a neutralizing background of quantum
electrons as

M � Mcr�Z; Te� �
rcr
s

Z4=3rMott
s �Te�

� 1; (4)

which exists in a finite electron density range between

n�1��Te� �
3

4�

�
1

rMott
s �Te�

�
3
; n�2��Te� � n�1��Te�K

3;

K � �M� 1�=�Mcr � 1�; (5)

and below a critical temperature T
. The density limits
follow from the Mott criterion and from Eq. (3), whereas
T
 is estimated [3] by the crossing point of the classical and
quantum asymptotics of an OCP crystal (1) and (3)

T
 � 6
Z2��M� 1�

�crrcr
s

: (6)
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In absolute units, the density interval scales as Z3 and the
critical temperature as M � Z4 ��. The critical mass ratio
for singly charged ions in an isothermal TCP (� � 1)
equals 83 (132) for fermions (bosons) and decreases with
increasing temperature (due to the lower Mott density) and
with increasing Z.

Examples (� � 1).—(i) For a crystal of C6��O8�
 nu-
clei expected to exist in the interior of white dwarf stars,
the minimum density is given by n�1�e �0� � 2� 1026 cm�3

[6:6� 1026 cm�3] and T
 � 109 K [4:2� 109 K] [15].
(ii) Hydrogen and helium are predicted to form crystals
as well: A crystal of protons [� particles] is stable between
n�1�e �0��0:9�1024 cm�3 �7:5�1024 cm�3
 and n�2�e �0� �
1028cm�3 �1:3� 1030 cm�3
 and below T
 �6:6�104 K
[4:2� 106 K] and should be achievable in laboratory ex-
periments with laser or ion beam compression techniques.
(iii) Crystallization of holes in semiconductors (Z � 1) is
predicted for materials with a hole to electron mass ratio
M � Mcr � 83 [16]. This value is feasible in intermediate
valence semiconductors, such as Tm�Se;Te
 [17]. For
example, for M � 100 (using �r � 20), the parameters
are n�1�e �0��1:2�1020 cm�3, n�2�e �0� � 2:1� 1020 cm�3,
and T
 � 9 K.

Numerical verification.—Of course, the boundary of the
TCP crystal phase at low densities contains some uncer-
tainty, due to the very complex transition from an atomic
system to a Coulomb crystal of heavy particles embedded
into delocalized electrons. This transition, which extends
over a finite density interval, may involve liquidlike be-
havior, clusters, and, at low temperature, phase separation,
an analysis of which is beyond the present study. We
estimate that these effects give rise to an uncertainty of
the minimum density (Mott density) n�1� of the order of
30%. Further, the error of rcr

s is about 20% [8]; thus, the
critical parameters carry an uncertainty of about 50%. For
particular systems, more accurate predictions are possible
if the Mott parameter rMott

s is known, e.g., from computer
simulations. Note that the complex processes of interest
pose an extreme challenge to the simulations: They must
self-consistently include the full Coulomb interactions, e-h
bound state formation in the presence of a surrounding
plasma, pressure ionization, and the quantum and spin
properties of the light and heavy species.

We, therefore, have performed extensive direct fermi-
onic path integral Monte Carlo (PIMC) simulations of
electron-hole plasmas which are based on our previous
results for dense hydrogen-helium plasmas [18], e-h plas-
mas [19], and electron Wigner crystallization [3]. While
the so-called sign problem prohibits PIMC simulations of
the ground state of a fermion system, here we restrict
ourselves to temperatures at the upper boundary of the
hole crystal phase, i.e., Te � 0:06–0:2. Studying mass
ratios in the range of M � 1–2000 and densities corre-
sponding to rse � 0:6–13, the simulations cover a large
variety of Coulomb systems—from positronium, over
typical semiconductors, to hydrogen. We start with the
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case of low densities (large rse) to determine the Mott
density n�1�. Here the TCP consists of excitons and biexci-
tons, and we found [20] that for rse 	 1:2 less than 10% of
the electrons and holes are bound, approving the choice of
rMott
s made above. Thus, crystallization should become

possible. This is confirmed by our simulations (see
Figs. 1 and 2) showing results for rse � 0:63 and different
mass ratios M. Figure 1 displays snapshots of the e-h
system in the simulation box. In all figure parts, the elec-
trons form a nearly homogeneous Fermi gas—individual
electrons penetrate each other, extending far beyond the
main simulation cell (shown by the gray grid lines). At the
same time, the hole arrangement changes dramatically.
While, at M � 5, the holes are in a gaslike state (similar
to the electrons), at M � 50 their structure resembles a
liquid and, at M � 100 and 800, they are periodically
arranged in space. Thus, between M � 100 and 50, the
holes crystallize. The figure also clearly shows the mecha-
nism of the quantum melting process: With reduction ofM,
the individual hole wave functions grow continuously un-
til, atM � Mcr, they exceed a critical size which allows for
tunneling between lattice sites, giving rise to hole deloc-
alization, i.e., crystal melting. Vice versa, increase of M
reduces the spatial extension of each hole which stabilizes
the crystal (at M � 800, they shrink to a dot; see Fig. 1).

