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Abstract

A gauge-invariant Green’s function approach to quantum transport of spatially
confined electrons in strong electromagnetic fields is presented. The theory inlcudes
mean-field and exchange effects, as well as collisions and initial correlations. It
allows for a self-consistent treatment of spectral properties and collective effects
(plasmons), on one hand, and nonlinear field phenomena, such as harmonic genera-
tion and multiphoton absorption, on the other. It is equally applicable to electrons

in quantum dots, ultracold ions in traps or valence electrons of metal clusters.
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There is a wide range of interesting new phenomena being observed for driven

systems of confined electrons, such as those in quantum dots and metallic
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clusters. Their theoretical description in the full generality of confinement po-
tential and time dependent external field is still evolving. The objective here is
to describe a formal kinetic theory based on a gauge-invariant nonequilibrium
Green’s function approach which extends previous work [1,2] to inhomoge-

neous systems.

We consider a system of N electrons (charge e = —eg) in a confinement po-

tential V7 and an external electromagnetic field described by the hamiltonian
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where the field is represented by the vector and scalar potentials A and ¢
which are solutions of Maxwell’s equations. The nature of the confinement
potential will not be specified, it can be given by an external field (e.g. open
quantum dot or trap), by an internal interface potential or by an ensemble
of ions (in case of metal clusters), it is assumed to be externally given. The
electrons are represented in standard way by fermion field operators ¥, !,
and their nonequilibrium properties are described by the two—time correlation
functions ¢”(1,1') = 7 (¥()Y'(1)),  ¢°(1,1) = —5(&T(1)¥(1)), where
1 = ry,t;. The two-time functions ¢~ ¢< contain the complete dynamical and
statistical information yielding, on the time-diagonal, the Wigner distribu-

tion f(p,R,t) = —ihg<(p,R;t1,1}) whereas the dynamical informa-

|t1:t’1:t’
tion (e.g. the single—particle spectrum and the correlations) follows from the
function values across the diagonalin the t; —t|—plane, in particular, from the

spectral function a(1,1") =ik {g~(1,1") — g=~(1,1")}.

The time evolution of the correlation functions in an electromagnetic field is

determined by the Kadanoff-Baym /Keldysh equations reading, in the vector



potential gauge,
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which have to be fulfilled together with the adjoint equations. The lLh.s. of
this equation contains all single-particle terms, whereas the r.h.s. contains all
corrections due to mean field, exchange and correlations. Here, X% is the
Hartree-Fock selfenergy (mean field plus exchange), while ¥ are the correla-
tion selfenergies describing collisions in the presence of the confinement and
electromagnetic fields. Further, ¢, denotes the (arbitrary finite) initial time,
and I7°(1,1') is an additional collision integral due to initial correlations ex-

isting in the system at ¢ = to [3].

We now derive gauge-invariant kinetic equations for the correlation func-
tions in Wigner representation, g2 (R, k, ¢, '), which are defined by the gauge-

invariant Fourier transform,

J dt’
Rkt 4) = [drexp|—1r- k=22 / ZAW) || gRor b1, 1), (3)
t

Here, R and r are the center of mass and relative coordinates, 2R = ry + 7,
r =r; —r); and T and 7 are the respective macroscopic and relative times.
A lengthy but straightforward calculation yields the following pair of adjoint

equations
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where the effective potential includes the Hartree mean field, V& (r,t) =
Vi + X which is the solution of Poisson’s equation X% (r,t) = [d3rV (r —
rl)n(rl, t) with n denoting the nonequilibrium local electron density n(r,t) =
f o) Sf(p, r,t). The integral IZ on the r.h.s. contains all terms of the r.h.s.

of Eq. (3) except the one containing ¥ . Further, we defined
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These equations are still exact and contain the full field and confinement po-
tential dependence in the mean field and collision terms. They are, in principle,
well suited for direct numerical solution generalizing the field-free spatially ho-

mogeneous results, e.g. [4,5].

Alternatively, these equations can be used as a rigorous starting point for
analytical approximations. In particular, we can obtain the equation for the
single-time distribution function, which follows from the difference of equations
(4) and (5) for the function g< at equal times t; = ¢} = ¢,

{ gt + LvR _ eoE(t)Vk} FR.K.1)
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where the electric field E(t) = —c [}, dt’A(t') is assumed to be homogeneous

over the range of the confiment volume and I(R,k,t) = —2Re[I<(R, k, t,1)].

In the local approximation the integral on the left side reduces to the classical
gradient expression, —VgVFT (R, t), while the exchange contribution vanishes,
and the collision integrals coincide with those of a homogeneous system. To
account for weak spatial inhomogeneities arising from the confinement poten-
tial, we consider the first order gradient approximation to equations (4, 5).
The resulting quantum kinetic equation for the Wigner distribution reads,

allowing for an arbitrary band structure e(k),
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Consistency and conservation laws require the collision integrals to be used in

first order gradient approximation as well:
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and similarly for I/¢. Note that the momentum arguments in all functions are
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shifted by the field-dependent momentum K4 which reflects the explicit field-
dependence of the scattering process giving rise to the intracollisional field
effect and to nonlinear phenomena including collisional harmonics generation

and (inverse) bremsstrahlung [1].

To obtain a closed equation for f, the two-time correlation functions in Eq.
(10) have to be expressed by the Wigner distributions. The appropriate solu-
tion in nonequilibrium is the generalized Kadanoff-Baym ansatz [6] which was
generalized to the presence of external fields in [2]. Here, the spatial inhomo-
geneity due to the confinement potential requires a further generalization by

including gradient corrections:

+g2(R, k, t,t') = g®(R, k, 1, ') fR[R, k — KA(t', 1), ]
— 2R,k — KA(t,t),t]g" (R, k, t, 1),
ih
+ E(VR1 sz - VRz Vk1)
{gR(Rl, ki, b, ) f2[Ro, ko — KA(E, £),

— 2[Ry, ki — KA, 1), g™ (Ra, Ko, £, t’)} (11)
Ri1=R>=R;ki=ks=k

where f> =1 — f and f< = f. Finally, the retarded and advanced Green’s
functions ¢g%/4 describe the correlated single-particle spectrum. Their equation
of motion follows from the sum of the two-time equations (4, 5) which has to

be treated with the same approximations as the kinetic equation for f [7].

Equations (7 — 11) provide a closed system for the electron Wigner distribution
function in a confinement potential V;(R) and a homogeneous time-dependent
electromagnetic field E(¢) of arbitrary strength. It is completely general as far
as the treatment of correlations is considered, arbitrary scattering processes
can be included by specifying the selfenergies ¥2. The first order gradient

approximation generally restricts the model to weak inhomogeneities, whereas



for parabolic potentials V7(R) it is exact. Our result is of importance for
electrons in quantum dots, ions in traps, metal clusters etc. It essentially
improves previous treatments, most of which incorrectly treat the exchange
[by neglecting it completely or in the Vi term in Eq. (7)] or neglect the
field dependence of the scattering terms. Numerical solutions of Eq. (7) seem

feasible [8] and are subject of ongoing research.
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