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We present a first-principle path integral Monte Carlo(PIMC) study of the binding energy of excitons, trions
(positively and negatively charged excitons) and biexcitons bound to single-island interface defects in quasi-
two-dimensional GaAs/AlxGa1−x As quantum wells. We discuss in detail the dependence of the binding energy
on the size of the well-width fluctuations and on the quantum-well width. The numerical results for the
well-width dependence of the exciton, trions and biexciton binding energy are in good quantitative agreement
with the available experimental data.
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I. INTRODUCTION

Excitonic atoms and molecules in quantum confined
semiconductors have been intensively investigated in the last
decade. These systems show nontrivial Coulomb correlation
effects leading to interesting optical and transport character-
istics not seen in bulk materials. A strong increase of the
binding energy of the excitonic complexes was found
experimentally1–10 with decreasing quantum well(QW)
width and increasing magnetic field.11

In the literature there has been an active discussion about
the influence of localization potentials on the binding energy
of excitons and excitonic complexes.11 Most of the theoreti-
cal calculations12–17show a substantially weaker dependence
of the binding energies on the QW width than those experi-
mentally observed.1,2,4–10In particular, it was found experi-
mentally that the binding energy of the charged excitonic
complex is for narrow quantum wells much larger than the
one estimated theoretically, the difference being typically a
factor of two for narrow QWs. An explanation for this could
be the trapping of the excitons(trions, biexcitons) by ionized
donors in the barriers18 or by some kind of interface defects
produced by the mixture of well and barrier materials during
the QW growth process, i.e., by QW width fluctuations or
fluctuations in the alloy composition of the barrier, which
were not taken into account in Refs. 12–17. Such effects can
induce an additional weak lateral confinement which leads to
the confinement of the particles in all three dimensions like
in the case of a quantum dot potential. The low-temperature
photoluminescence of such structures originates from the ra-
diative recombination of the exciton states localized at such
nonuniformities of the heterostructure potential. In this situ-
ation broadening and splittings of both exciton and trion
peaks develops in the PL spectra.19 Such lateral confinement
becomes more important in narrow quantum wells. Theoret-
ical calculations of exciton, trion, and biexciton states in
such structures is a fairly complex problem because of the
need to take simultaneous account of the Coulomb interac-
tion and the three-dimensional heterostructure potential,
which is no longer translationally invariant.

The standard theoretical approach to calculate binding en-
ergies is to solve the corresponding many-particle
Schrödinger equation by means of an appropriate basis ex-
pansion. This works efficiently in simple geometries but is
not easily applicable to our problem with well-width fluctua-
tions. Recently, a different approach was developed which is
based on solving the Bloch equation for the many-particle
density matrix.24 It was demonstrated in Ref. 24 that this
problem can be efficiently solved using path integral Monte
Carlo (PIMC) methods without any restrictions on the geom-
etry of the confinement potential. No quantum well-width
fluctuation effects were considered in Ref. 24.

The aim of the present paper is to understand and explain
recent experimental data on the binding energy of the ground
state excitons, trions, and biexcitons in QWs by including
localization effects. We consider localization as a conse-
quence of the local modulation of the thickness of the quan-
tum well of 1–2 monolayers(ML ) which corresponds to the
experimental findings of Ref. 19. In agreement with experi-
mental results, we find that such QW width fluctuations can
increase the trion binding energy in GaAs-based quantum
wells by up to 100% as compared to ideal QWs without
interface roughness.

We also found that for lateral localization diameters ex-
ceedingD<150 Å the binding energy of the negative trion
can become larger than that of the positive trion, in contrast
to the case of ideal QWs where the positively charged exci-
tons are slightly more strongly coupled. The reason is that
the localization confinement has a different influence on the
lateral wave functions of electrons and holes. Thus the trion
composition(i.e., X+ vs X−) becomes crucial to the value of
the binding energy when the localization diameter changes.

Our numerical method is an extension of the Path Integral
approach of Ref. 24. The method does not involve expan-
sions in terms of basis functions, no symmetry assumptions
are made(in this sense it can be considered as first principle),
and the error can be managed in a controllable way.25

The paper is organized as follows. In Sec. II we present
and discuss the Hamiltonian for the exciton, biexciton, and
charged excitons in a quantum well with interface defects.
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We also discuss the approximations used in the present cal-
culations. In Sec. III we introduce the basic ideas of the
numerical method, i.e., Path Integral Monte Carlo(PIMC),
used to obtain the ground state of the excitonic complexes. In
Sec. IV we compare the correlation, localization, and binding
energy of the localized excitonsXd, biexciton sX2d, and
charged excitonssX±d ground state with the ones of the non-
localized, i.e., free exciton complexes in a quantum well.
Furthermore, we study the dependence of theX, X±, andX2
ground state properties on the defect width and height. In
Sec. V we compare our calculations with the available ex-
perimental data and, finally, present our conclusions in Sec.
VI.

II. THE THEORETICAL MODEL

We consider a single GaAs quantum well grown between
two AlxGa1−x As barriers. The effective mass framework is
used to describe the semiconductor material and the QW
structure. Using the isotropic approximation the Hamiltonian
for Ne electrons andNh holes reads:

H = o
i=1

Ne,Nh F−
"2

2mi
¹2 + Veshdszid + Veshd

loc sr idG + o
i, j

Ne,Nh ei ej

eur i − r ju
,

s1d

wheremi andei are the mass and charge of theith particle,e
is the dielectric constant, which we assume equal for the well
and for the barrier,Veshd is the confinement potential associ-
ated with the presence of the QW,Veshd

loc is the lateral(local-
ization) confinement which is due to the fluctuations of the
QW width. We take the quantum well growth direction as the
z direction.

For a GaAs/AlxGa1−xAs quantum well, we consider the
following heights of the square-well potential:Ve=0.57
3 s1.155x+0.37x2d eV for electrons andVh=0.433 s1.155x
+0.37x2d eV for holes. In our calculations we use an Al con-
centration ofx=0.3. Furthermore, the following material pa-
rameters are used:e=12.58, me=0.067m0, mh=0.34m0,
where m0 is the mass of the free electron. The units for
energy and distance areHa

* =2Ry
* =e2/ se aBd=11.58 meV,

aB="2e / sme e2d=99.7 Å, respectively. We have also consid-
ered the case of an anisotropic hole mass according to Ref.
26, using for the in-plane hole mass a smaller value ofmh

uu

=0.112m0, and in the quantum well growth directionmh
z

=0.377m0. Comparing the binding energies calculated with
the isotropic and anisotropic approximations gives important
insight about the relevance of band structure details for the
properties of excitonic complexes in quantum wells.

The actual shape of the interface defects is not known and
depends on the sample growth conditions. To limit the num-
ber of parameters, we simulate the interface defects through
a cylindrically symmetric potential with a lateral radiusR
and heightVe,h

loc. The potential height is determined by the
zero-point energy and was obtained as the difference be-
tween the lowest energy levels of the electron(hole) in two
QWs with the widthsL andL+d, whered=na with n=1,2
anda is the thickness of a single monolayer. Because of the

difference in mass between the electron and the hole, the
height of the localization potential will also be different(see
Fig. 1). For large well widthssLd the localization potential is
given bys"2p2/midd /L3. Notice that in Fig. 1 for smallL the
electron localization has a local maximum which is due to
the increased penetration of the electron wave function into
the barrier material. For the hole this occurs at much smaller
L due to its larger mass.

