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We present a first-principle path integral Monte CaRdMC) study of the binding energy of excitons, trions
(positively and negatively charged excitgrand biexcitons bound to single-island interface defects in quasi-
two-dimensional GaAs/AGa,_, As quantum wells. We discuss in detail the dependence of the binding energy
on the size of the well-width fluctuations and on the quantum-well width. The numerical results for the
well-width dependence of the exciton, trions and biexciton binding energy are in good quantitative agreement
with the available experimental data.
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[. INTRODUCTION The standard theoretical approach to calculate binding en-
ergies is to solve the corresponding many-particle
Excitonic atoms and molecules in quantum confinedSchrodinger equation by means of an appropriate basis ex-
semiconductors have been intensively investigated in the lagtansion. This works efficiently in simple geometries but is
decade. These systems show nontrivial Coulomb correlationot easily applicable to our problem with well-width fluctua-
effects leading to interesting optical and transport charactetions. Recently, a different approach was developed which is
istics not seen in bulk materials. A strong increase of thébased on solving the Bloch equation for the many-particle
binding energy of the excitonic complexes was founddensity matrixé* It was demonstrated in Ref. 24 that this
experimentally° with decreasing quantum wel{lQW)  problem can be efficiently solved using path integral Monte
width and increasing magnetic field. Carlo(PIMC) methods without any restrictions on the geom-
In the literature there has been an active discussion aboetry of the confinement potential. No quantum well-width
the influence of localization potentials on the binding energyfluctuation effects were considered in Ref. 24.
of excitons and excitonic complex&sMost of the theoreti- The aim of the present paper is to understand and explain
cal calculation¥1"show a substantially weaker dependencerecent experimental data on the binding energy of the ground
of the binding energies on the QW width than those experistate excitons, trions, and biexcitons in QWs by including
mentally observed?#-1°In particular, it was found experi- localization effects. We consider localization as a conse-
mentally that the binding energy of the charged excitonicquence of the local modulation of the thickness of the quan-
complex is for narrow quantum wells much larger than thetum well of 1-2 monolayer@VL ) which corresponds to the
one estimated theoretically, the difference being typically aexperimental findings of Ref. 19. In agreement with experi-
factor of two for narrow QWs. An explanation for this could mental results, we find that such QW width fluctuations can
be the trapping of the excitorigions, biexcitongby ionized  increase the trion binding energy in GaAs-based quantum
donors in the barriet8 or by some kind of interface defects wells by up to 100% as compared to ideal QWs without
produced by the mixture of well and barrier materials duringinterface roughness.
the QW growth process, i.e., by QW width fluctuations or We also found that for lateral localization diameters ex-
fluctuations in the alloy composition of the barrier, which ceedingD ~150 A the binding energy of the negative trion
were not taken into account in Refs. 12-17. Such effects caoan become larger than that of the positive trion, in contrast
induce an additional weak lateral confinement which leads t@o the case of ideal QWs where the positively charged exci-
the confinement of the particles in all three dimensions liketons are slightly more strongly coupled. The reason is that
in the case of a quantum dot potential. The low-temperaturéhe localization confinement has a different influence on the
photoluminescence of such structures originates from the rdateral wave functions of electrons and holes. Thus the trion
diative recombination of the exciton states localized at sucltomposition(i.e., X* vs X™) becomes crucial to the value of
nonuniformities of the heterostructure potential. In this situ-the binding energy when the localization diameter changes.
ation broadening and splittings of both exciton and trion Our numerical method is an extension of the Path Integral
peaks develops in the PL spectfsSuch lateral confinement approach of Ref. 24. The method does not involve expan-
becomes more important in narrow quantum wells. Theoretsions in terms of basis functions, no symmetry assumptions
ical calculations of exciton, trion, and biexciton states inare madéin this sense it can be considered as first pringjple
such structures is a fairly complex problem because of thend the error can be managed in a controllable ay.
need to take simultaneous account of the Coulomb interac- The paper is organized as follows. In Sec. Il we present
tion and the three-dimensional heterostructure potentialand discuss the Hamiltonian for the exciton, biexciton, and
which is no longer translationally invariant. charged excitons in a quantum well with interface defects.

0163-1829/2004/13)/03532313)/$22.50 70035323-1 ©2004 The American Physical Society



FILINOV et al. PHYSICAL REVIEW B 70, 035323(2004)

We also discuss the approximations used in the present cal- [ 200

culations. In Sec. Il we introduce the basic ideas of the 151 _isofte

numerical method, i.e., Path Integral Monte CaitiMC), E 100l

used to obtain the ground state of the excitonic complexes. In S R W 50_‘\}\

Sec. IV we compare the correlation, localization, and binding 810 I 0 h*e o
energy of the localized excitofiX), biexciton (X,), and 3‘—’ [ 0 50 103 (‘:;’ 200 250
charged excitonéx®) ground state with the ones of the non- 25 e
localized, i.e., free exciton complexes in a quantum well. i oV
Furthermore, we study the dependence ofXhé&*, andX, —e— V[
ground state properties on the defect width and height. In oL b
Sec. V we compare our calculations with the available ex- 0 50 100 150 200 250
perimental data and, finally, present our conclusions in Sec. L(A)

VI.

