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Abstract. The interaction of ultrashort laser pulses with matter is a topic of growing interest.
One of the challenging tasks arising in this field is the description of the ionization and
recombination kinetics of atoms in a partially ionized plasma under the influence of the
laser field. Since the behavior of atoms in plasmas is strongly influenced by the plasma
environment, the equation for the two-particle density matrix in extended ladder approximation
is an appropriate starting point for our investigations. We show that from this equation, in a
properly chosen basis, a coupled system of equations for the distribution functions of atoms and
free particles as well as for the transition matrix elements follows. This system is a generalization
of the Bloch equations well-known from atomic and semiconductor physics. We discuss the case
of strong fields where phenomena like higher harmonics and multi-photon processes occur.

1. Introduction
We consider a partially ionized plasma. Under the influence of an external electromagnetic
field, e.g. a strong laser field, very interesting effects may be observed. Multiphoton processes,
creation of higher harmonics, nonlinear absorption etc. are typical consequences. The theoretical
approach to the processes in strong laser fields requires, of course, nonperturbative treatments
with respect to the field.

Of special interest are the ionization of the atoms due to the laser field and the energy
transfer between field and plasma. The elementary process of ionization in strong laser fields
was investigated for the first time in the pioneering work of Keldysh [1] and further in the
important papers of Faisal [2] and Reiss [3]. In these papers, the transition probability from an
atomic level into the continuum states was determined in the strong field approximation, i.e. by
nonperturbative calculations with respect to the external field. It was shown that, due to the
strong field, multiphoton processes occur. In spite of the success of the Keldysh–Faisal–Reiss
(KFR) theory, this approach is confronted with several difficulties, see, e.g., [4] and [5]. In
particular, the KFR theory is strongly gauge dependent and not invariant by removal of the A2

contribution to the Hamiltonian which is, in the homogeneous case (dipole approximation), a
c–number.

In the present paper we will consider the energy transfer between plasma and field and the
kinetics of the laser ionization in the surrounding partially ionized plasma. We start from the
equation for the two-particle density matrix in extended binary collision approximation. The
external electromagnetic field is introduced by a manifestly gauge invariant minimal coupling
substitution p → p − eA. On the basis of this equation we describe the ionization process in
the surrounding plasma. We mention that, by this procedure, the A2 term is cancelled.
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This paper is organized as follows: In the next section, we introduce the basic equations for
the description of the matter–field interaction and the two-particle properties of the plasma.
Furthermore, we present the appropriate basis and derive the general matrix Bloch equation.
Focusing on the description of ionization, a system of equations follows which we call “Plasma
Bloch equations” in analogy and segregation to those of atomic and semiconductor physics.
They will be derived in Sec. 3. Afterwards we discuss the behavior of the transition function as
a central quantity of the formalism for the case of arbitrary fields as well as in the limiting case
of weak fields in Sec. 4. In Sec. 5 we investigate the energy transfer between field and plasma
by deriving absorption as well as rate coefficients focusing on the strong field case. Finally, we
conclude with an outlook to continuative investigations to the topic.

2. Basic equations
We consider the interaction between a partially ionized plasma and the electromagnetic field.
This interaction is connected with an energy transfer and a polarization of the plasma. Energy
transfer and polarization are determined by the electric current density j(E) due to the field E
by the relations

dW kin

dt
+

dW pot

dt
= j · E ,

dP
dt

= j (1)

i.e., the change of the total energy of the system of particles is equal to j · E which is in turn
the energy loss of the electromagnetic field due to Poynting’s theorem. From the quantities j ·E
and P we get, as well known, further important quantities like the absorption, reflexion, and
refraction. The absorption may be connected with the ionization of the atoms in the partially
ionized plasma.