In GaAs, 1(2) monolayer(s) correspond to a well-width
fluctuation of d=2.8 s5.6d Å. These parameters ensure that
the exciton(trion, biexciton) wave function in the growth
directionz is practically not affected by the defect. It is very
instructive to see from Fig. 1 that, for narrow QWs, this
lateral localization potential reaches about 15 meV which is
comparable to the exciton binding energy and is several
times larger than the trion binding energy. This behavior is in
qualitative and quantitative agreement with the monolayer
splitting measured experimentally.19 In the inset of Fig. 1 we
plot the value of the lowest energy level in a QW as a func-
tion of the QW width. The main figure can be obtained di-
rectly from the results of the inset throughVloc=E0sL+dd
−E0sLd.

We proceed further with the assumption that the QW con-
finement is sufficiently strong and that the Coulomb interac-
tion among the particles in thez direction will not modify the
wave functions in thez direction, and consequently we may
use in thez direction the noninteracting electron and hole
wave functions. In thisadiabatic approximationwe neglect
the influence of in-plane electron-hole correlations on their
motion perpendicular to the QW plane. This assumption is
valid due to the strong quantization in square wells of widths
L&aB, giving rise to the condition on the energies:DEeshd

z

@Ec,Eb
X,Eb

X2,Eb
X±

, whereDEeshd
z is the level spacing in the

quantum well, andEc, Eb
X, Eb

X2, Eb
X±

are the correlation and
binding energy of exciton, biexciton, and trions, respectively.

Our approach to compute the binding energies starts from
the N-particle sN=2,3, and 4d density matrix of the exci-
tonic complex of interest(exciton, trion, and biexciton)
which is obtained from a solution of the corresponding Bloch
equation, see Ref. 24. In the adiabatic approximation, the full
N-particle density matrix factorizes into

FIG. 1. Dependence of the height of the localization potential
Veshd

loc , Eq. (5), for electrons(open dots) and holes(full dots) on the
well width L for a well-width fluctuation of 1 ML. Inset: the lowest
energy level in the potential,Veshd, vs the well width.
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rsRxyz,bd = rsZe,bdrsZh,bdrsRxy,bd, s2d

whereRxyzsRxyd=hr e1,r e2, . . . ,r eNe
; r h1,r h2, . . . ,r hNh

j is a 3D
s2Dd vector of all particle coordinates,Zeshd is thez coordi-
nate of all electrons(holes), rsZe,bd and rsZh,bd are the
density matrices of free electrons and holes confined in thez
direction by the square well, andb=1/kBT is the inverse
temperature. We underline that the density matrixrsRxy,bd
contains all in-plane electron-hole correlations and fully in-
cludes the effect of the localization potential. It obeys the
two-dimensionalN-particle Bloch equation which is ob-
tained by averaging the three-dimensional Bloch equation
over z and using Eq.(1) and the ansatz in Eq.(2):

]

] b
rsRxy,bd = S− o

i=1

Ne,Nh "2

2mi
¹xy

2 + Veff
xy + Veshd

loc,xyD rsRxy,bd.

s3d

Here, we have introduced an effective 2D in-plane interac-
tion potentialVeff

xy:

Veff
xysbd =E dZe dZho

i, j

ei ej

eur i − r ju
rsZe,bdrsZh,bd

3 FE dZe dZh rsZe,bdrsZh,bdG−1

. s4d

and the total localization potential

VD
loc,xy =HE0sL + dd − E0sLd, if Îsx2 + y2d ø D/2;

0, if Îsx2 + y2d . D/2,
s5d

whereE0sLd is the lowest energy level in a QW of widthsL
(see inset of Fig. 1).

III. NUMERICAL SIMULATION APPROACH

We numerically solve the Bloch equation((3)) using the
path integral representation of the density matrix. Using the
operator identitye−bH=se−tHdM, the density matrix at inverse
temperatureb can be expressed in terms ofM density ma-
trices, each taken at aM times higher temperatureM kBT, or
as a path integral withM steps of sizet=1/sMkBTd:25

rsR,R;bd =E dR1 . . .E dRM−1o
P

s− 1ddP

N!

3kRue−tĤuR1l . . . kRM−1ue−tĤuP̂Rl, s6d

whereR represents a set of coordinates ofN particles in two

dimensions;P̂ is the N-particle exchange operator,s−1ddP

denotes the sign of the permutation for Fermi particles(elec-

trons and holes); rsR ,R8 ;td=kRue−tĤuR8l is the coordinate
representation of theN-particle density matrix at the new
inverse temperaturet. For the N-particle high-temperature
density matrix,rsR ,R8 ;td, we use the pair approximation
which is valid fortø1/s3 Ha

*d:

rsR,R8;td < p
i

N

rf1gsr i,r i ;tdp
j,k

rf2gsr j,r k,r j8,r k8;td
rf1gsr i,r i8;tdrf1gsr k,r k8;td

+ Osrf3gd, s7d

where i , j are particle indices andrf1gsrf2gd is the one(two)-
particle density matrix. The one-particle density matrix,rf1g,
is the known free-particle kinetic energy density matrix. The
pair density matrixrf2g was obtained from a direct numerical
solution of the two-particle Bloch equation for which we
used the matrix squaring technique.27,28

As one can see from Eq.(6), the needed diagonal matrix
elements of the low-temperature density operator are ex-
pressed in terms of all diagonal and off-diagonal matrix ele-
ments of the corresponding high-temperature density opera-
tor which can be effectively computed using path integral
Monte Carlo simulations, see Ref. 24 and references therein.
Obviously, for these simulations to be efficient, it is crucial
that the off-diagonal density matrix,rf2g, can be quickly
evaluated for any given initialsr i , r jd and final sr i8 ,r j8d ra-
dius vectors of the particle positions. For this reason, before
doing the PIMC simulations, we calculated in advance tables
of the pair density matrices(DM) for each type of interaction
in our system. In our electron-hole system in a QW with the
localization potential, we needed to calculate:(i) three tables
of pair density matrices corresponding to electron–electron,
hole–hole, and electron-hole interactions given by the two-
particle Bloch equation with the smoothened effective 2D
Coulomb potential, see Eq.(4), and (ii ) two tables with the
density matrix of a single particle(electron or hole) in a 2D
cylinder of finite height(for particles localized at the inter-
face defect). The contributions of all these interactions(cor-
relations) can be treated as additive, once the used high-
temperature pair density matrices correspond to sufficiently
high temperature(such that commutators of pairs of energy
contributions are negligibly small). Finally, using the pair
DM tables, we are able to calculate the many-body density
matrix, Eq.(7), for any set of initialR and finalR8 positions
of all particles. We substitute this expression into Eq.(6) and
perform the high dimensional integration using a multilevel
(bisection) Metropolis algorithm(see, e.g., Ref. 28).