FIG. 1. Dependence of the height of the localization potential
V'e‘(’ﬁ), Eq. (5), for electrongopen doty and holegqfull dots) on the
Il. THE THEORETICAL MODEL well width L for a well-width fluctuation of 1 ML. Inset: the lowest
energy level in the potential/y,, vs the well width.
We consider a single GaAs quantum well grown between )
two Al,Ga,_, As barriers. The effective mass framework is difference in mass between the electron and the hole, the
used to describe the semiconductor material and the QWeight of the localization potential will also be differeisee

structure. Using the isotropic approximation the Hamiltonian™ig. - For large well widthgL) the localization potential is
for N, electrons and\,, holes reads: given by(f27%/m;) 8/L3. Notice that in Fig. 1 for small the

electron localization has a local maximum which is due to

Nefh [ 42 Nelin he | d ion of the el function i
~ o, o ee the increased penetration of the electron wave function into
H= 21 2miV *+ Ven)(2) + Vet (ri) | + <~ -l the barrier material. For the hole this occurs at much smaller
' = ! L due to its larger mass.
(1) In GaAs, 1(2) monolaye¢s) correspond to a well-width

fluctuation of 5=2.8(5.6) A. These parameters ensure that
fihe exciton(trion, biexciton wave function in the growth
directionz is practically not affected by the defect. It is very

wherem; ande, are the mass and charge of iltie particle,e
is the dielectric constant, which we assume equal for the we

and for the barrierVyy, is the confinement potential associ- X ; )
instructive to see from Fig. 1 that, for narrow QWs, this

. oo
.atec_j with thg presence .Of the QW IS the Iatergl(local— lateral localization potential reaches about 15 meV which is
ization) confinement which is due to the fluctuations of thecomparable to the exciton binding energy and is several
QW width. We take the quantum well growth direction as thegmes |arger than the trion binding energy. This behavior is in
z direction. _ qualitative and quantitative agreement with the monolayer
For a GaAs/AlGa,As quantum well, we consider the gpjiting measured experimental§/in the inset of Fig. 1 we

following heights of the square-well potentialfe=0.57  p|ot the value of the lowest energy level in a QW as a func-
X (1.155%+0.3%°) eV for electrons and/,=0.43X (115X {51 of the QW width. The main figure can be obtained di-

+0.3%?) eV for holes. In our calculations we use an Al con- rectly from the results of the inset through®e=Eq(L + )
centration ofx=0.3. Furthermore, the following material pa- _g (|).

rameters are usede=12.58, me=0.067my, m,=0.34my, We proceed further with the assumption that the QW con-
wherem, is the mass of the free electron. The units forfnement is sufficiently strong and that the Coulomb interac-
energy and distance arHa:2':"_3/:'32/(‘E ag)=11.58 meV,  {ion among the particles in tredirection will not modify the
ag=h’el(m, €°)=99.7 A, respectively. We have also consid- yave functions in the direction, and consequently we may
ered the case of an anisotropic hole mass according to Refse in thez direction the noninteracting electron and hole
26, using for the in-plane hole mass a smaller valuenpf wave functions. In thisdiabatic approximatiorwe neglect
=0.112n, and in the quantum well growth directiom;  the influence of in-plane electron-hole correlations on their
=0.37"n,. Comparing the binding energies calculated withmotion perpendicular to the QW plane. This assumption is
the isotropic and anisotropic approximations gives importanyalid due to the strong quantization in square wells of widths
insight about the relevance of band structure details for tthaB, giving rise to the condition on the energie‘sEé(h)
properties of excitonic complexes in quantum wells.

The actual shape of the interface defects is not known an +
depends on the sample growth conditions. To limit the numguantum well, andE,, EX, EX?, EX are the correlation and
ber of parameters, we simulate the interface defects throudhinding energy of exciton, biexciton, and trions, respectively.
a cylindrically symmetric potential with a lateral radits Our approach to compute the binding energies starts from
and heightv'gfﬁ. The potential height is determined by the the N-particle (N=2,3, and 4 density matrix of the exci-
zero-point energy and was obtained as the difference beenic complex of interesiexciton, trion, and biexciton
tween the lowest energy levels of the electtbole) in two  which is obtained from a solution of the corresponding Bloch
QWs with the widthsL andL+ 6, whered=na with n=1,2  equation, see Ref. 24. In the adiabatic approximation, the full
anda is the thickness of a single monolayer. Because of thé\-particle density matrix factorizes into

gEC,EX,EZ,(Z,EXi, where AEZ, is the level spacing in the
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p(RY% B) = p(Ze, B)p(Z1, B)p(R™, B), 2 N Y rrre
° ) P(R,R';T)*Hp[l](ri,ri;T)H [1]p (,J_ < [Jl] : T),_
whereR¥YAR)={re1,lea, .- Fen,iThasThzs -+ Fhn ) iS @ 3D i jek PP (T 7)
(2D) vector of all particle coordinateZ, is the z coordi- +0(pl3)), (7)

nate of all electrongholes, p(Z.,B) and p(Z,,8) are the
density matrices of free electrons and holes confined irzthe wherei, j are particle indices anpl*)(pl?)) is the onétwo)-
direction by the square well, and=1/kgT is the inverse particle density matrix. The one-particle density matpit!,
temperature. We underline that the density map(R*Y, 8) is the known free-particle kinetic energy density matrix. The
contains all in-plane electron-hole correlations and fully in-pair density matrix!?l was obtained from a direct numerical
cludes the effect of the localization potential. It obeys thesolution of the two-particle Bloch equation for which we
two-dimensionalN-particle Bloch equation which is ob- used the matrix squaring technigt/e?
tained by averaging the three-dimensional Bloch equation As one can see from E@6), the needed diagonal matrix
over z and using Eq(1) and the ansatz in E@2): elements of the low-temperature density operator are ex-
pressed in terms of all diagonal and off-diagonal matrix ele-
9 § 5 Ny o\ ooy Ny ments _of the corresponding high—temperatyre densit.y opera-
ZBP(R B =\ - 2 ﬂvxy’fVeff + Ve | p(RY,B). tor which can be effectively computed using path integral
i=1 ! Monte Carlo simulations, see Ref. 24 and references therein.
(3)  Obviously, for these simulations to be efficient, it is crucial

_ _ _ _ that the off-diagonal density matrixgl?!, can be quickly
Here, we have introduced an effective 2D in-plane interacevaluated for any given initialr;, ri) and fina|(r{,rj') ra-

