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Abstract. First-principle path integral Monte Carlo simulations were performed in order to
analyze correlation effects in complex electron-hole plasmas, particularly with regard to the
appearance of excitonic bound states. Results are discussed in relation to exciton formation in
unconventional semiconductors with large electron hole mass asymmetry.

1. Introduction
Strongly coupled Coulomb systems have been in the focus of recent investigations in many fields,
including plasma, nuclear, condensed matter and astrophysics [1, 2, 3, 4]. In these systems the
Coulomb energy is of the order of, or even exceeds the mean kinetic energy. Besides, quantum
effects are of vital importance. The formation of Coulomb liquids and solids is only one of the
multi-faceted phenomena that might show up. Just now the existence of Coulomb crystals has
been studied for neutral plasmas containing (at least) two oppositely charged components [5].
Most notably crystallization of holes in semiconductors was predicted to occur in materials with
a sufficiently large hole to electron effective mass asymmetry of about 80.

Since bound state formation turned out to be the relevant limiting factor for the appearance
of such an exceptional quantum hole (Coulomb) crystal at low temperatures [5], the aim of
the present contribution is to analyze the formation of excitons in mass asymmetric electron-
hole plasmas from first principles. A theoretical approach that is well suited to address this
problem is the direct path integral quantum Monte Carlo (DPIMC) method for the N-particle
density operator [6]. The DPIMC technique avoids additional approximations, such as the fixed
node and restricted path integral method. It has been successfully applied to treat both strong
interaction and quantum effects [6, 7, 8].

The organization of the paper is as follows. In Sec. 2 we briefly describe the essence of the
DPIMC method we employed. Section 3 presents our simulation results. There we will give
a detailed discussion of typical many-particle configurations at low and high temperatures, as
well as of electron-electron, hole-hole and electron-hole pair distribution functions and structure
factors. We conclude in Sec. 3, relating our results to the heavily debated exciton formation in
intermediate valent Tm[Se,Te] [9].
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2. Direct path integral Monte Carlo approach
The starting point for the description of a two-component (equilibrium) quantum plasma is the
partition function given at inverse temperature β = 1/kBT by

Z(Ne, Nh, V, β) =
1

Ne!Nh!

∑
σ

∫

V

dq ρ(q, σ; β), (1)

where q = {qe, qh} and σ = {σe, σh} denote the spatial coordinates and spin degrees of freedom
of Ne electrons and Nh holes (Ne = Nh), respectively, i.e. qa = {q1,a . . . ql,a . . . qNa,a} and
σa = {σ1,a . . . σl,a . . . σNa,a} with a = e, h. Then the pair distribution functions and the charge
structure factors can be expressed as [10]

gab(r) =
Ne!Nh!

Z(Ne, Nh, β)

∑
σ

∫

V

dq δ(r1,a − q1,a) δ(r2,b − q2,b) ρ(q, σ; β) (2)

and

Sab(k) =
∫ ∞
0 drr2[gab(r) − 1] sin(kr)/(kr)

|
∫ ∞
0 drr2(gab(r) − 1)| , (3)

where r = r1,a − r2,b.
Of course, in general the exact density matrix ρ(q, σ; β) of an interacting quantum many-

particle systems is not known but can be constructed using a path integral approach:
∫

V

∑
σ

dq(0) ρ(q(0), σ; β) =
∫

V

dq(0) . . . dq(n) ρ(1) · ρ(2) . . . ρ(n)

×
∑
σ

∑
Pe

∑
Ph

(±1)κPe+κPh S(σ, P̂eP̂hσ′
a) P̂eP̂hρ

(n+1)

q
(n+1)
a =q

(0)
a ,σ′

a=σa

. (4)

Here ρ(i) ≡ ρ
(
q(i−1), q(i); ∆β

)
≡ 〈q(i−1)|e−∆βĤ |q(i)〉 and ∆β ≡ β/(n + 1). The Hamiltonian for

the electron-hole plasma (Ĥ = K̂ + Û) contains kinetic energy (K̂) and Coulomb interaction

(2)

l,e
q (n)

l,e
q

l’,h
ql,e
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Figure 1. (Color online) Bead
representation of electrons and
holes. Here λ2

e = 2πh̄2β/me,
λ2

∆,e = 2πh̄2∆β/me, q
(1)
l,e =

q
(0)
l,e + λ∆,e ξ

(1)
l,e , and σ = σ′.