In the present calculations we used tables of the pair den-
sity matrices at a temperature three times the effective
electron-hole Hartree, i.e., 1 /t=3Ha

* =403 K. By choosing in
Eq. (6) the number of factors equal toM =270, the full den-
sity matrix,rsR ,R ;bd and all thermodynamic quantities can
be accurately evaluated at a temperatureT=1.49 K. All re-
sults shown below correspond to this temperature value.

Before considering in detail the effect of quantum well-
width fluctuations on the binding energies of excitonic com-
plexes, we recall the main results obtained forideal QWs
with finite width L.24 Quasi-two-dimensional systems like
GaAs QWs have been extensively investigated in the last
years, both experimentally1,2,4–10 and theoretically.12–16

These studies revealed that, due to the confinement, the 2D
excitonic states have binding energies which are several
times larger than the binding energies in the bulk materials.
This effect is mainly due to the confinement of the carrier
wave functions along the structure growth direction, which
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leads to a two-dimensional character of excitons and, conse-
quently, to a change in the in-plane interaction potential be-
tween the carriers. In the framework of theadiabatic ap-
proximationthese changes can be easily seen in the effective
in-plane potentialVeff

xy, Eq. (4), which depends on the quan-
tum well-widthL as a result of the integration in Eq.(4) over
the free electron and hole density matrices which reflect the
probability distributions of an electron and hole in the square
well potential of given widthL. In Fig. 2, we present the
electron and hole densities in the square well with a width
varying between 10 and 160 Å. The results on the left-hand
side of Fig. 2 confirm that, due to the smaller mass, the
electron is less localized than the hole and, forLø20 Å,
most of the electron density resides in the barrier material.

The effective in-plane potentialVeff
xy is shown on the right-

hand side of Fig. 2. Notice that it depends onL in a non-
monotonic way reaching a maximum(absolute) value around
L<40 Å. Such an increase with decreasingL (for not too
small values ofL) is also found experimentally and theoreti-
cally and is due to an increase in the interparticle correlations
and results in the main contribution to the increase of the
binding energies in ideal quantum wells at intermediate QW
widths.

IV. BINDING ENERGIES

In this section we investigate the combined influence of
the finite QW width and of the interface defects(defect width
and height) on the ground state of the exciton and excitonic
complexes. In particular, we analyze the modification of the
binding energies and of the average interparticle distances in
the ground state of excitonssXd, positive and negative trions
sX±d, and biexcitonssX2d.

A. Binding energies and average size of excitonic complexes

For an ideal QW, i.e., without interface defects, we define
the binding energy of the exciton, charged exciton and biex-
citon as:

EBsXd = Ee + Eh − EsXd,

EBsX±d = EsXd + Ehsed − EsX±d,

EBsX2d = 2EsXd − EsX2d, s8d

whereEeshd is the energy of a single electron(hole) in the
given quantum well with a free particle mean kinetic(ther-
mal) energykBT, andEsAd is the total energy of the excitonic
complexA. If an interface defect is present and a localization
potential is included in our calculations, then the above defi-
nitions must be modified. All energies must be replaced by
the corresponding energies of particles localized in the defect
potential. The corresponding generalized expressions will be
given in Sec. IV B.

Using a finite temperature approach such as PIMC, one
calculates states in thermal equilibrium. Moreover, when the
temperature is not sufficiently low and comparable with the
depth of the trapping potential, theequilibrium statereached
in a sufficiently long simulation will correspond to nonlocal-
ized states rather than localized ones. To correctly obtain the
total and binding energies of localized excitonic complexes,
the results were computed not by averaging over all states,
but by restricting the average to the states localized in the
trapping potential.

FIG. 2. Left: electronreszd and holerhszd
density matrix in the QW(dotted lines indicate
QW walls). Right: QW width dependence of the
effective electron–electron(ee) and electron–hole
(eh) potentials, see Eq.(4).
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We now discuss the results for the binding energies and
average interparticle distance in the ground state of various
excitonic complexes as a function of the depth and width of
the interface defects. In Fig. 3(a) we plot the binding ener-
gies versus the diameter of the trapping potential,D, for the
case of a 1 monolayers1 MLd surface defect. The corre-
sponding relative gain in the binding energies due to the
interface defect is shown in Fig. 3(b). As an example, we
took a QW width ofL=60 Å and a 1 ML QW width fluc-
tuation which corresponds to the following heights of the
electron and hole localization potentials,uVe

locu=3.43 meV
and uVh

locu=1.28 meV, respectively. From Fig. 3 one can no-
tice that for all excitonic complexes the binding energy is
always larger when a defect is present than in the ideal case.
In particular, it increases with the diameterD of the trapping
potential up to some maximum after which it slowly de-
creases. However, for very largeD the system approaches
very slowly the ideal QW result, but 1 ML wider than the
original one.

Notice that the position of the maximum is different for
the different excitonic complexes. This is readily explained
by the different lateral size of different bound states which is
determined by the lateral extension of the electron and hole
wave functions in the trap and by their relative distance. The
electrons are more sensitive to the defect because the trap-
ping potential has a larger effect on their localization(the
holes are substantially localized even in the absence of the
defect). Furthermore, we observe that the lateral confinement
has a very different effect on the magnitude of the exciton,
trion, and biexciton binding energies[see Fig. 3(b)]. In par-
ticular, the exciton binding energy is only relatively weakly
affected by the localization, i.e., a very small peak in the
relative binding energy gain of less than 20% occurs. In con-
trast, the binding energy of the negatively charged exciton
increases by more than 100%, from 1.4 to 3 meV for the
localization potential of diameterD<300 Å.

Figure 4 shows the average in-plane interparticle distance,
ri j , versus the diameter of the localization trap for the exci-
ton, trions, and biexciton. For a 2D system this results, after
using the adiabatic approximation, in the following expres-
sion:

ri j =E
0

`

r ij gsr ijddrijYE
0

`

gsr ijddrij , s9d

wheregsr ijd is the pair distribution function of the particlesi
and j .

By comparing the electron-hole distances in various com-
plexes, see Fig. 4(b), it can be seen that the electron-hole
distance in the exciton, i.e., the size of the exciton, is about
1.2–1.4 times smaller than the electron-hole separation in
the charged excitons and about 3 times smaller than the av-
erage electron–electron(hole–hole) distances, Fig. 4(a). This
explains our previous finding, see Fig. 3(b), that the exciton
state is much less influenced by the lateral confinement than
the X−. In the exciton, where the electron and hole are
coupled much stronger, the interparticle distance changes
only slightly with the diameterD and the effect on their
binding energy is weak. Notice also that the peak in the gain
of the binding energy quite closely follows the minima of the
electron-hole interparticle distances. This result agrees well
with the experimental findings(discussed below) that in the
case of localized particles the binding energy of theX− ex-
ceeds that of theX+.

Furthermore, it is interesting to note that the biexciton
appears to beless extendedthan the trions, thus explaining
the fact that trions have a lower binding energy than the
biexciton, see Fig. 3(a). This is consistent with the experi-
mental observations, which will be discussed in detail in Sec.
V. At the same time, the biexciton is more affected by the
interface defect than the positive trion, see Fig. 3(b). This
suggests that the number of electrons in the excitonic com-
plexes plays a much more important role in the interaction
with the interface defect than the number of holes. In fact,
both theX− and X2, which contain two electrons, are more
influenced by the localization than theX andX+. The reason
is that the localization potential has a stronger impact on the
confinement of electrons than on holes, as noted above.