NeNp 52

tion potentialVg" dius vectors of the particle positions. For this reason, before
doing the PIMC simulations, we calculated in advance tables
& € f the pair density matricg®M) for each type of interaction
VY(B) = ! Z y4 otthe p Y YPE :
eit (B) dee dzhgj dri-r, P(Ze B)P(Zn ) in our system. In our electron-hole system in a QW with the

i localization potential, we needed to calculai¢three tables
of pair density matrices corresponding to electron—electron,
% {f dZ 4z, p(Ze Pp(Znf) | - @ hole—hole, and electron-hole interactions given by the two-
particle Bloch equation with the smoothened effective 2D
and the total localization potential Coulomb potential, see E@4), and(ii) two tables with the
- density matrix of a single particleslectron or holgin a 2D
\Iooy = Eo(L +8) —Eq(L), if V(x*+y?) <D/2; 5) cylinder of finite height(for particles localized at the inter-
b "o, if \(XTVZ) >D/2, face defect The contributions of all these interactiowor-
relationg can be treated as additive, once the used high-
whereEy(L) is the lowest energy level in a QW of widths ~ temperature pair density matrices correspond to sufficiently
(see inset of Fig. 11 high temperaturgésuch that commutators of pairs of energy
contributions are negligibly small Finally, using the pair
DM tables, we are able to calculate the many-body density
matrix, Eq.(7), for any set of initialR and finalR’ positions

We numerically solve the Bloch equatig(8)) using the of all particles. We substitute this expression into &j.and

path integral representation of the density matrix. Using théPerform the high dimensional integration using a multilevel
operator identitye#H=(e"™M, the density matrix at inverse (bisection Metropolis algorithm(see, e.g., Ref. 28

IIl. NUMERICAL SIMULATION APPROACH

temperatured can be expressed in terms M density ma- In the present calculations we used tables of the pair den-
trices, each taken atM times higher temperatund kgT, or sity matrices at a temperature three times the effective
as a path integral withl steps of sizer=1/(MkgT):2® electron-hole Hartree, i.e., ##3H_,=403 K. By choosing in

Eq. (6) the number of factors equal td =270, the full den-

(- )% sity matrix, p(R,R; 8) and all thermodynamic quantities can
be accurately evaluated at a temperaftirel.49 K. All re-
sults shown below correspond to this temperature value.
Before considering in detail the effect of quantum well-
width fluctuations on the binding energies of excitonic com-

whereR represents a set of coordinateshbparticles in two ~ Pl€xes, we recall t£14e main results obtained iideal QWs
. - . s  with finite width L.=* Quasi-two-dimensional systems like
dimensions;P is the N-particle exchange operatof-1)

denotes the si £1h tation for Eermi particis GaAs QWs have been extensively investigated in the last
enotes the sign of the permutation for Fermi particiec- years, both experimentaliy“~1° and theoretically?>~16

trons and holes p(R,R’; 7)=(R|e"™|R’) is the coordinate These studies revealed that, due to the confinement, the 2D
representation of théN-particle density matrix at the new excitonic states have binding energies which are several
inverse temperature. For the N-particle high-temperature times larger than the binding energies in the bulk materials.
density matrix,p(R,R’; 7), we use the pair approximation This effect is mainly due to the confinement of the carrier
which is valid for7<1/(3 H;): wave functions along the structure growth direction, which

X(RIEMIRy) ... (Ry_e ™PR),  (6)
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density matrix in the QWdotted lines indicate
QW walls). Right: QW width dependence of the
effective electron—electrofee) and electron—hole
(eh) potentials, see Eq4).
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leads to a two-dimensional character of excitons and, conse-A. Binding energies and average size of excitonic complexes
quently, to a change in the in-plane interaction potential be-
tween the carriers. In the framework of tlaeliabatic ap-
proximationthese changes can be easily seen in the effectiv
in-plane potentiaV ¢, Eq. (4), which depends on the quan-
tum well-widthL as a result of the integration in E@) over
the free electron and hole density matrices which reflect the
probability distributions of an electron and hole in the square
well potential of given widthL. In Fig. 2, we present the ) _E(yE
electron and hole densities in the square well with a width Ep(X%) = E(X) + By ~ E(XT),
varying between 10 and 160 A. The results on the left-hand
side of Fig. 2 confirm that, due to the smaller mass, the Eg(X,) = 2E(X) — E(X,), (8)
electron is less localized than the hole and, Ifioe20 A,
most of the electron density resides in the barrier material.
The effective in-plane potentidfy; is shown on the right-
hand side of Fig. 2. Notice that it depends lorin a non-
monotonic way reaching a maximugabsolute value around

For an ideal QW, i.e., without interface defects, we define
ghe binding energy of the exciton, charged exciton and biex-
citon as:

Eg(X) = Ee+ B~ E(X),

where Eqy, is the energy of a single electrghole) in the
given quantum well with a free particle mean kinetiber-
mal) energyksT, andE(A) is the total energy of the excitonic
_ . ) } complexA. If an interface defect is present and a localization
Isjmaﬁlo vél.ugg(g;_)a Ir; Qgge?;fn;vgz (::erﬁrrwiﬁgjlquggg?éég?eti- potential is included in our calculations, then the above defi-
b y nitions must be modified. All energies must be replaced by

cally and is due to an increase in the interparticle correlation§he corresponding eneraies of particles localized in the defect
and results in the main contribution to the increase of the P g 9 P

binding energies in ideal quantum wells at intermediate QV\P_otent_iaI. The corresponding generalized expressions will be
widths given in Sec. IV B.

