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We propose a theoretical Hugoniot relation obtained by combining results for the equation of state from the
direct path integral Monte Carlo technique(DPIMC) and those from reaction ensemble Monte Carlo(REMC)
simulations. The main idea of this proposal is based on the fact that the DPMIC technique provides first-
principle results for a wide range of densities and temperatures including the region of partially ionized
plasmas. On the other hand, for lower temperatures where the formation of molecules becomes dominant,
DPIMC simulations become cumbersome and inefficient. For this region it is possible to use accurate REMC
simulations where bound states(molecules) are treated on the Born-Oppenheimer level. The remaining inter-
action is then reduced to the scattering between neutral particles which is reliably treated classically by
applying effective potentials. The resulting Hugoniot is located between the experimental values of Knudsonet
al. [Phys. Rev. Lett.87, 225501(2001)] and Collinset al. [Science281, 1178(1998)].
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The H plasma is a very important and interesting many
particle system. Hydrogen is the simplest and at the same
time the most abundant element in the universe. Due to its
high relevance for modern astrophysics, inertial confinement
fusion, and fundamental understanding of condensed matter,
hydrogen continues to be actively studied both experimen-
tally [1–6] and theoretically[7–14]. At high temperatures
and pressures, the hydrogen behavior is defined by the inter-
action between free electrons and protons(plasma state).
With decreasing temperature, the contribution of bound
states such as atoms and molecules to the equation of state
(EOS) of hydrogen becomes of increasing importance, which
at low temperatures completely defines the hydrogen proper-
ties. Furthermore, as pointed out in many papers(Norman
and Starostin[15], Ebelinget al. [16], Haronskaet al. [17],
Schlangeset al. [18], Saumon and Chabrier[19], Filinov et
al. [20]) there are strong theoretical arguments for a phase
transition between two plasma phases. This issue which is of
importance, for example, for models of Jovian planets is still
actively debated. Among other important questions we men-
tion the high-pressure compressibility and details of the pres-
sure ionization and dissociation.

For this reason, in recent decades considerable experi-
mental and theoretical investigations were carried out to ac-
curately determine the EOS of hydrogen at high pressures.
Experimentally, the EOS for this region can be obtained us-
ing shock-wave techniques. The results of these experiments
are usually discussed in the form of a Hugoniot relation,

E = E0 +
1
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r
−
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where the specific internal energyE at a state with the den-
sity r and the pressurep is connected to the initial conditions
with the densityr0, the pressurep0, and the internal energy
E0.

One of the well established experimental techniques for
the creation of shock waves uses gas gun devices. With gas

gun experiments, Nelliset al. [3] reached maximum pres-
sures of 20 GPa and temperatures of 7000 K. More ad-
vanced techniques, the laser-driven experiments used by Col-
lins et al. [2] and Da Silvaet al. [4], allow one to reach
pressures up to 300 GPa. At such pressures, as expected,
hydrogen transforms from a molecular to a metallic state[5].
The results of laser-driven experiments have shown an un-
usual high compressionr /r0=6 of deuterium, which devi-
ates significantly from the maximum compression ofr /r0
=4.4 obtained within theSESAME EOS [21]. However, the
experiments of Knudsonet al. [1] which used magnetically
driven flyer techniques(Z pinch) do not support such high
compressibilities and are close to those ofSESAME [21] and
restricted path integral Monte Carlo(RPIMC) [7] results.
The reason for this discrepancy of the two experiments is not
yet completely understood and requires more detailed study
[22], including independent theoretical investigations which
is the aim of this paper. It is also necessary to mention other
important experimental techniques such as theconvergent
geometrytechnique[6]. The experimental point obtained by
Belov et al. [6] within this technique is located between the
results oflaser-drivenandmagnetically driven flyerexperi-
ments.

A Hugoniot relation can also be determined theoretically
from the equation of state. This enables us to compare dif-
ferent theoretical approaches and computer simulations with
experimental results, which cover a large region in the phase
diagram of hydrogen. They start at temperatures of about
20 K and at a density ofr0=0.171 g/cm3, which corre-
sponds to the liquid state, and go up to temperatures and
densities where only free electrons and nuclei exist. To our
knowledge, there is no theory or computer simulation which
rigorously and consistently describes the complete region of
the EOS achievable by experiments. For example, the linear
mixing model of Ross[23] predicts rather well the behavior
of the laser-driven experiments; however it is a semiempir-
ical theory which interpolates between molecular and metal-
lic states of hydrogen.
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Further, the region of completely and partially ionized
hydrogen can be described analytically using the methods of
quantum statistics[16,24,25]. In such methods, an EOS is
obtained from a fugacity expansion(ACTEX) [25] and modi-
fied fugacity expansions which are upgraded by means of
quantum-field-theoretical methods(leading to dynamical
screening, self-energy, and lowering of the ionization energy
[16,24]). In the latter case it is useful to condense the results
in the form of Padé approximations[26] (from Debye to
Gellman-Brueckner). Of course, the EOS following from
these theories cannot reproduce the Hugoniot relation over
the full range of density and pressure. It gives only the
asymptotic behavior at higher temperatures. The typical be-
havior of the analytical theory[26] is shown in Fig. 1. It
coincides only asymptotically with theab initio RPIMC cal-
culations and, with decreasing temperature, deviates consid-
erably from those results. The Hugoniot relation calculated
within the ACTEX theory which is not shown here exhibits a
similar behavior[25].