The crystallization transition is further supported by the
behavior of the pair distribution functions gab, shown in
Fig. 2. At M 	 50 (upper two panels), the h-h functions
(solid black curves) have only a single peak like in a liquid.
However, for M � 100, ghh exhibits periodic oscillations
with a deep first minimum, typical for a crystal. The crystal
exists only at low temperature; an increase of T by a factor
of 2 (from the lower right figure to the lower left) causes
thermal melting. Further, the e-e and e-h pair distributions
allow us to understand the behavior of the electrons: In the
hole crystal phase, the electrons exhibit periodic density
modulations, indicating the formation of Bloch waves
FIG. 1 (color). Snapshots of an e-h plasma at Te � 0:096, and
rse � 0:63. Clouds of blue (yellow) dots mark the fully delocal-
ized electrons with spin up (down); clouds of red (pink) dots
denote holes with spin up (down). Top left (right): M � 5 �50�,
bottom left (right): M � 100 �800�.
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(band structure) with increased concentration at distances
smaller than 0:5aB. Finally, we computed the relative
distance fluctuations of the holes as a function of mass
ratio at Te � 0:64 and rse � 0:63. They show a strong
increase around M � 80–100 typical for a solid-liquid
transition (not displayed).

Phase diagram.—We now construct the generic phase
diagram of the TCP which applies to all the different
Coulomb crystals; see Fig. 3. Consider first the case of a
hole crystal in semiconductors which is embedded into a
dense Fermi gas of electrons. The holes behave classically
above the black dotted line and quantum-mechanically
below (this line is given by nh�3

h � 1, where �h �

h=
�����������������������
2�mhkBTh
p

is the thermal hole de Broglie wavelength).
The e-h bound state phase is shown in the left part and
contains excitons and biexcitons and, eventually at low
temperature, a Bose liquid, superfluid, or an excitonic
insulator [17]. On leaving this phase across its boundary
[given by the line rse�Te� � rMott

s �Te�], the fraction of
bound states rapidly vanishes in favor of unbound e-h pairs
with the holes showing liquidlike behavior. Upon further
compression (at temperatures Te < T
), the hole liquid
crystallizes, provided M � Mcr. At the density n�2�, quan-
tum melting of the crystal is observed (vertical long-dashed
green line). The entire hole Coulomb crystal phase for
M � 200 is marked by the full red line in Fig. 3.

Now, how is the hole crystal in semiconductors related
to the Coulomb crystals in classical and astrophysical
plasmas mentioned in the introduction? To answer this
question, we investigate the dependence of the stability
of the crystal phase on the three asymmetry parameters.
When M is reduced, the crystal phase shrinks (see the red
short-dashed line corresponding to M � 100) until, for
M � Mcr, it vanishes. Vice versa, when M becomes larger,
both maximum density and temperature at which crystal-
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FIG. 2 (color online). e-e (blue, dashed-dotted line), h-h
(black, solid line), and e-h (red, dotted line) pair distribution
functions for different mass ratios and temperatures.
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FIG. 3 (color online). Phase diagram of a two-component
plasma in the plane of dimensionless electron temperature Te
and density parameter 1=rse. The boundary of the Coulomb
bound state phase is given by rMott

s �Te�. Above (below) the
dotted black line, holes are classical (degenerate). The red full
(dashed) line is the boundary of the hole crystal for � � Z � 1
and M � 200 (M � 100) with the asymptotics given by Eqs. (1)
and (5) (green long-dashed lines). � � 1=�Z2=��.
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lization is possible increase according to Eqs. (5) and (6).
While in semiconductors in quasiequilibrium, M is the
only parameter which can be varied from one material to
another, the diversity of ionic plasmas, on the other hand,
offers additionally control of the charge and temperature
ratios Z and � in very broad ranges. By increasing M, Z,
and �, the crystal phase extends further towards higher
density and temperature, covering an ever increasing
part of the temperature-density plane (with the exception
of the bound state phase). Eventually, this crystal phase
will overlap with the known classical and astrophysical
Coulomb crystals at low and high densities, respectively.
Thus, indeed, the phase diagram in Fig. 3 applies to all
Coulomb crystals in two-component plasmas of elec-
trons and pointlike ions, independently of their physical
origin. Of course, in different systems specific additional
factors may exist. For example, phase separation or non-
Coulombic bound states will modify the boundary of the
bound state phase and the value of n�1�, whereas band
structure effects or extended ionic cores can modify the
high-density behavior [15]. Finally, while our analytical
results for the crystal phase are obtained neglecting e-h
correlations (which is justified by the large mass ratio M),
the simulations indicate that the electrons have a stabiliz-
ing influence, increasing the maximum temperature be-
yond T
. These effects are beyond the present investi-
gation and will be discussed elsewhere.

In summary, one of the most fundamental collective
properties of matter, Coulomb crystallization, has been
extended from one-component plasmas to the case of
neutral systems with two oppositely charged components.
Our analysis provides a common view and general quanti-
tative bounds on the critical parameters for the existence of
Coulomb crystals in a large variety of TCP, including
dwarf stars, laser-cooled expanding plasmas, dusty plas-
mas, and semiconductors. The critical parameters depend
23500
on the combined mass, charge, and temperature asymmetry
between the heavy and light components. Crystallization
of protons and of holes in semiconductors is predicted.
Hole crystals should exist in materials with a mass ratio of
about 80 [21] and might be observable in rare earth semi-
conductors in neutron scattering experiments. These hole
crystals could serve as a valuable testing ground for quan-
tum TCP crystals, in general, and for ion crystals in exotic
stellar objects, in particular.
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