A central quantity is, therefore, the electric current density defined by

j =
∑
a

Tr
eapa

ma
Fa (2)

Here, Fa is the single-particle density operator of the species a. For the determination of Fa we
start from the first equation of the Bogolyubov hierarchy [6, 7]

ih̄
d

dt
Fa −

[
Ha + ΣHF

a , Fa

]
=

∑
b

nbTrb [Vab, gab] (3)

Due to the two-particle interaction this equation is not closed, it is coupled with the equation
for the two-particle density operator Fab. Therefore, we have to consider the second equation of
the hierarchy given by [6, 7]

ih̄
d

dt
Fab −

[
H̃0

ab + Vab, Fab

]
=

∑
c

ncTrc{Vac + Vbc, Fabc} , (4)

where the correlation functions gab and gabc are introduced by

Fab = FaFb + gab

Fabc = FaFbFc + Fagbc + Fbgac + Fcgab + gabc. (5)

In this paper we will consider the behavior of a pair of charged particles in a plasma under the
influence of an external electromagnetic field. For this purpose, we introduce the electromagnetic
field into H̃0

ab by a manifestly gauge invariant minimal coupling substitution p → p − eA:

H̃0
ab =

1
2ma

(pa − eaA)2 +
1

2mb
(pb − ebA)2 = H0

ab + Uab, (6)
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H0
ab =

p2
a

2ma
+

p2
b

2mb
, (7)

Uab = −A ·
(

eapa

ma
+

ebpb

mb

)
+

A2

2

(
e2
a

ma
+

e2
b

mb

)
. (8)

Here, Uab is given in Coulomb gauge, i.e. ∇A = 0.
It is convenient to introduce relative and center-of-mass coordinates by

Mp = mbpa − mapb, P = pa + pb,

In these coordinates, the contributions to H̃0
ab read

H0
ab =

P2

2M
+

p2

2µ
, (9)

Uab = −A ·
(

etP
M

+
erp
µ

)
+

A2

2

(
e2
t

M
+

e2
r

µ

)
, (10)

where M and µ are the total and reduced masses,

M = ma + mb,
1
µ

=
1

ma
+

1
mb

,

and et and er the total and reduced charges, respectively,

et = ea + eb, Mer = mbea − maeb.

Obviously, in the case of single ionization, the field affects only the relative motion of electron–ion
pairs since, due to ea = −eb = e, we get immediately er = e and et = 0.

For the decoupling of the equations (3) and (4) from the full Bogolyubov hierarchy we neglect
the three-particle correlations in Eq. (4), i.e., we assume gabc = 0. Then it is shown in [6] and
[7] that Eq. (4) simplifies to the extended binary collision approximation

ih̄
∂

∂t
Fab(t) −

[
H0

ab + Vab, Fab(t)
]
− [Uab(t), Fab(t)]

− [(Fa(t) + Fb(t)) Vab, Fab(t)] −
[(

ΣHF
a (t) + ΣHF

b (t)
)

, Fab(t)
]

= 0 (11)

which describes the kinetics of the two-particle properties like bound and scattering states in the
plasma. In Eq. (11), the first two terms represent the usual binary collision approximation, the
third term contains the direct external field contribution, whereas the further terms arise from
many-particle effects: Pauli blocking and Hartree–Fock (mean field + exchange) self-energy.

Let us come back to the current density. The balance equation for the electric current
density follows in well known manner from the first equation of the hierarchy (3) and reads
(after symmetrization with respect to the species a, b)

dj(t)
dt

−
∑
a

nae
2
a

ma
E =

1
2ih̄

∑
ab

∫
dpadpb

(2πh̄)6

(
eapa

ma
+

ebpb

mb

)
〈papb |[Vab, Fab(t)]|pbpa〉 . (12)

For the further investigation of the kinetics of the partially ionized plasma in interaction
with the external electromagnetic field, equation (11) has to be represented in an appropriate
basis. With respect to the bound states in such a plasma, we choose a representation where
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the basis states are given by the bound and scattering eigenstates of the field-free two-particle
Hamiltonian,

(
H0

ab + Vab

)
|Pα〉 = EαP |Pα〉 , (13)

|Pαt〉 = e−
i
h̄

EαPt |Pα〉 . (14)

Here, α denotes a complete set of quantum numbers n, l, m in the case of bound states and the
relative momentum p in the case of scattering states, respectively,

α =
{ {n, l, m} for bound states

p for scattering states.