Next, we compare the negative and the positive trion. For
small localization islands,Dø150 Å, the average distances
between electrons inX− and holes inX+ are very similar and,
consequently, the relative gain in the binding energies of the
two trions is close as well, see Fig. 3(b). In contrast, for wide
localization islands, i.e.,Dù200 Å, the behavior of the two
trions differs significantly, e.g., the binding energies and the
interparticle distances between the respective pair of equally

FIG. 3. (a) Binding energies of various excitonic complexes vs
the diameter of the 1 ML quantum well width fluctuation for a QW
width of L=60 Å and temperature,T=1.5 K; (b) the same as(a) but
now for the relative increase of the binding energy.

FIG. 4. Average distance between the constituents of the differ-
ent excitonic complexes as a function ofD for (a) equally charged
and (b) oppositely charged particles.
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charged particles deviate from each other, see Figs. 3 and 4.
The reason is a different influence of the QW potential on the
electron and hole wave functions in theX− andX+ states. In
a quantum well the electrons are substantially extended into
the barrier material(i.e., in the z direction), whereas the
holes are much more confined, see Fig. 2(a). This leads to a
significantly larger overlap of the two electrons in theX−

state compared to the two holes in theX+ and to a weaker
in-plane effective electron–electron interaction potential, Eq.
(4). As a result, in Fig. 4(a) at D=0 we can see that the
electron–electron distances,ree, are slightly smaller than
those of the holes,rhh. Though the average distances in the
X− and X+ states are very similar, if one compares fluctua-
tions of the average distances,dr=Îkr2l−krl2, they will be
much larger for the electrons in the negative trionX−. This
can be seen directly from the behavior of the pair distribution
functions [see in Figs. 7(a) and 7(b)]. When the trions are
localized by the additional lateral confinement these fluctua-
tions are quenched and the distance between particles of the
same charge is decreased, e.g., for 0øDø300 Å. This must
have a stronger effect on the electrons than on the holes. The
stronger repulsive interaction between the holes in theX+

state reduces to a larger extent the gain in the binding energy
as compared to theX− state, where the electron interaction is
weaker and particles can be brought to smaller distances.
This accounts for the increase of theX− binding energy up to,
and even beyond, theX+ binding energy for largeD.

B. Origin of the enhanced binding energies

It turns out that the differences in the trion binding ener-
gies are not caused solely by their different spatial exten-
sions, see Fig. 4. In fact, the difference between the average
interparticle distances in the two trions is not sufficiently
large to account for the gain of the binding energy for theX−

and theX+, see Fig. 3(b). The explanation must be found in
the fact that the gain in the binding energy, as a function of
the size of the localization island, does not come only from
the changes in the Coulomb interaction related to the inter-
particle distances, but also from changes(and differences) of
the electron and hole localization energies, and the kinetic
energy of the particles.

In the presence of the localization potential each electron
and hole acquires an additional(single particle) potential
energy–-the localization energyEloc

eshd. This single particle en-
ergy can be directly computed by averaging the localization
potential over the radial electron(hole) distribution:

Eloc
eshdsDd =E dreshd gRsreshddVD

locsreshddYE dreshd gRsreshdd.

s10d

Similarly, each bound excitonic complex is affected by the
localization potential where each electron and hole contrib-
utes additionally to the total localization energy:

ElocsXd = Eloc
e sXd + Eloc

h sXd, s11d

whereEloc
eshdsXd for the exciton is computed in an analogous

way as was done for the single particles in Eq.(10), but with

the appropriate radial electron(hole) distribution inside the
localized exciton. Furthermore, Eq.(10) can be straightfor-
wardly generalized to the trions and biexciton cases.

Obviously, the localization energy modifies the total en-
ergy of all particles,

EsXd = EsX,D = 0d → EsX,Dd; EsX±d → EsX±,Dd;

EsX2d → EsX2,Dd, s12d

where for all bound statessX,X± ,X2d the total energy can
now be written as

EsDd = Es0d + dECoulsDd + dEkinsDd + ElocsDd. s13d

Here, dECoulsDd and dEkinsDd denote, respectively, the
change of the Coulomb and kinetic energy due to the pres-
ence of the defect of diameterD. From Eqs.(8) and(13) we
can now derive the definition of the binding energy of an
exciton in the presence of a localization potential:

EBsX,Dd = EBsX,0d + dECoulsX,Dd + dEkinsX,Dd

+ dElocsX,Dd, s14d

where we define the change of the localization energy due to
the excitonic bound state

dElocsX,Dd = dEloc
e sX,Dd + dEloc

h sX,Dd,

dEloc
eshdsX,Dd = Eloc

eshdsDd − Eloc
eshdsX,Dd

=E dreshdfgRsreshdd − gRsreshd,XdgVD
loc. s15d

Similarly, the change of the kinetic and interaction energies
of an electron-hole pair forming an exciton is given by

dEkinsX,Dd = Ekin
e sDd + Ekin

h sDd − EkinsX,Dd

dECoulsX,Dd = − ECoul
eh sX,Dd. s16d

These expressions can be generalized directly to the case of
the trions and biexciton. For example, for the positive trion
the change in the Coulomb interaction is expressed as fol-
lows:

dECoulsX+,Dd = fECoul
eh sXdg − f2ECoul

eh sX+d + ECoul
hh sX+dg.

s17d

In Eqs.(16) and (17) the Coulomb energy,ECoulsDd, is esti-
mated as an average of the effective potential,Veff

xy (Fig. 2),
over the pair distribution functions calculated for each type
of interparticle interaction. For example, for the electron–
hole interaction in the exciton we have:

ECoul
eh sXd =E dr Veh

xysrdgehsr,Xd. s18d

The kinetic energy of the localized single electron(hole),
Ekin

eshd, the localized exciton,EkinsXd, the trion,EkinsX+d, and
the biexciton,EkinsX2d, were computed as the difference be-
tween the total energy and the full potential energy which
includes both Coulomb interaction and localization energy,
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Ekin=E−sECoul+Elocd. This result can be compared with a
more strict thermodynamic estimator of the kinetic energy as
the mass derivative of the partition function,Ekin=sm/bZd
3s]Z/]md. We found that both expressions give very similar
results.

In Fig. 5 we show the contribution of the well-width fluc-
tuation, which we will call the localization energies, to the
single (noninteracting) particles,Eloc

eshd, and interacting elec-
trons (holes) in various excitonic complexes:Eloc

eshdsXd ,
Eloc

eshdsX±d , andEloc
eshdsX2d. This energy was estimated as an av-

erage of the localization potential,VD
loc,xy [Eq. (5)], over the

radial distribution functions calculated separately for elec-
trons and holes, see, e.g., Figs. 7(c) and 7(d). For largeD,
Eloc

eshd should approach the depth of the in-plane localization
potential, i.e.,uVe

locu=3.43 meV anduVh
locu=1.28 meV. As one

can see, the interparticle interaction significantly increases
the localization. Both in the left and right insets of Fig. 5, the
localization energy of a single particle(electron or hole)
shown by the dotted line is much less(in absolute value)
compared to that of theX,X± ,X2 and saturates only forD
ù1200 Å. The explanation is that the attraction between
electrons and holes already leads to significant spatial local-
ization of the particles compared to the free particle thermal
wavelength and, as a consequence, the effective localization
potential felt by each particle(the potential is smoothened
over the particle’s wave functions) is deeper.