The holes have a similar beads
representation, however λh is√

me/mh times smaller.
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energy (Û = Ûee + Ûhh + Ûeh) parts. In Eq. (4) the index i = 1 . . . n + 1 labels the high-
temperature [(n + 1)kBT ] density matrices ρ(i). Accordingly each particle is represented by
(n+1) beads, i.e. the whole configuration of the particles is represented by a 3(Ne +Nh)(n+1)–
dimensional vector q̃ ≡ {q(0)

1,e , . . . q
(n+1)
1,e , q

(0)
2,e . . . q

(n+1)
2,e , . . . q

(n+1)
Ne,e ; q(0)

1,h . . . q
(n+1)
Nh,h }. Further details

of the high-temperature path integral representation are given in Ref [6].
Figure. 1 illustrates the representation of one (light) electron and one (heavy) hole. The

circle around the electron beads symbolizes the region that mainly contributes to the partition
function path integral. The size of this region is of the order of the thermal electron wavelength
λe(T ), while typical distances between electron beads are of the order of the electron wavelength
taken at (n + 1)-times higher temperatures. The same representation is valid for holes but due
to the larger hole mass the characteristic length scales are smaller by an factor of

√
me/mh.

The spin gives rise to the spin part of the density matrix (S) with exchange effects accounted
for by the permutation operators P̂e and P̂h acting on the electron and hole coordinates q(n+1)

and spin projections σ′. The sum is over all permutations with parity κPe and κPh
.

In the evaluation of the expressions obtained so far, we make use of a Monte Carlo
scheme [12] with different types of Monte Carlo steps: Either electron or hole coordinates (ql,a) or
dimensionless individual electron or hole beads (ξ(i)

l,a) were moved until convergence is reached.
Periodic boundary conditions are applied to the basic Monte Carlo cell. The procedure has
been extensively tested. For example, the comparison with the known analytical expressions for
pressure and energy of an ideal Fermi gas showed that Fermi statistics is well reproduced [6].
Moreover we applied the method to few-electron systems in harmonic traps where again the
analytically known limiting behavior of the energy was recovered [8]. For the present simulations
of an mass-asymmetric electron-hole plasma, we have varied both particle and beads numbers
and found that in order to obtain convergent results particle numbers Ne = Nh = 50 and
beads numbers in the range of Nb = 20 are sufficient. Thereby the density matrix in the high
temperature decomposition always was taken at temperatures above the electron-hole binding
energy. Finally let us emphasize that the maximum statistical error of the results presented
below is about 5% and can be systematically reduced by increasing the length of the Monte
Carlo run.

3. Simulation results
We now use the DPIMC scheme outlined in the preceding section in order to study exciton
formation in (non-ideal) electron-hole plasmas. Independent model parameters are the
temperature (T ), the masses of electrons (me) and holes (mh), and the static dielectric constant
(ε). The plasma density is characterized by the Brueckner parameter rs, defined as the ratio of
the mean distance between the particles [11] d = [3/(4π(ne + nh))]1/3 and the Bohr radius aB,
where ne and nh are electron and hole densities, respectively. To make contact with experiments
on the Tm[Te,Se] system [9], we choose me = 2, mh = 80, and ε = 25 (the masses are in units
of the free mass electron mass). Then, assuming a simple Wannier exciton picture, the exciton
binding energy would be about 500 K.

3.1. Particle configurations
Figure 2 shows typical “snapshots” of an electron-hole many-particle state with rs = 10 at low
(50K) and high (200K) temperatures. Here, as a result of the temperature decomposition of
the density matrix, each electron and hole is represented by several beads. Since the number of
beads is twenty the high temperature density matrices correspond to a temperature of at least
1000K, being about two times larger than the characteristic (excitonic) binding energy (Eb

X).
The spatial distribution of the beads reflects the position probability amplitude of the many-

particle wave function, where the characteristic size of a certain cloud of beads is of the order

141



Figure 2. (Color online) Snapshots of the electron-hole plasma at T = 50K (left) and T = 200K
(right) (for rs = 10). Clouds of blue (yellow) dots represent electrons with spin up (down),
whereas red (pink) dots mark the holes. Grey lines indicate the main simulation box which is
periodically repeated in all spatial directions.

of the thermal wave length of a single quantum particle. Because of the mass asymmetry the
typical size of the electron clouds is about 6 times larger than that of the holes. Also, increase of
the temperature leads to a reduce of the particle extension. Interestingly, at low temperatures
practically all holes are closely covered by electron beads. This means electrons and holes form
predominantly bound states and the whole system consists mainly of excitons. From Fig. 2 we
can see that the average distance between particles (unbound electrons, holes and excitons) is
much larger than the size of the excitons. At higher temperatures (T = 200K) we observe a
significant number of free electrons and holes (cf. Fig. 2, right panel). Due to the temperature-
induced dissociation of the excitonic bound states a partially ionized (non-ideal) electron-hole
plasma is formed.