In the representation (13), we get for the equation (11)
[
ih̄

∂

∂t
− (EαP − Eα′P)

]
Fαα′

ab (P; t) =
∑
ᾱ

[
h̄Ωαᾱ

R (P; t)F ᾱα′
ab (P; t) − Fαᾱ

ab (P; t)h̄Ω̃ᾱα′
R (P; t)

]
, (15)

with the matrix elements given by

〈αP|Fab(t)
∣∣P′α′〉 = Fαα′

ab (P; t)(2πh̄)3δ(P − P′), (16)

〈αP|Uab(t) + ΣHF
a (t) + ΣHF

b (t) ± [Fa(t) + Fb(t)] Vab

∣∣P′α′〉
= h̄Ωαα′

R (P; t)(2πh̄)3δ(P − P′), (17)

〈αP|Uab(t) + ΣHF
a (t) + ΣHF

b (t) ± Vab [Fa(t) + Fb(t)]
∣∣P′α′〉

= h̄Ω̃αα′
R (P; t)(2πh̄)3δ(P − P′). (18)

Here, h̄ΩR is an abbreviation which can be interpreted as a generalized Rabi energy, i.e., the
field contribution renormalized by Hartree–Fock and Pauli blocking terms. Notice that Uab in
Eqs. (17,18) does not contain the term quadratic in A (cf. Eq. (10)), because it cancels out in
the homogeneous case in the commutator. The quantities defined in (17,18) are related to each
other by

[
h̄Ωαα′

R (P; t)
]∗

= h̄Ω̃α′α
R (P; t).

Thus, the representation chosen above leads to a transformation of (11) into a matrix
equation. Due to the inclusion of the scattering continuum, Fab is, in principle, a matrix of
infinite rank. If there are N − 1 bound states, we obtain N2 coupled equations. Even if one
makes use of the symmetry relation

[
Fαα′

ab (P; t)
]∗

= Fα′α
ab (P; t), there remain N

2 (N+1) equations.
Obviously, the diagonal elements Fαα

ab are related to the occupation numbers of the respective
state. Due to the external field we have nonvanishing nondiagonal elements Fαα′

ab . They are
connected with transitions between two states α and α′. Here, we have to consider several
situations:

(i) If both α and α′ denote bound states, the equations describe excitation and deexcitation
processes of atoms in the plasma. Then we recover the familiar atomic Bloch equations [8, 9, 10].

(ii) If both α and α′ denote continuum (scattering) states, processes like (inverse)
bremsstrahlung are described.

(iii) In the case most interesting for our investigations, however, α denotes a bound state
and α′ a scattering state (or vice versa). The transitions between them, i.e. ionization and
recombination processes, are thus included in Eq. (15).
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3. Plasma Bloch equations
3.1. Derivation of the plasma Bloch equations
Since we are especially interested in the ionization kinetics, in the following, we do not
include (de)excitation and (de)acceleration processes, i.e., transitions between discrete states
and transitions within the scattering continuum. Therefore, we consider a system with one
single bound state and denote

α =
{

b “bound” bound state
f “free” scattering state.

Obviously, for that system only the physics beyond the familiar atomic Bloch equations remains
from Eq. (15). We get a system of three coupled equations:

ih̄
∂

∂t
Fbb(P; t) = 2i

∫
dp̄

(2πh̄)3
Im

{
h̄Ωbf

R (P, p̄; t)Ffb(P, p̄; t)
}

, (19)

[
ih̄

∂

∂t
−

(
E(p) − E(p′)

)]
Fff (P,p,p′; t)

−
∫

dp̄
(2πh̄)3

[
h̄Ωff

R (P,p, p̄; t)Fff (P, p̄,p′; t) − Fff (P,p, p̄; t)h̄Ω̃ff
R (P, p̄,p′; t)

]
= h̄Ωfb

R (P,p; t)Fbf (P,p′; t) − Ffb(P,p; t)h̄Ω̃bf
R (P,p′; t), (20)

[
ih̄

∂

∂t
−

(
E(p) − Ẽb

)]
Ffb(P,p; t) −

∫
dp̄

(2πh̄)3
h̄Ωff

R (P,p, p̄; t)Ffb(P, p̄; t)

= h̄Ωfb
R (P,p; t)Fbb(P; t) −

∫
dp̄

(2πh̄)3
Fff (P,p, p̄; t)h̄Ω̃fb

R (P, p̄; t), (21)

Fbf (P,p; t) = [Ffb(P,p; t)]∗ , (22)

where Ẽb denotes the binding energy renormalized by Hartree–Fock and Pauli blocking
contributions,