An interesting point that we notice in Fig. 5 is that, on
average, the electrons and holes in the biexciton are more
localized than in all other bound states. The only exception is
the localization energy of the hole in the range 200 ÅøD
ø300 Å when a single hole in theX− state tends to be more
localized, see Fig. 5(b). Among all considered bound states
only the biexciton appears to be strongly localized for islands
with a diameter aroundD<100 Å (other excitonic states, in
our simulations at temperatureT<1.5 K, have a much
higher probability to become delocalized due to thermal fluc-
tuations). This is confirmed by the gain in the binding energy
shown in Fig. 3(b), where at the pointD<100 Å only the
biexciton shows a strong increase by 40%, and in Fig. 5 at
D=100 Å only the biexciton shows non-negligible values for
the localization energy,Eloc

e =0.54 meV andEloc
h =0.25 meV,

for the electron and the hole, respectively.

Now, using the values of the localization energies of the
electrons and the holes shown in Fig. 5, one can estimate the
total localization energies of the different excitonic com-
plexes, e.g., the localization energies of the negative trion
and the biexciton can be estimated as follows:

ElocsX−d = 2Eloc
e sX−d + Eloc

h sX−d,

ElocsX2d = 2Eloc
e sX2d + 2Eloc

h sX2d. s19d

These energies include many-body correlation effects in
combination with the specific radial distribution functions
which are different for each bound state, see e.g., Figs. 7(c)
and 7(d).

We now analyze the binding energies which are modified
from their ideal expression, Eq.(8), due to the three local-
ization corrections, cf. Eqs.(14) and (15), namely the con-
tributions due to changes of the Coulomb interaction, kinetic,
and localization energy. Each part can be calculated sepa-
rately and the results are presented in Figs. 6(a) and 6(b).
Solid lines in this figure show changes of the localization
energy,dElocsDd, of the exction, trions, and biexciton as a
function of the diameter of the island,D. Dotted lines show
combined changes in the Coulomb interaction and kinetic
energy minus the binding energy in the same QW without
the interface defect,dEsDd=dECoulsDd+dEkinsDd−EBs0d.
Consequently,

EBsDd = EBs0d + dElocsDd + dEsDd. s20d

In Fig. 6(a) we note that the difference in the localization
energies, shown by the solid curves in Figs. 6(a) and 6(b), is
maximal for the exciton. This is easy to understand because
for the exciton[see Eq.(15)] we subtract from the energies
of the unbound electron and hole(which are less localized)
the localization energy of a more localized bound electron-
hole pair in the exciton state(see Fig. 5). According to Eq.
(20) this gives positive contributions to the binding energy,
e.g., at the pointD=300 Å it is about 2 meV. For the biex-
citon and the negative trion the difference of localization
energies reaches a maximum value of about 1 meV. For the
biexciton the maximum is reached around the defect diam-
eter D<100 Å, for X− aroundD<300 Å, and forX+ at D
<200 Å.

FIG. 5. Localization energy of an electron(a) and hole(b) in the
different excitonic complexes as a function of diameter of the lo-
calization island for a one monolayer fluctuation and QW width of
L=60 Å. Dotted lines are the corresponding localization energies of
a single electron and hole in the same localization potential.

FIG. 6. (a) Localization energy gain,dEloc [Eq. (15)], and en-
ergy gain,dE, of the exciton and biexciton vs diameter of the lo-
calization island.(b) Comparison of the same energies for positive
and negative trions. The same parameters are used as in Fig. 5.
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The dotted lines in Figs. 6(a) and 6(b) are the contribu-
tions due to the defect induced changes of the Coulomb in-
teraction and kinetic energy. In this way the total binding
energy (20) is the sum of the respective solid and dotted
curves in Fig. 6. By comparing each pair of curves forX, X±,
and X2, one can note a general feature valid for all bound
states: atDø300 Å the main contribution to the binding
energy comes from changes of the localization energy, Eq.
(15), but when the defect diameter exceedsD<600 Å the
main effect is due to changes of the kinetic energy and the
interparticle interaction.

It is interesting that for the exciton and biexciton the
quantity DE becomes negative in the range of defect diam-
etersDø300 Å which leads to a reduction of the binding
energy. The reason is thatdE is composed ofdEkin which is
negative and the positive termdECoul. dEkin is negative be-
cause the kinetic energies of bound particles are larger than
those of unbound particles. This is readily understood be-
cause the wave functions of bound particles are more local-
ized (spatially less extended) and thus have a larger curva-
ture, which increases the kinetic energy. It follows also from
the virial theorem that the increase of potential(or interac-
tion) energy leads to an increase of the kinetic energy.

The comparison ofdEloc anddE between the positive and
negative trions in Fig. 6(b) shows that the negative trion is
more affected by the localization forDù100 Å . This has a
direct relation with Fig. 3, where theX− binding energy ex-
ceeds that of theX+ for all Dù150 Å.

The positive trionX+ is a much heavier composite particle
with two holes and one electron compared to theX−, where
there are two electrons and one hole. As a consequence the
X+ is less mobile and, thus, is less affected by the lateral
confinement. This fact can be demonstrated by Figs. 7(a) and
7(b) where we show the radial distribution functionsgRsreshdd
of an exciton, negative/positive trions, and a single electron/
hole in a QW of widthL=60 Å for a defect diameterD
=300 Å; (a) and(b) show the radial density of electrons and
holes, respectively. Notice that at the center of the localiza-
tion confinementsreshd=0d the radial density of electrons in
the X− state is increased by more than a factor of 3 as com-
pared to the radial density of a single electron in the same
localization potential(curve indicated by “e”). At the same
time, comparison of the densities for the holes in theX+ state

and the density of the single hole shows only an increase by
a factor of 1.8. These results are in agreement with our pre-
vious statement that the localization has a larger effect on
electrons than on holes and, consequently, on the composite
particles with a larger number of electrons(in our caseX−

and X2). Figures 7(a) and 7(b) also show that the central
radial density of electrons is highest in theX+ state, whereas
the highest central radial density of holes is observed in the
X−. In both (a) and (b) the electron and hole radial densities
near the localization potential center for the exciton state lies
between the corresponding values for theX+ and X−. This
fact is easily understood from the symmetry of the spatial
configuration of particles in theX, X+, andX− states in the
cylindrical defect potential. For trions, the single hole in the
X− (the single electron in theX+) will most probably occupy
the central position between the two electrons(two holes) to
minimize the correlation energy and thus the total energy.