3.2. Pair distribution functions and structure factors
This scenario is supported by the behavior of the electron-electron, hole-hole and electron-hole
correlations pointed out in this section. The pair distribution functions and structure factors
shown in Fig. 3 are the sum over both spin projections of the particles.

Let us first discuss the physics at short distances in terms of the pair distribution functions.
The function gab is the distribution of b-particles, on the average, about any a-particle. As an
effect of the Coulomb and Fermi (statistics) repulsion, gee and ghh are strongly depleted at small
r. The decay of the hole-hole correlations is much stronger because of the larger masses, i.e.
holes behave more “classically”. For the electron subsystem quantum exchange and tunnelling
are more important and compete with the Coulomb repulsion. Furthermore the pronounced
peak of the electron-hole pair distribution unambiguously signals the formation exciton bound
states. This is confirmed by considering the product r2geh(r) which has the physical meaning
of the probability to find the electron at distance r away from the hole. At low temperatures,
r2geh(r) is strongly peaked around aB. Increasing the temperature the excitonic peak weakens
and finally it vanishes at about 300 K, which reflects thermal dissociation of excitons. Note that
gee and ghh (almost) coincide even at short distances for 200 K, i.e. the now electrons behave
more like “classical” particles as well. Clearly all functions gab go to unity at large distances for
all T , which is a result of the overall uniform distributions of the charges.
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Figure 3. (Color online) Pair distribution functions (upper panels) and structure factors (lower
panels) at T = 50K (left panels) and T = 200K (right panels), respectively. Results are given
for rs = 10.

To discuss the physical behavior at large distances in more detail, it is convenient to consider
the (charge) structure factor Sab in momentum space. According to Eq. (3) positive (negative)
values of Sab indicate attraction (repulsion). From geh the typical length scale of the attractive
electron-hole correlations was found to be of the order of 5aB at 50 K (cf., Fig. 3, upper left
panel). Exciton formation sets a new length scale for the structure factor as well (cf. the
maximum in the structure factor at about 0.2 [1/aB]). In accordance with the above discussion
this excitonic maximum is shifted to smaller k values and finally washed out if the temperature
is raised. In the case that the maximum (minimum) of Sab is located at k = 0 and Sab(k)
is a monotonically decreasing (increasing) and rather structure-less function of k; the system
closely resembles a homogeneous electron-hole plasma. Nontrivial quantum (screening) effects,
however, come into play at low temperatures as can be seen from the wiggly behavior especially
of the electron-electron and hole-hole charge correlations.

3.3. Exciton density
From the analysis of the snapshots in Sec. 3.1 we found that our complex electron-hole plasma
contains at the same time free electrons, holes and excitons. That means, depending on the
temperatures and particle densities, electrons and holes may appear in bound and unbound
quantum and classical states. In a strict sense, we cannot calculate the fraction of bound and
free states in our DPIMC simulations because of the possible overlapping of the electron “shells”,
in particular at intermediate temperatures. Nevertheless a rough estimation of the fraction of
the number of electron-hole bound states can be obtained by the following physical reasonings.

The contribution of all bound and scattering states at temperature 1/β is given by the two-
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particle Slater sum

Σeh(r, β) = 8π3/2λ3
eh

∞∑
Eα=E0

|Ψα(r)|2 exp(−βEα) , (5)

where Eα and Ψα(r) are the energy (without the center of mass energy) and the wave function
of the exciton, respectively. Σeh is, in essence, the diagonal part of the density matrix and the
product r2Σeh represents the (quantum mechanical) probability for an electron and a hole to be
separated by distance r.

The sum over all possible states contains contributions from the discrete (d) and continuum
(c) part of the spectrum, Σeh = Σd+Σc. Σd contains all populated bound states between E0 and
energy E′ that separates bound and free (scattering) states. For low densities it is reasonable
to choose E′ ≈ − 3