Ẽb = Eb +
∫

dp
(2πh̄)3

|ϕb(p)|2
{
ΣHF

1 (P,p; t) + ΣHF
2 (P,p; t)

∓ [E(p) − Eb] [F1(P,p; t) + F2(P,p; t)]
}

(23)

with F1/2(P,p; t) = F1/2

(
m1/2

M P ± p; t
)

and ΣHF
1/2(P,p; t) = ΣHF

1/2

(
m1/2

M P ± p; t
)
. Here,

ϕb(p) = 〈p|n〉 being the Fourier transform of the bound state wave function.
Keeping in mind the relation (22), we have obtained a system of three equations for three

unknown functions the physical meaning of which is quite obvious. Fbb is, in principle, equivalent
to the distribution function of the atoms in the plasma. Fff is the binary distribution
of the unbound electron–ion pairs. From the system (19–22) we see that the dynamics of
both distributions is driven by the function Ffb describing the transition between bound and
continuum states. The latter quantity is closely connected with the polarization function. Its
time evolution, in turn, is determined by the distributions. Notice that, even if we neglect three-
particle collisions, ionization and recombination takes place due to the presence of the external
field contained in the Rabi energies h̄ΩR.
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3.2. Field terms. Renormalized Rabi energies
As we have seen before, the matrix elements of the field contribution to the Hamiltonian Uab

can be represented in the form of Rabi energies h̄ΩR. Since we consider electron–ion pairs, Uab

from Eq. (10) simplifies to
Uab = − e

µ
A · p.

Thus, the Rabi energies are given by

h̄Ωff
R (P,p,p′; t) = − e

µ
A(t) ·

〈
+p|p|p′+

〉
+

∫
dp̄

(2πh̄)3
ϕ∗

p+(p̄)ϕp′+(p̄)

×
{
ΣHF

1 (P, p̄; t) + ΣHF
2 (P, p̄; t) ∓ [E(p̄) − E(p)] [F1(P, p̄; t) + F2(P, p̄; t)]

}
, (24)

h̄Ωfb
R (P,p; t) = − e

µ
A(t) · 〈+p|p |n〉 +

∫
dp̄

(2πh̄)3
ϕ∗

p+(p̄)ϕb(p̄)

×
{
ΣHF

1 (P, p̄; t) + ΣHF
2 (P, p̄; t) ∓ [E(p̄) − E(p)] [F1(P, p̄; t) + F2(P, p̄; t)]

}
(25)

with ϕp+(p) being the Fourier transform of the scattering wave function. These relations show
that the bare field terms are renormalized by many-particle effects in form of Hartree–Fock
energies and Pauli blocking contributions.

4. Analysis of the transition function
4.1. Strong fields. Higher harmonics. Multi-photon processes
In order to investigate the full ionization kinetics, the system (19–22) has to be solved
selfconsistently. This is, of course, a very complicated task especially due to the momentum
dependences of the quantities which is, up to now, numerically not feasible. Therefore, we
approach the problem by analyzing limiting cases which simplify the system (19–22) and allow
for an insight into the underlying physics.

First let us assume an external field given by

A(t) = A0 sin(ωt), E(t) = − ∂

∂t
A(t) = E0 cos(ωt), E0 = −ωA0. (26)

Further, we look at Eq. (21). Introducing the approximations (i) neglect of Hartree–Fock and
Pauli blocking renormalizations, (ii) replacement of scattering states |p+〉 by free momentum
states |p〉, and (iii) neglect of binary correlations in the scattering state, i.e.,

Fff (P,p,p′; t) ≈ F1(P,p; t)F2(P,p; t)(2πh̄)3δ(p − p′),

this equation can be written as[
ih̄

∂

∂t
− (E(p) − Eb) +

e

µ
A(t) · p

]
Ffb(P,p; t)

= − e

µ
A(t) · pϕb(p){Fbb(P; t) − F1(P,p; t)F2(P,p; t)}. (27)

The formal solution of Eq. (27) is given by

Ffb(P,p; t) = − 1
ih̄

e

µ

t∫
t0

dt̄ e−
i
h̄
(E(p)−Eb)(t−t̄)e

i
h̄

e
µ
p·

t∫
t̄

dtA(t)

A(t̄) · pϕb(p)

×{Fbb(P; t̄) − F1(P,p; t̄)F2(P,p; t̄)}. (28)
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For monochromatic fields (Eqs. (26)), the integral in the second exponent on the r.h.s. of
(28) can be solved:

e

µ
p ·

t∫
t̄

dtA(t) =
v0 · p

ω
(cos ωt − cos ωt̄) , (29)

where v0 is the so-called quiver velocity, v0 = eE0
µω .