C. Dependence on the number of monolayer
fluctuations

Now, we allow for well-width fluctuations larger than
1 ML and analyze the dependence of the binding energies
and interparticle distances on the number of monolayers. We
fix the quantum well width toL=40 Å and the diameter of
the defect toD=400 Å. In Fig. 8 we plot the binding energy
of the different excitonic complexes as a function of the
number of monolayersN forming the defect(the curves are
guides to the eye sinceN is a discrete index). Notice that
increasingN leads to a monotonic increase in the binding
energy for all exciton complexes which saturates forN<4.
Notice that the increase of the binding energy of the biexci-
ton and of the negative trion is almost parallel. This is a clear
confirmation of our earlier conclusion that the lateral con-
finement of the electron by the defect has a more pronounced
effect on the binding energy than the hole confinement.
Again we observe that the binding energy of theX− exceeds
that of theX+ in the presence of a localization potential(see
the discussion of Fig. 3). Figure 8 shows that this trend per-
sists in the case of increasing defect depth.

Figure 9 displays the dependence of the mean e–e, h–h,
and e–h distances in the different excitonic states on the
number of monolayers. All distances(i.e., the spatial exten-
sion of all bound states) decrease monotonically withN and
saturate aroundN=4.

FIG. 7. (a), (b) Radial distribution function of electrons(a) and
holes (b) for exciton, positive and negative trions, and the single
electron(hole) as a function of distance,reshd, from the center of the
localization potential. The same parameters are used as in Fig. 5.

FIG. 8. The same as Fig. 3, but now as a function of the number
of monolayers,N, for a fixed QW width ofL=40 Å, temperature
T=1.5 K and diameter of the localization potential,D=400 Å.

FILINOV et al. PHYSICAL REVIEW B 70, 035323(2004)

035323-8



V. COMPARISON WITH EXPERIMENT

Before making a comparison between our theoretical re-
sults and the experimental data it is necessary to point out a
problem that may arise in such a comparison. In particular,
one has to be aware of the fact that for finite temperatures
there exists an experimental uncertainty about the state in
which particles remain after recombination. Namely, par-
ticles produced after recombination will typically have a fi-
nite kinetic energy which may allow them to leave the local-
ization potential. In this case, the energy of the emitted
photon will be reduced by an amount needed to overcome
the height of the localization potential. As a consequence, the
photoluminescence lines of the exciton complexes exhibit an
additional broadening due to the finite kinetic energy of the
remaining particles, thus making the determination of the
binding energy more complicated.

Second, in experiments there may be two types of mea-
surements of excitons and trions: one, when the excitonic
complexes are probed in a single well. These measurements
may favor observation of the most strongly localized exci-
tons and trions(as it was found in Ref. 29), while measure-
ments from a QW ensemble favor higher-lying states nearer
to the continuum. In the latter case the localization effects do
not strongly influence the observed ensemble QW spectra.
As the theory shows, this would affect the binding energy, as
the localization effects are of great importance in narrow
QWs.

A. Exciton binding energy

In Figs. 10(a) and 10(b) we compare the theoretical and
experimental binding energies of the exciton as a function of
the QW width. Solid and dashed curves in these figures show
the binding energy in the QW with defect and in the ideal
QW without interface roughness, respectively. The localiza-
tion potential is considered as due to a well width fluctuation
of one monolayer over a circular area of diameterD
=400 Å in accordance with the experimental findings of Ref.
19. As we can see from Fig. 3 for the QW width around 60 Å
this gives an upper bound to the localization effect on the
binding energies. In order to be consistent we used the same
localization potential when calculating the binding energies
of trions and the biexciton.

When using the isotropic approximation for the hole mass
(me=0.067m0, mh

xy=mh
z=0.34m0), we notice in Fig. 10(a) that

the theoretical results systematically overestimate the bind-
ing energy. For example, forLù100 Å the theory gives
binding energies which are,10% larger than the experimen-
tal results. In order to see the effect of the anisotropy of the
hole band we performed the calculation using an anisotropic
hole mass (mh

xy=0.112m0 in the QW plane andmh
z

=0.377m0 in the QW growth direction26) which brings the
theoretical points significantly closer to the experiment, see
Fig. 10(b). For the QW widthsLø100 Å good agreement is
found when the localization effects are included in our
model. For example, in Ref. 3 for a QW widthL=34 Å a
value 12.4 meV has been measured for a localized exciton.
This agrees quite well with our theoretical prediction of
about 12.3 meV for a comparable QW structuresL=40 Åd.

However, there is still a slight discrepancy between theory
and experiment for QW widths in the range 100øL
ø200 Å. In this range, in our theoretical model, the local-
ization effects are negligible for excitons. ForLù150 Å the
two curves calculated with and without localization practi-
cally coincide. In this case, for the wide QWssLù150 Åd
the theory appears to agree quite well with the experimental
binding energies. This allows us to conclude that for such
quantum well structures the localization does not play a sig-
nificant role for excitons and they are not trapped by the
interface defects.

In Figs. 10(a) and 10(b) we compare our results with
those obtained with the stochastic variational approach,13,14

both for the isotropic and anisotropic hole masses which
gives additional credit to the accuracy of our numerical ap-
proach. Note that the hole mass and the dielectric constant
used in Refs. 13 and 14 sme=0.067m0, mh

xy

=0.099m0, ande=12.1d were slightly different from ours.
This leads to minor discrepancies for the binding energies for
QW widths smaller than 100 Å because the electron and hole
densities in the growth direction are very sensitive to the QW
confinement and to the chosen values of electron/ hole
masses in narrow QWs(see Fig. 2).

The PIMC results(for the anisotropic hole mass and the
1 ML interface defect of diameterD=400 Å) can be com-

FIG. 9. The same as Fig. 4, but now as a function of the number
of monolayers,N. Same parameters are used as in Fig. 8.

FIG. 10. Exciton binding energies for isotropic(a) and aniso-
tropic (b) hole mass vs quantum well width. Solid square symbols
are experimental data of Ref. 10 and circular symbols with a plus
sign are obtained from the stochastic variational calculations(Refs.
13 and 14). Full (dashed) lines with small symbols are PIMC results
when the localization is included(not included).
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pared with those of Refs. 20 and 21, where theexciton bind-
ing energy to the interface defect, EDsXd has been calculated.
This quantity is defined as the difference of the total exciton
energy with and without the defect potential. In particular,
the variational calculations of Ref. 21 for two types of exci-
ton trial wave functions give, for a QW of widthL=35 Å
and D=400 Å, EDsXd=7.4 and 10.4 meV, respectively(the
isotropic electron mass isme

z=me
xy=0.0782m0, the heavy hole

masses are the same as in the present work). The PIMC
calculations for the QW widthL=40 Å give a similar value,
EDsXd=8.16 meV. In the variational calculations of Ref. 20 a
value EDsXd=3.4 meV has been reported for a QW withL
=70 Å. The present calculations giveEDsXd=3.72 meV and
EDsXd=0.84 meV, for a QW widthL=60 Å andL=100 Å,
respectively. This trend definitely shows that the excitons
become less localized with increasing QW width.