2β since higher lying bound states will be thermally ionised [12].
At temperatures smaller than the electron-hole binding energy and distances smaller or of

the order of several Bohr radii, the main contribution to the Slater sum comes from electron-
hole bound states, while at larger distances free electron-hole scattering states turn out to be
the crucial factor. We found that the product r2Σeh is sharply peaked around aB, just like
r2geh(r) in Fig. 3, where the maximum is most pronounced at low temperatures. Increasing the
temperature, r2geh(r) approaches the parabola r2 related to the case of full absence of bound
states (ideal plasma geh(r) ≡ 1). An attractive interaction results in an increase of the pair
distribution function at short e-h distances: geh(r) > 1 for 0 ≤ r ≤ rb. Since the total number
of particles is conserved this increase involves a decrease at large distances (see Fig. 3). So
the interval [0, rb] with r2 ∗ (geh(r) − 1) > 0 gives the contribution of the bound states to the
total, bound and scattering state probability. In a strict sense, correlated e-h scattering states
also contribute to the maximum of geh(r), but their influence is negligible for the temperatures
considered, where rb is of the order of several Bohr radii. For example, for T = 50K only
excitons with the principle quantum number n = 1 and n = 2 are stable, which corresponds to
a predominant electron-hole separation in the range of about 4aB. This is well reproduced by
the procedure outlined above which yields rb � 3.7aB, cf. Fig. 3 (upper left part). Hence the
fraction of the electron-hole bound states can be estimated from the ratio

N b
eh

N b
eh + N c

eh

=
∫ rb

0 r2 ∗ [geh(r) − 1]dr∫ rb

0 r2 ∗ geh(r)dr
, (6)
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Figure 4. (Color online) Fraction of electron-hole bound states versus temperature for different
hole masses and dielectric constants.
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where the denominator is the normalization constant and has the physical meaning of electrons
to be in bound or scattering states.

Figure 4 shows the temperature dependence of the fraction of electron-hole bound states
calculated using Eq. (6) for two dielectric constants and different electron to hole mass ratios.
Obviously, larger ε’s result in lower electron-hole binding energies and therefore shift the
ionization temperature to smaller values. The same tendency is observed if mh/me is lowered.
For example, from Fig. 4 we found that the ratio of the temperatures, where the fraction of
electron-hole bound states is 50%, is the same as the corresponding ratio of the reduced electron-
hole masses µ = memh/(me + mh) (keeping ε fixed). We have a ratio of about 2 for the data
belonging to mh = 80 and mh = 2.1, and 1.5 for those belonging to mh = 80 and mh = 4.2.
This is exactly what we would expect from the ideal Saha equation because the exciton binding
energy is known to be proportional to the reduced electron-hole mass.

4. Conclusions
To summarize, we have performed a largely unbiased direct path integral quantum Monte Carlo
simulation of a neutral non-ideal two-component Coulomb system consisting of light electrons
and heavy holes. The careful analysis of typical many-particle configurations, pair distribution
and charge structure functions reveals a rather comprehensive physical picture of how the system
behaves as a function of temperature in the low-density regime. We obtained clear evidence for
exciton formation at low temperatures and a temperature-induced dissociation of these electron-
hole bound states. The ionization temperature strongly depends on the dielectric constant and
the mass ratio of electrons and holes, where small values of ε and large mass asymmetry stabilize
the bound states. As found out recently, these excitonic bound states are the limiting factor for
a possible Coulomb crystallization of the heavy holes at low densities [5]. At large temperatures
the system resembles an electron-hole plasma.

Electron-hole systems with such a strong mass anisotropy are realized in intermediate valent
Tm[SexTe1−x] alloys [9]. In these materials f-d hybridization provides us with a narrow dispersive
f valence band and, as a consequence, with a large effective hole mass of the order of 50-100
(bare) electron masses. TmSe0.45Te0.55 is, at ambient conditions, an indirect semiconductor
having a gap of E∆ = 130 meV, where with Eb

X � 50 − 70 meV below the bottom of the d
band an excitonic level has been observed. Applying pressure the gap can be tuned (and even
closed) and the material is speculated to realize in the pressure region between 5 and 11 kbar an
excitonic insulator, the search for which has been run for a long time. A necessary precondition
is the existence of a large number of (up to ∼ 1020) excitons with intermediate size (in order
to avoid too strong overlap of the excitonic bound states) [9]. Surprisingly, in TmSe0.45Te0.55

the excitonic phase then is predicted to be stable at rather high temperatures (up to 200 K).
Using the Tm[SexTe1−x] parameters within our (surely oversimplified) two-component Coulomb
model DPIMC simulation, we could at least corroborate this belief. We found that (i) the
fraction of excitonic bound states amounts to 80-90 %, (ii) the bound states will be stable up to
100-150 K, and (iii) the mass asymmetry between holes and electron is crucial therefore. As yet
we are not in the position to detect the condensed excitonic phase. Feasible, however, should be
the investigation of the density dependence of the various quantities. Here we expect to see the
formation of bi-exciton bound states and finally the Mott transition at large particle densities na

(i.e. small rs). Note that the excitonic-insulator semi-metal (Mott) transition has been detected
to occur in TmSe0.45Te0.55 at a pressure of about 13-14 kbar for T → 0. Work along this line is
in progress.
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