Keeping in mind that the field is switched on adiabatically, i.e. at t0 → −∞, we have to
write for the vector potential

A(t) = lim
ε→0

A0
1
2i

[
ei(ω−iε)t − e−i(ω+iε)t

]
.

Assuming that the time dependence of the field amplitude and the distribution functions is
weak compared to the very fast field oscillations, they can be taken out of the integral in (28).
Then, using the relation

e±iz cos ωt =
∞∑

n=−∞
(±i)nJn(z)e±inωt,

we obtain

Ffb(P,p; t) =
1
2h̄

e

µ
e−

i
h̄
(E(p)−Eb)t

∞∑
k=−∞

ikJk

(
v0 · p
h̄ω

)
eikωt

×
∞∑

n=−∞
(−i)nJn

(
v0 · p
h̄ω

) t∫
t0

dt̄ e
i
h̄
(E(p)−Eb)t̄e−inωt̄

[
ei(ω−iε)t̄ − e−i(ω+iε)t̄

]

×A0 · pϕb(p) [Fbb(P; t) − F1(P,p; t)F2(P,p; t)] . (30)

The time integration can be carried out, and after an index shift k = n + l we obtain the result

Ffb(P,p; t) = − e

2µ

∞∑
n=−∞

∞∑
l=−∞

il−1Jn

(
v0 · p
h̄ω

)
Jn+l

(
v0 · p
h̄ω

)

×
[

ei((l+1)ω−iε)t

Eb − E(p) + (n − 1)h̄ω + ih̄ε
− ei((l−1)ω−iε)t

Eb − E(p) + (n + 1)h̄ω + ih̄ε

]

×A0 · pϕb(p) [Fbb(P; t) − F1(P,p; t)F2(P,p; t)] . (31)

This formula can be rewritten once more by appropriate index shifts and using the Bessel
function relations

J−n(z) = (−1)nJn(z) ; Jn−1(z) + Jn+1(z) =
2n

z
Jn(z). (32)

We arrive at

Ffb(P,p; t) =
e

µ

∞∑
n=−∞

∞∑
l=−∞

il
nh̄ω

v0 · p
Jn

(
v0 · p
h̄ω

)
Jn+l

(
v0 · p
h̄ω

)

× ei(lω−iε)t

Eb − E(p) + nh̄ω + ih̄ε
A0 · pϕb(p) [Fbb(P; t) − F1(P,p; t)F2(P,p; t)] . (33)

As can be seen from this result, the field causes interesting physical effects. First, the sum
over l indicates the generation of higher harmonics of the field frequency, cf. the term ei(lω−iε)t.
On the other hand, the sum over n reflects the absorption or emission of multiple photons, i.e.
multiphoton ionization, which finds its expression in the denominator Eb − E(p) + nh̄ω + ih̄ε.
Similar effects have been found, e.g., in [11, 12, 13].
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4.2. Weak fields
So far, we have considered situations where the field can be of arbitrary strength1. However, if
we want to describe situations where the field is weak, far-reaching simplifications are possible.

For that purpose, we look again at Eq. (31). The properties of the Bessel functions Jn(z)
show that for small arguments (i.e. for weak fields and, therefore, small quiver velocities v0),
the main contribution to the series is given by its zeroth element. Therefore, we restrict (31) to
n = l = 0 and obtain

Ffb(P,p; t) = − e

2iµ

[
ei(ω−iε)t

Eb − E(p) − h̄ω + ih̄ε
− e−i(ω+iε)t

Eb − E(p) + h̄ω + ih̄ε

]

×A0 · pϕb(p) [Fbb(P; t) − F1(P,p; t)F2(P,p; t)] . (34)

Let us consider now some properties of the transition function more in detail. We can represent
(34) in the form