In conclusion, the comparison of Figs. 10(a) and 10(b)
shows that taking into account the anisotropy of the hole
mass leads to a decrease of the exciton binding energy com-
pared to the isotropic case. For example, in a 50 Å wide QW
this amounts to about 2 meV, and in a 250 Å wide QW it is
about 1 meV.

B. Binding energy of positive and negative trions

In Figs. 11(a) and 11(b) we present our results for the
binding energy of the trions. We compare our theoretical
results with the available experimental data for negative1 and
positive2 trions, and variational calculations of Ref. 22. First,
we can note that the agreement with the experiments is quite
good for QW widthsLù150 Å. Specifically, the experimen-
tal points for theX+ are close to our theoretical result, see
Fig. 11(a). Unfortunately, for narrow QWssLø150 Åd when
localization effects become important, there are currently no
available experimental data. This would be of high interest as
the two points for theX− reported by Kauret al. and Yanet
al.1 show a more rapid increase of the binding energy with
the QW width than the one predicted by theory when the
localization is not taken into account. On the contrary, cal-
culations with the QW width fluctuations included agree well
with these data.

Furthermore, in Fig. 11(a) we observe a crossing of the
two binding energy curves(X+ andX−) with the localization
included near the pointL=135 Å, and for narrow wells the
binding energy of the negative trion becomes larger. For ex-
ample, in a 40 Å quantum wellEBsX−d<3.4 meV while for
the positive trionEBsX+d<2.6 meV. Preliminary experimen-
tal investigations of theX− and X+ in the presence of
localization29 seem to confirm these findings and give for a
50 Å wide QW EBsX−d=3.27 meV andEBsX+d=2.35 meV.
It is interesting to notice that in an ideal QW the situation is
the opposite and the binding energy of theX+ is always
larger than that of theX−. As was already discussed in Sec.
IV B the reason is that the localization has a stronger influ-
ence on the electrons and, consequently, on the negative
trion.

When the anisotropy of the hole mass is included in our
calculations we found that there is no crossing between the
binding energy of theX+ and theX−. A comparison with the
variational calculations of Dacalet al.22 [see Fig. 11(b)] also
done with the anisotropic hole mass, but slightly different
parametersVesVhd=224.5 meV s149.6 meVd and e=13.2
[compared to oursVesVhd=216 meV s163 meVd and e
=12.58], shows some discrepancy with the present calcula-
tions for X+ binding energy in the narrow QWs. This can be
due to the following reason. Variational calculations strongly
depend on a form of used trial wave functions. In particular,
Eq. (3) in Ref. 22 becomes less accurate in the narrow quan-
tum wells and hence requires a larger set of variational pa-
rameters. This could lead to a better agreement with the
PIMC results.

In Ref. 23 the effect of localization(at the interface defect
with a cylindrical symmetry and a Gaussian shape) on the
trion binding energy was considered for the anisotropic hole
mass with the same parameters as in Ref. 22. It was found
that, with the defect present, theX− binding energy is in-
creased from 0.4 to 0.6 meV in the 150 Å wide QW. How-
ever, these values are much lower than the PIMC results
which show an increase from 0.90 to 1.02 meV. The results
of Ref. 23 are even lower than the valueEBsX−d
=0.75 meV reported in Ref. 22 for the same QW width but
without the localization effect included. In Ref. 23 the num-
ber of basic variational trial wave functions was reduced
compared to Ref. 22 and, as the above comparison shows,
this appears to be not sufficient for a quantitative description
of the trion.

Other theoretical calculations done with an isotropic hole
mass and in the absence of a localization potential shown in
Fig. 11(a) agree quite well with our data for the ideal QW
case. For example, both in Refs. 16 and 30 it was found that
the X+ binding energy is larger by about 20% than theX−

binding energy. This is in agreement with most experimental
results which show that theX+ has a binding energy which is
larger than or close to the one of theX−. However, the the-
oretical results of Ref. 17 for a 300 Å wide QW showed that
EBsX+d is lower thanEBsX−d which is opposite the results of
Refs. 16 and 30, but the latter is in agreement with our re-
sults for the case of the anisotropic hole mass[see Fig.
11(b)]. From the other hand, the anisotropic calculations
show an unsatisfactory agreement between theory and ex-

FIG. 11. Trion binding energies for isotropic(a) and anisotropic
(b) hole mass vs quantum well width. Symbols are experimental
data of Refs. 1 and 2 and theoretical calculations of Ref. 22. Full
(dashed) lines with symbols are PIMC results when localization is
included(not included).
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periment, in particular forL.150 Å where theoretical
curves are about 0.5 meV below the experimental points.
Here, the localization effects(in the framework of our
model) are not important and cannot be the reason for this
disagreement.

C. Binding energy of biexciton and the Haynes factor

Now we consider the biexciton binding energy. Solid
(dashed) curves in Figs. 12(a) and 12(b) show our theoretical
results in the presence(without) of well-width fluctuations
which we compare with available experiments4–10 (symbols
in figure). In the case of an isotropic hole mass, we found
that with localization taken into account[full line in Fig.
12(a)] the theoretical curve passes through the data of Refs. 5
and 7, but the experimental data of Refs. 4, 6, 8, and 9 agree
with the theory for an ideal QW[see the dashed curve in Fig.
12(a)]. The inclusion of the localization effects brings the
theoretical curve slightly above the experiment, predicting
that in, e.g., a narrow 40 Å wide QW the binding energy of
the biexciton is abouts4.0–4.1d meV. It is interesting that
almost the same experimental result is reported in Ref. 10,
where the value 4.1 meV is found for the 40 Å QW. It
should be stressed however, that our results for the binding
energy, in the presence of a one monolayer well-width fluc-
tuation, are close to an upper limit, since the used defect
diametersD=400 Åd was such that it gave practically the
maximal gain in the biexciton binding energy as due to lo-
calization(see Fig. 3). But this value of the defect diameter,
D=400 Å was found to be a very good estimate of the char-
acteristic defect size in GaAs quantum wells.19

The use of an anisotropic hole mass[see Fig. 12(b)] leads
to a reduction of the biexciton binding energy by almost
s0.4−0.8d meV. As in the case of trions, for wide QWs with
Lù150 Å the anisotropic approximation gives a less satis-
factory agreement with the experimental points. From the
other hand, for the QW widthsLù150 Å we found excellent
agreement with the experiment of Ref. 10 when localization
is included in our calculations[see Fig. 12(b), solid curve].

For an anisotropic hole mass and a defect depth of 1 ML,
we can compare our results with the variational calculations
of Ref. 21. In these calculations, however, a repulsion be-
tween particles of the same charge was not taken into ac-

count, which makes the comparison only qualitative. In Ref.
21 the biexciton binding energy of about 1.6 and 1.3 meV
has been reported for the 30 and 50 Å wide QWs, respec-
tively, and a defect diameter 200 Å. These values of the
binding energies are less than our result, 1.9 meV, for a non-
localized biexciton in a 50 Å wide QW. With the interface
defectsD=400 Åd, the PIMC calculations show an increase
of the binding energy up to 3.6 meV, which is close to the
experimental data. For example, in Ref. 3, a valueEBsX2d
=4.2 meV was attributed to a localized biexciton in a 34 Å
wide QW.