Using a finite temperature approach such as PIMC, one
IV BINDING ENERGIES calculates states in thermal equilibrium. Moreover, when the
temperature is not sufficiently low and comparable with the
In this section we investigate the combined influence ofdepth of the trapping potential, tleguilibrium statereached
the finite QW width and of the interface defe¢tiefect width  in a sufficiently long simulation will correspond to nonlocal-
and height on the ground state of the exciton and excitonicized states rather than localized ones. To correctly obtain the
complexes. In particular, we analyze the modification of thetotal and binding energies of localized excitonic complexes,
binding energies and of the average interparticle distances ithe results were computed not by averaging over all states,
the ground state of excitor{¥X), positive and negative trions but by restricting the average to the states localized in the
(X*), and biexcitongX5). trapping potential.
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FIG. 3. (a) Binding energies of various excitonic complexes vs  FIG. 4. Average distance between the constituents of the differ-
the diameter of the 1 ML quantum well width fluctuation for a QW ent excitonic complexes as a functiondffor (a) equally charged
width of L=60 A and temperaturd,=1.5 K; (b) the same ag) but  and(b) oppositely charged particles.
now for the relative increase of the binding energy.

pij :f Fij g(rij)drij/f g(rij)drj;, (9
We now discuss the results for the binding energies and 0 0

average interparticle distance i.n the ground state of yariou hereg(r;;) is the pair distribution function of the particlés
excitonic complexes as a function of the depth and width ofndi

dj.
the interface defects. In Fig(® we plot the binding ener- nel

. . ) By comparing the electron-hole distances in various com-
gies versus the diameter of the trapping potenBalfor the  iexes see Fig. (8), it can be seen that the electron-hole

case 6 a 1 monolayer(1 ML) surface defect. The corre- gistance in the exciton, i.e., the size of the exciton, is about
sponding relative gain in the binding energies due to the] 21 4 times smaller than the electron-hole separation in
interface defect is shown in Fig(l3. As an example, we the charged excitons and about 3 times smaller than the av-
took a QW width ofL=60 A and a 1 ML QW width fluc-  erage electron—electrghole—holg distances, Fig. @). This
tuation which corresponds to the following heights of theexplains our previous finding, see Figbg that the exciton
electron and hole localization potential®/°=3.43 meV  state is much less influenced by the lateral confinement than
and|V',§’°|:1.28 meV, respectively. From Fig. 3 one can no-the X". In the exciton, where the electron and hole are
tice that for all excitonic complexes the binding energy iscoupled much stronger, the interparticle distance changes
always larger when a defect is present than in the ideal casenly slightly with the diameteD and the effect on their

In particular, it increases with the diame@rof the trapping ~ binding energy is weak. Notice also that the peak in the gain
potential up to some maximum after which it slowly de- Of the binding energy quite closely follows the minima of the
creases. However, for very larg2 the system approaches electron-hole interparticle distances. This result agrees well

very slowly the ideal QW result, but 1 ML wider than the with the experimental finding&iscussed beloythat in the
original one. case of localized particles the binding energy of Xieex-

.
Notice that the position of the maximum is different for CE?:dStLhat of the?t'. int ting t te that the biexcit
the different excitonic complexes. This is readily explaineda 5;;{3185551 éité?](jeéﬁalggthg t?i?)rfs tr?us eex Ilaei)r(1(i:rl1 on
by the different lateral size of different bound states which is PP ; Lo P 9

. . the fact that trions have a lower binding energy than the
determined by the lateral extension of the electron and hol

; . ) ) . iexciton, see Fig. @&). This is consistent with the experi-
wave functions in the trap and by their relative distance. Th(?nental observations, which will be discussed in detail in Sec.

e!ectrons are more sensitive to the defec_:t beca_use_ the trag- At the same time, the biexciton is more affected by the
ping potential has a larger effect on their localizatiohe  jnerface defect than the positive trion, see Figh)3This
holes are substantially localized even in the absence of th§uggests that the number of electrons in the excitonic com-
defecy. Furthermore, we observe that the lateral confinemenﬂexes plays a much more important role in the interaction
has a very different effect on the magnitude of the excitonyith the interface defect than the number of holes. In fact,
trion, and biexciton binding energig¢see Fig. 8)]. In par-  both theX~ and X,, which contain two electrons, are more
ticular, the exciton binding energy is only relatively weakly influenced by the localization than tieand X*. The reason
affected by the localization, i.e., a very small peak in theis that the localization potential has a stronger impact on the
relative binding energy gain of less than 20% occurs. In coneonfinement of electrons than on holes, as noted above.
trast, the binding energy of the negatively charged exciton Next, we compare the negative and the positive trion. For
increases by more than 100%, from 1.4 to 3 meV for thesmall localization islands) <150 A, the average distances
localization potential of diametdd~ 300 A. between electrons iK™ and holes inX* are very similar and,
Figure 4 shows the average in-plane interparticle distancesonsequently, the relative gain in the binding energies of the
pij, versus the diameter of the localization trap for the excitwo trions is close as well, see Fig3. In contrast, for wide
ton, trions, and biexciton. For a 2D system this results, aftefocalization islands, i.eD =200 A, the behavior of the two
using the adiabatic approximation, in the following expres-trions differs significantly, e.g., the binding energies and the
sion: interparticle distances between the respective pair of equally
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charged particles deviate from each other, see Figs. 3 and the appropriate radial electrghole) distribution inside the
The reason is a different influence of the QW potential on thdocalized exciton. Furthermore, E¢LO) can be straightfor-
electron and hole wave functions in thé and X* states. In  wardly generalized to the trions and biexciton cases.