The main reason for the failure of the analytical theories
is obvious. As we mentioned already, for lower temperatures,
the neutral particles, i.e., H atoms and H2 molecules, become
increasingly important, giving rise to a strongly coupled
dense gas or liquid. Under such conditions it is necessary to
invoke the methods of the theory of liquids. The simplest
theory for this region is the fugacity expansion of the EOS
up to the second virial coefficient[27]. This theory is appli-
cable only for low densities and cannot correctly describe the
molecular dissociation which is an important process occur-
ring during shock wave experiments. For moderate densities,
the fluid variational theory(FVT), proposed by Rosset al.
[28], can be applied. This theory was further developed by
Juranek and Redmer[12] to many-component systems,
where molecular dissociation occurs. The effective interac-
tion potentials[28,29] between components used within the
FVT achieve good agreement with the experimental gas gun
data of Nelliset al. [3], Fig. 1.

A powerful tool for the investigation of the hydrogen EOS
is ab initio computer simulation. Quantum molecular dynam-
ics simulations, based on a density functional theory, are usu-
ally applied to investigate the atomic and molecular region

[8,13] but have difficulties in describing the partially ionized
plasma. The wave packet molecular dynamics also covers
the region of the fully ionized plasma[9] but yields unex-
pectedly high compressibilities. In this work we will not dis-
cuss these methods in detail and refer to the work cited.

The path integral Monte Carlomethod is another first
principle method which is well suited for the investigation of
the EOS of hydrogen over a wide parameter range. Except
for the problem of the Fermi statistics, it is an exact solution
of the many-body quantum problem for a finite system in
thermodynamic equilibrium. The reason for the difficulty
with the Fermi statistics is the antisymmetry of the many-
electron density matrixr (or, equivalently, the wave func-
tion) which is a superposition ofN! density matrices differ-
ing among each other by permutations of particles. Of these,
N! /2 terms are positive(even permutations) andN! /2 nega-
tive (odd permutations). With increasing degeneracy the con-
tributions of both terms to thermodynamic quantities grow in
magnitude and largely compensate each other essentially re-
ducing the efficiency of the simulations. This “sign problem”
is handled differently in various simulations. The restricted
PIMC method used by Ceperley and Militzer replaces the
density matrixr by an approximate one the nodes of which
are known; for details see[7] and references therein. On the
other hand, the direct path integral Monte Carlo(DPIMC)
method used by Filinovet al. [10,11] and others attempts to
evaluate the exact density matrix without additional approxi-
mations. This method will be used below and, therefore, is
briefly discussed in the following.

The idea of the DPIMC method is well known: any ther-
modynamic property of a two-component plasma withNe
electrons andNp protons at a temperatureT and volumeV is
defined by the partition functionZsNe,Np,V,Td which is the
trace of the density matrix:

ZsNe,Np,V,Td =
1

Ne ! Np!
o
s
E

V

dq dr rsq,r,s;Td, s2d

whereq and r comprise the coordinates of the protons and
electrons, respectively,s the spins of the electrons, andr
denotes the antisymmetrized density matrix of the whole sys-
tem which includesNe! Np! permuations, as explained above.
Taking into account the electron spin and the Fermi statistics
(antisymmetrization), the density matrix is expressed by a
path integral, e.g.,[30], where all electrons are represented
by fermionic loops with a number of intermediate coordi-
nates(beads); for details see Ref.[11]. In our simulations, we
used an effective quantum pair potential, which is finite at
zero distance[31] and was obtained by Kelbg as a result of a
first-order perturbation theory[35]. Improvements beyond
the perturbative level are also possible[36,37].