Ffb(P,p; t) = Ffb(P,p; ω)e−i(ω+iε)t + F̃fb(P,p; ω)ei(ω−iε)t

Furthermore, we introduce an alternative representation of the Rabi energies. Taking into
account (26) and the relation

〈+p|p |n〉 = µ
i

h̄
〈+p| [H, r] |n〉 = µ

i

h̄
(E(p) − Eb) 〈+p| r |n〉 ,

we can replace

− e

iµ
A0 · pϕb(p) → E(p) − Eb

h̄ω
dfb(p) · E0,

dfb(p) = −e 〈+p| r |n〉 . (35)

Here, dfb is the matrix element of the electric dipole operator d = −er.
Then, using the Dirac identity, for the imaginary part of Ffb(P,p; ω) follows

ImFfb(P,p; ω) =
π

2
δ(Eb − E(p) + h̄ω) dfb · E0

×{Fbb(P; t) − F1(P,p; t)F2(P,p; t)} , (36)

and for the real part

ReFfb(P,p; ω) =
1
2

P

Eb − E(p) + h̄ω

E(p) − Eb

h̄ω
dfb · E0

×{Fbb(P; t) − F1(P,p; t)F2(P,p; t)} . (37)

Looking at (36), a feature mentioned already above becomes more obvious. The argument of the
energy conserving delta function shows that the effective ionization energy E(p)−Eb is brought
up by the photon energy h̄ω. In the weak field case, that is just the energy of a single photon
in contrast to the case of arbitrary fields where an infinite number of multiphoton contributions
occurs, cf. Eq. (33).

1 Note that our considerations are restricted to the nonrelativistic case.

32



5. Absorption and ionization
5.1. Electrical current and absorption coefficient
Now we are able to consider the current density and other interesting physical quantities
connected to j like polarization, absorption and ionization coefficients. For this purpose, let
us come back to the balance equation (12).

With the completeness relation for the eigenstates |Pα〉 and the Schrödinger equation

1 =
∑
Pα

|Pα〉 〈Pα| ,
(
H0

ab − EαP

)
|Pα〉 = −Vab |Pα〉 ,

we express the right hand side of the balance equation (12) for the current density in terms of
the Fαα′

ab (P; t). It follows

dj(t)
dt

− ω2
plE = − V

2ih̄

∑
ab

∫
dp

(2πh̄)3

∫
dP

(2πh̄)3
∑
αᾱ

(
etP
M

+
erp
µ

)
(EpP − EαP)

[
ϕα(p)ϕ∗

ᾱ(p)Fαᾱ
ab (P; t) − ϕ∗

α(p)ϕᾱ(p)F ᾱα
ab (P; t)

]
=

∑
ab

Iab(t) (38)

This equation shows that the different transition processes discussed in Sec. 2 contribute
to the current in a partially ionized plasma. In the following, we consider a hydrogen plasma
as a simple model case. We should notice, however, that the theory can be applied to more
complicated systems, too. We consider here the electron–proton part and especially the bound–
free contribution (α = n = 1, ᾱ = p and vice versa)

Iep(t) =
V
h̄

∫
dp

(2πh̄)3

∫
dP

(2πh̄)3
ep
µ

(E(p) − Eb)ϕb(p) Im Ffb(P; t). (39)

Then we introduce the expression (33) into (39) and ignore the weak time dependence of
the distribution functions and the field amplitude. Finally we integrate Eq. (38) over the time.
Then follows

j(t) = j0(t) +
∞∑

l=−∞
jl(ω)e−ilωt (40)

which is clearly the Fourier expansion of the current in terms of all harmonics of the field
frequency ω. The Fourier coefficients jl(ω) are given by

jl(ω) = −V
2

∫
dp

(2πh̄)3

∫
dP

(2πh̄)3
e

µ

E(p) − Eb

lh̄ω
pϕb(p)

e

µ
A0 · pϕb(p)

× [Fbb(P; t) − Fe(P,p; t)Fp(P,p; t)]
∞∑

n=−∞
il

nh̄ω

v0 · p
Jn

(
v0 · p
h̄ω

)
Jn−l

(
v0 · p
h̄ω

)

×
[

(−1)l

Eb − E(p) + nh̄ω + ih̄ε
+

1
Eb − E(p) − nh̄ω − ih̄ε

]
(41)

Furthermore, j0(t) = ω2
pl

t∫
−∞

dt′E(t′) is the current of the collisionless plasma.