a quantum well the electrons are substantially extended into Obviously, the localization energy modifies the total en-
the barrier materiali.e., in the z direction, whereas the ergy of all particles,

holes are much more confined, see Fi@) 2This leads to a . .
significantly larger overlap of the two electrons in the E(X) =E(X,D=0) - E(X,D); EX*) —EXX,D);
state compared to the two holes in tké and to a weaker

in-plane effective electron—electron interaction potential, Eq. E(Xy) — E(X3,D), (12)
(4). As a result, in Fig. &a) at D=0 we can see that the
electron—electron distancep,, are slightly smaller than
those of the holesyy,,. Though the average distances in the
X~ and X* states are very similar, ifzone c;)mpares fluctua- E(D) = E(0) + SE¢oy(D) + 0Ejn(D) + Eoe(D).  (13)
tions of the average distance$h=/(p)—(p)*, they will be Here, SE.o (D) and 6E, (D) denote, respectively, the

much larger for the electrons in the negative trdén This L
can be seen directly from the behavior of the pair distributionChange of the Coulomb and kinetic energy due to the pres-

functions [see in Figs. @) and Tb)]. When the trions are ence of the defect of diametBr. From Eqs(8) and(13) we

localized by the additional lateral confinement these fluctuagan.tnow oiﬁnve the defmfmo? Ofl.th&:[.b'nd"lg ?_n?rgy of an
tions are quenched and the distance between patrticles of gfgcrton in the presence of a localization potential:

where for all bound state€X,X*,X,) the total energy can
now be written as

same charge is decreased, e.g., fer=<300 A. This must Eg(X,D) = Eg(X,0) + SEcoy(X, D) + 8E,in(X, D)
have a stronger effect on the electrons than on the holes. The
stronger repulsive interaction between the holes in Xhe + 6Eoe(X,D), (14)

state reduces to a larger extent the gain in the binding energyhere we define the change of the localization energy due to
as compared to th¥™ state, where the electron interaction is ne excitonic bound state

weaker and particles can be brought to smaller distances. .
This accounts for the increase of the binding energy up to, OB 0e(X,D) = SER(X,D) + SER(X,D),
and even beyond, th¥" binding energy for larg®.
SEEN(X,D) = EEN(D) - EEM(X,D)
B. Origin of the enhanced binding energies

It turns out that the differences in the trion binding ener-
gies are not caused solely by their different spatial exten- = o ] ) )
sions, see Fig. 4. In fact, the difference between the averageMilarly, the change of the kinetic and interaction energies
interparticle distances in the two trions is not sufficiently Of @n electron-hole pair forming an exciton is given by
large to a+ccount f_or the gain of the bm_dmg energy forlhe_ SEn(X,D) = EE, (D) + EEin(D) —E.(X,D)
and theX", see Fig. 8). The explanation must be found in
the fact that the gain in the binding energy, as a function of _ _eh
the size of the localization island, does not come only from OEcou(X,D) = = Ecou(X,D). (16)
the changes in the Coulomb interaction related to the interThese expressions can be generalized directly to the case of
particle distances, but also from changasd differencegof  the trions and biexciton. For example, for the positive trion
the electron and hole localization energies, and the kinetighe change in the Coulomb interaction is expressed as fol-

=fdfe(h)[gR(fe(h))‘QR(fem),X)]VISC- (15

energy of the particles. lows:

In the presence of the localization potential each electron . oh oh s -
and hole acquires an addition@ingle particle potential SEcou(X",D) = [Eou(X)] = [2EEou(XY) + Ecou(XH)].
energy—the localization energ‘;ﬁfz). This single particle en- (17

ergy can be directly computed by averaging the localizatio

potential over the radial electraiole) distribution: I Egs.(16) and(17) the Coulomb energyzco,(D), is esti-

mated as an average of the effective potentg} (Fig. 2),
eh) R oc R over the pair distribution functions calculated for each type
Eioc (D) = | dregn) 9" (ren)) Vo (Fern) dren) 9 (Fen)- of interparticle interaction. For example, for the electron—
(10 hole interaction in the exciton we have:

Similarly, each bound excitonic complex is affected by the ESN (X) =f dr V() den(r, X). (18
localization potential where each electron and hole contrib-
utes additionally to the total localization energy: The kinetic energy of the localized single electr¢ole),
h . . .
Epoe(X) = E2 (X) + EL (X), (11) Eﬁgn), 'the 'Iocallzed excitonk,(X), the trlon,Ekin.(X"), and
o) the biexciton,E;,(X,), were computed as the difference be-
whereE, '(X) for the exciton is computed in an analogous tween the total energy and the full potential energy which
way as was done for the single particles in Eif)), but with  includes both Coulomb interaction and localization energy,
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FIG. 5. Localization energy of an electréa and hole(b) in the FIG. 6. (a) Localization energy gaingE. [Eq. (15)], and en-

dlflfgretnt e.X(I:'tOQI? complexes asl a fur;lctltt)n ?,f dlamdete\rNof tgteh lo}:ergy gain,SE, of the exciton and biexciton vs diameter of the lo-
calization island for a one monolayer fluctuation and QW width o alization island(b) Comparison of the same energies for positive

L:§0 A. Dotted lines are th_e corresponding I_oca_llzatlon energies ognd negative trions. The same parameters are used as in Fig. 5.
a single electron and hole in the same localization potential.

Exin=E - (Ecou*Eiod). This result can be compared with a Now, using the values of the localization energies of the
n ou oc/* . . .

; . - - lectrons and the holes shown in Fig. 5, one can estimate the
more strict the_rm(_)dynamlc estimator of th_e kinetic energy a?eotal localization energies of the o?ifferent excitonic com-
the mass derivative of the partition functioBy,=(m/BZ) 9

X (dZl dm). We found that both expressions give very similarplexes’ €.9., Fhe Iocal|zat|on. energies of the .negat|ve trion
and the biexciton can be estimated as follows:

results.
In Fig. 5 we show the contribution of the well-width fluc- Ejoc(X7) = 2E[, (X)) + EEJC(X—),
tuation, which we will call the localization energies, to the
single (noninteracting particles,Eﬁf?, and interacting elec- Epoo(Xo) = 2EE (X2)+2Elh (X,) (19)
ocC ocC oc b

trons (holeg in various excitonic complexesEféQ)(X),

Eﬁ?(xi), andEf(fE)(Xz). This energy was estimated as an av- These energies include many-body correlation effects in

erage of the localization potentiallS® [Eq. (5)], over the combination with the specific radial distribution functions