In conclusion, the present comparison of the theory and
the experiment allows us to conclude that the anisotropic
approximation for the hole mass gives better agreement for
narrow QWs(with L,150 Å). On the other hand, for wide
QWs sL.150 Åd our model calculations show that the use
of isotropic approximation shows better agreement. We ex-
pect that the accuracy of the calculations(and of the aniso-
tropic approximation, in particular) can be further improved
by taking into account the mismatch of dielectric constants
and particle masses in the well and barrier materials. This
should lead to a better agreement with the experiment.

In comparing the theory and the experiment, one should
keep in mind that different experimental, results have been
obtained from different quantum wells which have not been
grown under the same conditions and, consequently, their
well-width fluctuations may also be different. Nevertheless,
overall, the present calculations show that even a simple
model of localization can satisfactorily explain the experi-
mental data on the binding energies. We expect that our
theory can make reliable predictions if detailed information
on the quantum well fluctuations in the samples would be
available.

Next, we consider the so-called Haynes factor, which is
the ratio between the biexciton and the exciton binding en-
ergies,n=EBsX2d /EBsXd. We compare our results, see Fig.
13(a), with the experimental data of Ref. 10(solid squares),
where the influence of localization on the binding energies of
the exciton and biexciton was considered. Here, all theoreti-

FIG. 12. The same as in Fig. 11 but now for the biexciton
binding energy. Symbols are experimental data of Refs. 4–10.

FIG. 13. The biexciton to exciton binding energy ratio(Haynes
factor), (a) vs QW width and(b) vs normalized localization poten-
tial. Symbols: experimental data for GaAs/Al0.3Ga0.7As QWs(Ref.
10). Curves with symbols: PIMC results. Solid(dashed) curve is the
exciton binding energy with(without) localization included;(b)
EBsX2d /EBsXd vs localization strengthEloc/EBsX2d. Squares are the
experimental data; Rhombii are PIMC results.
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cal curves are given only for the isotropic hole masssmh
xy

=mh
z=0.34d and, as in previous figures, the solid(dashed)

line is for the case(without) localization included. The ratio
of the exciton and biexciton energies calculated using an
anisotropic hole mass is very similar and is therefore not
shown.

The lines with small filled symbols are obtained by using
the theoretical values of the exciton and biexciton binding
energies [Figs. 10(a) and 12(a)], which are denoted as
EB

locsX2d /EB
locsXd and EBsX2d /EBsXd. In addition, since there

is a discrepancy between the experimental and the theoretical
results in Fig. 10(a) for the exciton binding energy which
affects the Haynes factor, we also calculate the Haynes factor
as the ratio of the theoretical biexciton binding energy to the
exciton energy from the experiment10 [shown in Fig. 10(a)
by the solid squares]. The corresponding results are denoted
in Fig. 13(a) asEB

locsX2d /EexpsXd andEBsX2d /EexpsXd.
First, we note that the Haynes factor is practically inde-

pendent of the QW width forLù150 Å in agreement with
the experiment. However, the value of the constant is differ-
ent in various cases. When localization is included(solid
line) our calculations show a systematic increase of the
Haynes factorn=EBsX2d /EBsXd by up to 17%. For the exci-
ton and biexciton localized on the interface defect the
Haynes factor isn<0.175, while for the ideal QW,n
<0.15. For well widthsLù50 Å, all theoretical and experi-
mental results exhibit a monotonic decrease of the Haynes
factor with increasingL. One can observe that the experi-
mental results are located mainly between the two theoretical
curves corresponding to the localized and not localized biex-
citon. Most of the points lie on the dashed curve with the
open circles,EBsX2d /EexpsXd, suggesting that the experimen-
tally measured binding energies correspond to nonlocalized
biexcitons, but some of the data are substantially above the
dashed curve and agree better with the assumption of pre-
dominantly localized biexcitons. This is the case for well
width Lø80 Å where a strong increase of the Haynes factor
is also found from the theory. For example, our theory gives
a maximum valuen=0.24 without localization andn=0.29
for localized particles.

Notice that the agreement between the experimental and
theoretical results with localization is also confirmed by Fig.
13(b), where the Haynes factor is plotted against the normal-
ized localization potential. We compute the localization en-
ergy Eloc as the difference between the energy of the local-
ized and nonlocalized excitonic complex(in Ref. 10 the
localization energy was defined from the full width at half
maximum of the heavy-hole exciton absorption line). As fol-
lows from our theory, below 150 Å well thickness when the
localization energy becomes of the order of the biexciton
binding energy an enhancement of the Haynes factor is ob-
served. This indicates that localization has a crucial effect on
the Haynes factor and it must be taken into account for a
correct interpretation of the experimental results.

VI. CONCLUSION

In summary, using a path integral Monte Carlo approach,
we made a detailed analysis of different excitonic complexes

in GaAs/AlGaAs quantum wells. We calculated and ana-
lyzed the exciton, trion, and biexciton binding energies, pair
distribution functions and mean interparticle distances in the
excitonic complexes in a wide range of QW widths. Our
method is based on first principles and does not invoke ex-
pansions in eigenfunctions. The approach is general, flexible
and, what is also important, is not limited to certain specific
symmetries of the particle wave function. It allows for a
simultaneous account of QW confinement, localization, and
valence band anisotropy, and thus can give an accurate the-
oretical treatment of many experimental systems. The only
assumption{the adiabatic approximation[Eq. (2)]} appears
to be justified for the present application. Simple estimates
show that its accuracy may be reduced for wide QWs with
Lù250 Å.

Extending our previous analysis,24 we concentrated on the
influence of disorder, i.e., of the effect of QW width fluctua-
tions on the binding energies. The observed increase of the
binding energies in the presence of disorder is in good quan-
titative agreement with the available experimental data. Fur-
thermore, we analyzed the influence of valence band aniso-
tropy (hole mass) and found that, in some cases(in particular
for the exciton and biexciton binding energy) this effect is
important in order to achieve agreement with the experimen-
tal data.

We also analyzed the case of deep interface defects cor-
responding to several monolayers depth and found that this
can give an additional 20% –30% increase of the binding
energy compared to the single monolayer case. This increase
is even more pronounced for the negative trion and the biex-
citon.

The present analysis is the first one in which exciton,
trions and biexciton are treated on an equal footing and in
which the same size and shape of the QW width fluctuation
is invoked for different QW widths. We assumed a 1ML QW
width fluctuation over a circular area of diameterD=400 Å.
No other fitting parameters were introduced. This led to an
overall good agreement of the well-width dependence of the
exciton, trions, and biexciton binding energies. It is expected
that a better fit with experiment is possible if, e.g., we allow
for a noncircular shape of the well-width fluctuation where
the anisotropic localization potential will be related to spe-
cific crystallographic directions.

Our results have two important implications which can be
useful in the interpretation of experimental data. First, com-
paring the measured binding energy with our numerical cal-
culations for different defect sizes allows one to characterize
certain experimental parameters, such as the magnitude of
the disorder in a given sample. Second, one can verify or
predict whether or not the observed excitonic states are lo-
calized or delocalized in a given experimental setup.
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