As already mentioned above, the current determines several physical quantities, e.g. the
polarization given by Eq. (1). Here, we will consider the energy transfer j · E between the
field and the plasma. For the field E we assume the time dependence (26). We consider the
dissipation of the energy averaged over one cycle of oscillation. Then we obtain after a simple
calculation

〈j · E〉 =
1
T

t∫
t−T

dt′ j(t) · E(t) = E0 · Re j1(ω). (42)

33



Now we introduce the absorption coefficient for the bound–free transition by

αbf (ω) =
1

c ε0

〈j · E〉
〈E2〉 (43)

With the help of the Dirac identity, the substitution n → −n in the second term and the
Bessel function relations (32), after some algebra follows

αbf (ω) =
V

c ε0h̄

2π

E2
0

∞∑
n=−∞

(nh̄ω)3
∫

dp
(2πh̄)3

∫
dP

(2πh̄)3
E(p) − Eb

nh̄ω
|ϕb(p)|2

×J2
n

(
v0 · p
h̄ω

)
δ(E(p) − Eb − nh̄ω) [Fbb(P; t) − Fe(P,p; t)Fp(P,p; t)] (44)

The quantity αbf (ω) describes the process of the absorption of n photons in the process of
ionization of atoms.

Using 1
4(iv0 · pϕb(p))2 = 1

4

(
E(p)−Eb

h̄ω dfb(p) · E0

)
and introducing again the dipole matrix

element, the above result gives in the linear response case

αbf (ω) = V 4π2ω

3ch̄

∫
dp

(2πh̄)3

∫
dP

(2πh̄)3
|dfb(p)|2

× [Fbb(P; t) − Fe(P,p; t)Fp(P,p; t)] δ(E(p) − Eb − h̄ω). (45)

Here we assumed isotropy so that the tensor dfb(p) ⊗ dfb(p) is diagonal with the diagonal
elements 1

3 |dfb|2.
Thus, we have shown that from our general equations, in the weak field case, there follow

formulas which have the form of the well-known relations for transitions between atomic levels
[8] or interband transitions in semiconductors [14]. Therefore, our approach reproduces the
relations of linear response theory.

In order to determine the absorption coefficient we need the diagonal elements of the
density matrix which have to be calculated from the corresponding equations (19) and (20).
The assumption of thermodynamic equilibrium represents a significant simplification. The
distributions are now given by

Fbb(P; t) = Fbb(P) = exp

{
− 1

kBT

[
Eb +

P2

2M
− µA

]}
(46)

Fe/p(P,p; t) = Fe/p(P,p) = exp

{
− 1

kBT

[
1

2me/p

(
me/p

M
P ± p

)2

− µe/p

]}
, (47)

where µA and µe/p are the chemical potentials of the atoms and the free particles, respectively,

which are connected by µA = µe + µp. Using E(p) = p2

2µ and the normalization condition∫ dP
(2πh̄)3

Fbb(P) = nA, with nA being the density of atoms, from Eq. (45) we obtain easily

αbf (ω) = V 4π2ω

3ch̄
nA

∫
dp

(2πh̄)3
|dfb(p)|2

[
1 − e

− h̄ω
kBT

]
δ(E(p) − Eb − h̄ω). (48)

5.2. Rate coefficients
The absorption of photons is, under the condition E(p)−Eb = nh̄ω, connected with a bound–
free transition, i.e. the ionization of the atoms. The process of ionization, of course, changes the
plasma composition. From the macroscopic point of view, the time dependence of the densities
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of the plasma particles is given by rate equations. For the change of the atomic density nA(t)
we have

∂

∂t
nA(t) = −α(t)nA(t) + β(t)ne(t)np(t). (49)

Here, ne(t) and np(t) are the densities of free particles (electrons and protons), and the
coefficients α(t) and β(t) are the rate coefficients.