radial distribution functions calculated separately for elecWhich are different for each bound state, see e.g., Fi@s. 7
trons and holes, see, e.g., Figgc)7and 7d). For largeD,  and €d). o _ . »
ES" should approach the depth of the in-plane localization V& Now analyze the binding energies which are modified
potential, i.e.Jvle()C|:3.43 meV andV{?°|:1.28 meV. As one from their |dea_1I expression, E@8), due to the three local-
can see, the interparticle interaction significantly increaselZation corrections, cf. Eqg14) and(15), namely the con-
the localization. Both in the left and right insets of Fig. 5, the [fiPutions due to changes of the Coulomb interaction, kinetic,
localization energy of a single partickelectron or holp ~ @nd localization energy. Each part can be calculated sepa-
shown by the dotted line is much lesis absolute valup 'ately and the results are presented in Figs) @nd Gb).
compared to that of th&,X*,X, and saturates only fab Solid lines in this figure shpw ch'anges of the challzatlon
=1200 A. The explanation is that the attraction betweerf"€r9Y; 9Eic(D), of the exction, trions, and biexciton as a
electrons and holes already leads to significant spatial locafunction of the diameter of the islan®, Dotted lines show
ization of the particles compared to the free particle thermaf®mPined changes in the Coulomb interaction and kinetic
wavelength and, as a consequence, the effective localizatidi'€"dy minus the binding energy in the same QW without
potential felt by each particléhe potential is smoothened the interface defect,6E(D)=5Ecou(D) + 6Eyin(D) ~Eg(0).
over the particle’s wave functionss deeper. Consequently,

An interesting point that we notice in Fig. 5 is that, on _
average, the electrons and holes in the biexciton are more Ee(D) = E5(0) + OBoc(D) + SE(D). (20)
localized than in all other bound states. The only exception is In Fig. 6@ we note that the difference in the localization
the localization energy of the hole in the range 20& B energies, shown by the solid curves in Fig&) &nd &b), is
<300 A when a single hole in thé™ state tends to be more maximal for the exciton. This is easy to understand because
localized, see Fig.(®). Among all considered bound states for the exciton[see Eq(15)] we subtract from the energies
only the biexciton appears to be strongly localized for islandof the unbound electron and haolehich are less localized
with a diameter aroun® =~ 100 A (other excitonic states, in the localization energy of a more localized bound electron-
our simulations at temperaturé~1.5 K, have a much hole pair in the exciton statesee Fig. $ According to Eq.
higher probability to become delocalized due to thermal fluc{20) this gives positive contributions to the binding energy,
tuationg. This is confirmed by the gain in the binding energy e.g., at the poinD=300 A it is about 2 meV. For the biex-
shown in Fig. 8b), where at the poinD~100 A only the citon and the negative trion the difference of localization
biexciton shows a strong increase by 40%, and in Fig. 5 aénergies reaches a maximum value of about 1 meV. For the
D=100 A only the biexciton shows non-negligible values for biexciton the maximum is reached around the defect diam-
the localization energyS .=0.54 meV ancEll.=0.25 meV, eterD~100 A, for X~ aroundD~300 A, and forx* at D

loc
for the electron and the hole, respectively. ~200 A.
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FIG. 7. (a), (b) Radial distribution function of electror(®) and FIG. 8. The same as Fig. 3, but now as a function of the number

holes (b) for exciton, positive and negative trions, and the singleof monolayersN, for a fixed QW width ofL=40 A, temperature
electron(hole) as a function of distance,, from the center of the  T=1.5 K and diameter of the localization potentiglz=400 A.
localization potential. The same parameters are used as in Fig. 5.

) o _ and the density of the single hole shows only an increase by

_ The dotted lines in Figs.(6) and &b) are the contribu- 3 factor of 1.8. These results are in agreement with our pre-
tions due to the defect induced changes of the Coulomb ingjoys statement that the localization has a larger effect on
teraction and kinetic energy. In this way the total bindingelectrons than on holes and, consequently, on the composite
energy (20) is the sum of the respective solid and dottedparticles with a larger number of electroia our caseX
curves in Fig. 6. By comparing each pair of curvesXoX*,  and X,). Figures 7a) and 7b) also show that the central
and X, one can note a general feature valid for all boundradial density of electrons is highest in tké state, whereas
states: atD<300 A the main contribution to the binding the highest central radial density of holes is observed in the
energy comes from changes of the localization energy, Eqx- |n both (a) and(b) the electron and hole radial densities
(15), but when the defect diameter exceddls-600 A the near the localization potential center for the exciton state lies
main effect is due to changes of the kinetic energy and th@etween the corresponding values for ti and X~. This
interparticle interaction. fact is easily understood from the symmetry of the spatial

It is interesting that for the exciton and biexciton the configuration of particles in th&, X*, and X~ states in the
quantity AE becomes negative in the range of defect diam-cyjindrical defect potential. For trions, the single hole in the
etersD=<300 A WhIC'h Ieadg to a reduction of the.bm.dmg X~ (the single electron in thi*) will most probably occupy
energy. The reason is thaE is composed 0bEj, Which is  the central position between the two electrgieo holes to

negative and the positive terdEc,,. 6Eyin iS Negative be-  minimize the correlation energy and thus the total energy.
cause the kinetic energies of bound particles are larger than