The simulations have been performed at temperatures of
104 K and higher in a wide range of particle densities for
which proton exchange effects are negligible. In the present
calculations, we used an improved treatment of the electron
exchange where we took into account the exchange interac-
tion of electrons from neighbor Monte Carlo cells, namely,
first from the 33−1 nearest neighbor cells, then from the 53

FIG. 1. Experimental and theoretical results for the deuterium
Hugoniot curve.
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−1 next neighbors and so on. The calculated thermodynamic
properties of hydrogen allowed us to compute the shock
Hugoniot curve of deuterium using Eq.(3),

H = E − E0 −
1

2
sp + p0dsV − V0d = 0. s3d

Following the work [7] we chose p0=0, r0
=0.171 g/cm3, E0=−15.886 eV per atom and computed the
pressurepi and the energyEi at a given constant temperature
T (from 104 to 106 K) and three values of the volumeVi
=1/ri corresponding tors=1.7, 1.86, and 2, wherers= r̄ /aB,
r̄ =s3/4pnpd1/3, np is the particle density, andaB the Bohr
radius. The results of the calculations are presented in Table
I. Substituting the obtained valuespi, Ei, and Vi into the
Hugoniot curve we determine the volume rangeV1, V2 where
the functionHsp,V,Ed changes its sign. The value of the
density at the Hugoniot curve is calculated by linear interpo-
lation of the functionH betweenV1 andV2. The values of the
pressure and of the total energy are shown in the Table I only
for those density values between which the value of the den-
sity lies on the Hugoniot curve at a given temperature. The
values of density and pressure on the Hugoniot curve are
placed in the last two columns of Table I and are plotted
together with selected theoretical and experimental data in

Fig. 1. The lowest temperature included in this figure for the
DPIMC calculation is 15 625 K.

In order to correctly describe the quantum mechanics of
the formation of molecules at temperatures lower than
10 000 K, it is necessary to take many beads. In this region,
DPIMC calculations become very time consuming and the
convergence is poor. The natural proposal which appears for
this region is to use the asymptotic property of the path in-
tegral which, for heavy particles, goes over into the classical
partition function. For such systems, the classical Monte
Carlo scheme can be applied. An advanced version of the
classical Monte Carlo scheme is the reaction ensemble
Monte Carlo(REMC) technique[32]. This method incorpo-
rates the quantum mechanical description of bound states,
while the scattering states are treated classically. As was
shown by Bezkrovniyet al. [14], the REMC technique de-
scribes the low temperature region very well, and yields
good agreement with the gas gun experiments by Nelliset al.
[3] (cf. Fig. 1). In these simulations the energy levels for the
molecular partition functions of hydrogen and deuterium are
obtained by solving the Schrödinger equation with the poten-
tial calculated by Kolos and Wolniewicz[33]. Further, the
interaction between the neutral particles is modeled by an
exponential-six(EXP6 modified Buckingham) potential pro-
posed by Rosset al. [28] the parameters of which have been
optimized to agree with molecular beam data of Baueret al.
[34]. On the basis of the REMC calculation, results are ob-
tained much more easily as compared to those from molecu-
lar dynamics based on density functional theory; see Bonev
et al. [13] and Fig. 2. Our REMC data are presented in Table
II.

In order to get a unified picture combining DPIMC and
REMC results, we use the fact that the REMC result turns
out to be the limiting case of the DPIMC calculation at low
temperatures, where hydrogen consists only of atoms and
molecules. Therefore, it is obvious to use the asymptotic re-
sults of both methods to construct a Hugoniot relation which

FIG. 2. Results for the combined Hugoniot relation.

TABLE I. Thermodynamic properties of deuterium plasma calculated by DPIMC simulations.

T (K)

rs=1.7 rs=1.86 rs=2

P (GPa) E (eV) P (GPa) E (eV) P (GPa) E (eV) rH sg/cm3d rH (GPa)

15 625 227.01 −18.995 3 101.41 −9.6854 0.8539 111.32

31 250 186.25 −9.948 54 134.30 −6.0186 0.8370 160.53

62 500 314.11 −1.2281 261.05 −0.1776 0.8104 306.69

1.253105 7.9579 1727.41 6.2214 0.7395 0.7395 700.75

2.53105 1596.84 48.2211 1237.67 46.8531 0.7204 1330.47

53105 3261.65 112.7294 2645.01 114.5706 0.7082 2797.26

106 6765.75 245.9921 5439.83 246.4489 0.6979 5672.16

TABLE II. Hugoniot data calculated by REMC simulations.

T (K) 2000 4000 5000 8000 10 000 13 000 15 000

r sg/cm3d 0.470 0.570 0.618 0.729 0.771 0.804 0.815

P (GPa) 9.183 18.690 23.96 39.35 47.823 58.71 65.43
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can be applied in the entire range of compression. For the
construction of the combined Hugoniot curve we carefully
analyzed the region where the Hugoniot data produced by
the two methods can be connected to each other. As we can
see from Fig. 1 the Hugoniot curve calculated within the
DPIMC method ends at the point 15 625 K. At this tempera-
ture, the largest contribution to the EOS are given by mo-
lecular states. As a natural continuation of the DPIMC Hugo-
niot relation, we take the point of 15 000 K produced by the
REMC simulation. We want to stress here that these two
methods are completely independent and no interpolation
procedure is used. Just two points at 15 625 K of DPIMC
and 15 000 K of REMC simulations are connected to each
other. The final Hugoniot curve is plotted in Fig. 2 and shows

a maximum compressibility of approximately 4.75 as com-
pared to the initial deuterium density.
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