From the microscopic point of view, the rate equation (49) follows from the equation for the
occupation of the atoms Fbb (19),

∂

∂t
Fbb(P; t) =

2
h̄

sinωt

∫
dp

(2πh̄)3
v0 · pϕb(p) Im Ffb(P,p; t). (50)

Inserting the solution (33) and using the Dirac identity, we arrive at

∂

∂t
Fbb(P; t) = −2

h̄
sinωt

∫
dp

(2πh̄)3
v0 · p |ϕb(p)|2

∞∑
n=−∞

∞∑
l=−∞

nh̄ω Jn

(
v0 · p
h̄ω

)
Jn+l

(
v0 · p
h̄ω

)

×
{

sin
[
l

(
ωt +

π

2

)]
P

Eb − E(p) + nh̄ω
− π cos

[
l

(
ωt +

π

2

)]
δ(E(p) − Eb − nh̄ω)

}

× [Fbb(P; t) − Fe(P,p; t)Fp(P,p; t)] . (51)

In the following, we assume Maxwellian distributions for the free particles, i.e.

Fe/p(P,p; t) =
ne/p(t)Λ3

e/p

2
e
− 1

2me/pkBT

(
me/p

M
P±p

)2

,

with the thermal wavelength Λe/p =
√

2πh̄2

me/pkBT . Integrating Eq. (51) over P, we obtain the rate

equation (49) for the density of the atoms nA(t). Obviously, the ionization coefficient α(t) is
then given by the microscopic expression

α(t) =
2
h̄

sinωt

∫
dp

(2πh̄)3
v0 · p |ϕb(p)|2

∞∑
n=−∞

∞∑
l=−∞

nh̄ω Jn

(
v0 · p
h̄ω

)
Jn+l

(
v0 · p
h̄ω

)

×
{

sin
[
l

(
ωt +

π

2

)]
P

Eb − E(p) + nh̄ω
− π cos

[
l

(
ωt +

π

2

)]
δ(E(p) − Eb − nh̄ω)

}
,(52)

and the recombination coefficient follows from

β(t) =
Λ3

r

2h̄
sinωt

∫
dp

(2πh̄)3
v0 · p |ϕb(p)|2

∞∑
n=−∞

∞∑
l=−∞

nh̄ω Jn

(
v0 · p
h̄ω

)
Jn+l

(
v0 · p
h̄ω

)

×
{

sin
[
l

(
ωt +

π

2

)]
P

Eb − E(p) + nh̄ω
− π cos

[
l

(
ωt +

π

2

)]
δ(E(p) − Eb − nh̄ω)

}

×e
− p2

2µkBT (53)

with Λr =
√

2πh̄2

µkBT . It is useful to average again over one period of the field oscillation. Using the

relations 1
T

T∫
0

dt sinωt cos lωt = 0, 1
T

T∫
0

dt sinωt sin lωt = l
2δ|l|1, we get the averaged coefficients

ᾱ =
2π

h̄

∫
dp

(2πh̄)3
|ϕb(p)|2

∞∑
n=−∞

(nh̄ω)2 J2
n

(
v0 · p
h̄ω

)
δ(E(p) − Eb − nh̄ω), (54)

β̄ =
πΛ3

r

2h̄

∫
dp

(2πh̄)3
|ϕb(p)|2

∞∑
n=−∞

(nh̄ω)2 J2
n

(
v0 · p
h̄ω

)
δ(E(p) − Eb − nh̄ω)e−

p2

2µkBT . (55)
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This strongly simplified expression for the ionization coefficient is essentially equivalent to
results from atomic physics [2, 3, 5]. However, in contrast to the results of Faisal and Reiss, no
effect of the A2 term occurs.

6. Conclusions and outlook
In this paper we have presented an approach to describe the process of ionization and
recombination in partially ionized plasmas under the influence of an external electromagnetic
field. The resulting system of equations represents a generalization of the Bloch equations
known from atomic and semiconductor physics. The central quantity is the transition function
describing transitions between bound and scattering states. We have discussed this function
in several physical situations. By means of the transition function we have investigated the
energy transfer between field and plasma and the field-driven change of the plasma composition.
In the case of strong fields, interesting physical effects like multiphoton ionization and higher
harmonics generation occur.

A challenging task for future research is, of course, the selfconsistent numerical solution
of the full system of plasma Bloch equations, Eqs. (19–22). Then all quantities of interest—
distributions of atoms and electron–ion pairs as well as transition functions—can be analyzed
in their temporal evolution even for ultrashort times immediately after the laser switch-on.
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