those of unbound particles. This is readily understood be- C. Dependence on the number of monolayer
cause the wave functions of bound particles are more local- fluctuations
ized (spatially less extendgdnd thus have a larger curva-  Now, we allow for well-width fluctuations larger than
ture, which increases the kinetic energy. It follows also fromy ML and analyze the dependence of the binding energies
the virial theorem that the increase of potentiai interac-  and interparticle distances on the number of monolayers. We
tion) energy leads to an increase of the kinetic energy. fix the quantum well width td_=40 A and the diameter of
The comparison 0bE,,. and 5E between the positive and the defect tdd=400 A. In Fig. 8 we plot the binding energy
negative trions in Fig. @) shows that the negative trion is of the different excitonic complexes as a function of the
more affected by the localization f@=100 A . This has @ number of monolayersl forming the defectthe curves are
direct relation with Fig. 3, where th¥™ binding energy ex- guides to the eye sincH is a discrete index Notice that
ceeds that of th&" for all D=150 A. increasingN leads to a monotonic increase in the binding
_The positive trionX" is a much heavier composite particle energy for all exciton complexes which saturates No 4.
with two holes and one electron compared to ¥iewhere  Npotice that the increase of the binding energy of the biexci-
there are two electrons and one hole. As a consequence thgh and of the negative trion is almost parallel. This is a clear
X" is less mobile and, thus, is less affected by the lateragonfirmation of our earlier conclusion that the lateral con-
confinement. This fact can be demonstrated by Figg.ahd  finement of the electron by the defect has a more pronounced
7(b) where we show the radial distribution functiogren)  effect on the binding energy than the hole confinement.
of an exciton, negative/positive trions, and a single electronAgain we observe that the binding energy of Kieexceeds
hole in a QW of widthL=60 A for a defect diameteD  that of theX* in the presence of a localization potentiste
=300 A; (a) and(b) show the radial density of electrons and the discussion of Fig.)3 Figure 8 shows that this trend per-
holes, respectively. Notice that at the center of the localizasists in the case of increasing defect depth.
tion confinemeni(ryy =0) the radial density of electrons in Figure 9 displays the dependence of the mean e—e, h-h,
the X~ state is increased by more than a factor of 3 as comand e-h distances in the different excitonic states on the
pared to the radial density of a single electron in the sama@aumber of monolayers. All distancése., the spatial exten-
localization potentialcurve indicated by “gj. At the same sion of all bound statgslecrease monotonically with and
time, comparison of the densities for the holes inXestate  saturate arountl=4.
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FIG. 10. Exciton binding energies for isotropia) and aniso-
V. COMPARISON WITH EXPERIMENT tropic (b) hole mass vs quantum well width. Solid square symbols
are experimental data of Ref. 10 and circular symbols with a plus

Before making a comparison between our theoretical reéign are obtained from the stochastic variational calculatiRess.

sults and the experimental data it is necessary to point out 3 and 14. Full (dashedgllines with small symbols are PIMC results

problem that may arise in such a comparison. In particular, . the localization is includeghot included.
one has to be aware of the fact that for finite temperatures

there exists an experimental uncertainty about the state itr}] th tical It i ticall timate the bind
which particles remain after recombination. Namely, par-, € theoretical results systematically overestimate tne bind-
ing energy. For example, foL=100 A the theory gives

ticles produced after recombination will typically have a fi- bindi . hich 10% | than th )
nite kinetic energy which may allow them to leave the local- Inding energies which are 1U% 1arger than the experimen-
al results. In order to see the effect of the anisotropy of the

ization potential. In this case, the energy of the emitte . . . )
photon will be reduced by an amount needed to overcom ole band we performed the calculation using an anisotropic
ole mass (mY=0.112n, in the QW plane andny

the height of the localization potential. As a consequence, th A . . . .
9 zation p ! au =0.377M, in the QW growth directioff) which brings the

photoluminescence lines of the exciton complexes exhibit anh ical Do anifi v cl h .
additional broadening due to the finite kinetic energy of thelh€oretical points signiticantly closer to the experiment, see

remaining particles, thus making the determination of the 19- 10b). For the QW yvidt_hsL£1OO A gooc_i agreement s
binding energy more complicated. found when the localization effects are included in our
Second, in experiments there may be two types of mea'0d€l. For example, in Ref. 3 for a QW widit=34 Aa

alue 12.4 meV has been measured for a localized exciton.

surements of excitons and trions: one, when the excitoni is agrees quite well with our theoretical prediction of
complexes are probed in a single well. These measuremen %
P P g out 12.3 meV for a comparable QW struct(ire=40 A).

may favor observation of the most strongly localized exci-2 S o _ i
tons and triongas it was found in Ref. 29while measure- However, there is still a slight discrepancy between theory
cand experiment for QW widths in the range 00

ments from a QW ensemble favor higher-lying states near T A , ) ,
to the continuum. In the latter case the localization effects dg=200 A. In this range, in our theoretical model, tr):\e local-
not strongly influence the observed ensemble QW spectr&Zation effects are negligible for excitons. Aok 150 A the

As the theory shows, this would affect the binding energy adwo curves calculated with and without localization practi-

the localization effects are of great importance in narrowc@lly coincide. In this case, for the wide QWs=150 _A)
QWs. the theory appears to agree quite well with the experimental

binding energies. This allows us to conclude that for such
quantum well structures the localization does not play a sig-
nificant role for excitons and they are not trapped by the

In Figs. 1Qa) and 1@b) we compare the theoretical and interface defects.
experimental binding energies of the exciton as a function of In Figs. 1@a) and 1@b) we compare our results with
the QW width. Solid and dashed curves in these figures shothose obtained with the stochastic variational apprdaéh,
the binding energy in the QW with defect and in the idealboth for the isotropic and anisotropic hole masses which
QW without interface roughness, respectively. The localizagives additional credit to the accuracy of our numerical ap-
tion potential is considered as due to a well width fluctuationproach. Note that the hole mass and the dielectric constant
of one monolayer over a circular area of diame®r used in Refs. 13 and 14 (m,=0.067my, My’
=400 A in accordance with the experimental findings of Ref.=0.099m,, ande=12.1) were slightly different from ours.
19. As we can see from Fig. 3 for the QW width around 60 AThis leads to minor discrepancies for the binding energies for
this gives an upper bound to the localization effect on theQW widths smaller than 100 A because the electron and hole
binding energies. In order to be consistent we used the santensities in the growth direction are very sensitive to the QW
localization potential when calculating the binding energiesconfinement and to the chosen values of electron/ hole
of trions and the biexciton. masses in narrow QWsee Fig. 2

When using the isotropic approximation for the hole mass The PIMC resultgfor the anisotropic hole mass and the
(Me=0.067my, mY=m{=0.34m), we notice in Fig. 1) that 1 ML interface defect of diametdd=400 A) can be com-

A. Exciton binding energy
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S i o= I ey Furthermore, in Fig. 1) we observe a crossing of the
B5HY  Toewmex b —e—ansobopi, X' | 3.5 two binding energy c_urve@(* and X") with the localization
. « xkarera || (nisaoric | 5 included near the poirt=135 A, and for narrow wells the
s A e, s binding energy of the negative trion becomes larger. For ex-
g 25IP\\ o xomomeata ] T 178 ample, in a 40 A quantum welg(X") = 3.4 meV while for
~20 g o XPillpenat, 1 T 120 the positive trionEg(X") =2.6 meV. Preliminary experimen-
S5t 1t 115% tal investigations of theX”™ and X* in the presence of
10 11 14,0 localizatiorf® seem to confirm these findings and give for a
- ] los 50 A wide QW Eg(X")=3.27 meV andEg(X*)=2.35 meV.
Pk a ' It is interesting to notice that in an ideal QW the situation is
006700 200 300 400 0 100 200 300 400 " the opposite and the binding energy of thé is always
A (A) larger than that of th&™. As was already discussed in Sec.

) o ) ) ) IV B the reason is that the localization has a stronger influ-

FIG. 11. Trion binding energies for isotropia) and anisotropic  ance on the electrons and, consequently, on the negative
(b) hole mass vs quantum well wjdth. Symbqls are experimentahion_

s i e . When he arsotopy of the hole mass i nluded n o
included(not included chCL_JIatlons we found that there is no crossing be_tween the
’ binding energy of theX* and theX™. A comparison with the

_ _ _ variational calculations of Dacait al?? [see Fig. 1(b)] also
pared with those of Refs. 20 and 21, where éeiton bind-  gone with the anisotropic hole mass, but slightly different
ing energy to the interface defe&"(X) has been calculated. parametersVy(V;)=224.5 meV (149.6 meV and e=13.2
This quantity is defined as the difference of the total excitoNcompared to oursVy(V,)=216 meV (163 meVj and e
energy with and without the defect potential. In particular,:12_5a, shows some discrepancy with the present calcula-
the vgriational calcu]ations_ of Ref. 21 for two _types of exci- tions for X* binding energy in the narrow QWs. This can be
ton trial wave qu”Ct'O”S give, for a QW of width=35 A due to the following reason. Variational calculations strongly
and D=400 AE (X)=7.4 and 10.4 meV, respectivelhe  gepend on a form of used trial wave functions. In particular,
isotropic electron mass is;=m;’=0.0782n,, the heavy hole  Eq.(3) in Ref. 22 becomes less accurate in the narrow quan-
masses are the same as in the present drke PIMC  tym wells and hence requires a larger set of variational pa-
calculations for the QW width =40 A give a similar value, rameters. This could lead to a better agreement with the
EP(X)=8.16 meV. In the variational calculations of Ref. 20 a pjMmcC results.
value E°(X)=3.4 meV has been reported for a QW with In Ref. 23 the effect of localizatiofat the interface defect
=70 A. The present calculations gi#(X)=3.72 meV and  with a cylindrical symmetry and a Gaussian shape the
EP(X)=0.84 meV, for a QW width.=60 A andL=100 A,  trion binding energy was considered for the anisotropic hole
respectively. This trend definitely shows that the excitonamass with the same parameters as in Ref. 22. It was found
become less localized with increasing QW width. that, with the defect present, th€ binding energy is in-

In conclusion, the comparison of Figs.(@0and 1Qb)  creased from 0.4 to 0.6 meV in the 150 A wide QW. How-
shows that taking into account the anisotropy of the holeever, these values are much lower than the PIMC results
mass leads to a decrease of the exciton binding energy comhich show an increase from 0.90 to 1.02 meV. The results
pared to the isotropic case. For example, in a 50 A wide QWof Ref. 23 are even lower than the valuEg(X")
this amounts to about 2 meV, and in a 250 A wide QW it is=0.75 meV reported in Ref. 22 for the same QW width but
about 1 meV. without the localization effect included. In Ref. 23 the num-
ber of basic variational trial wave functions was reduced
compared to Ref. 22 and, as the above comparison shows,

In Figs. 1Xa) and 11b) we present our results for the this appears to be not sufficient for a quantitative description
binding energy of the trions. We compare our theoreticalof the trion.
results with the available experimental data for negatarel Other theoretical calculations done with an isotropic hole
positive? trions, and variational calculations of Ref. 22. First, mass and in the absence of a localization potential shown in
we can note that the agreement with the experiments is quitéig. 11(a) agree quite well with our data for the ideal QW
good for QW widthsL =150 A. Specifically, the experimen- case. For example, both in Refs. 16 and 30 it was found that
tal points for theX* are close to our theoretical result, seethe X* binding energy is larger by about 20% than tke
Fig. 11(a). Unfortunately, for narrow QWE. <150 A) when  binding energy. This is in agreement with most experimental
localization effects become important, there are currently nasesults which show that thé" has a binding energy which is
available experimental data. This would be of high interest atarger than or close to the one of te. However, the the-
the two points for theX™ reported by Kauet al. and Yanet  oretical results of Ref. 17 for a 300 A wide QW showed that
al.! show a more rapid increase of the binding energy withEg(X") is lower thanEg(X") which is opposite the results of
the QW width than the one predicted by theory when theRefs. 16 and 30, but the latter is in agreement with our re-
localization is not taken into account. On the contrary, cal-sults for the case of the anisotropic hole mdsse Fig.
culations with the QW width fluctuations included agree well11(b)]. From the other hand, the anisotropic calculations
with these data. show an unsatisfactory agreement between theory and ex-

B. Binding energy of positive and negative trions
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FIG. 13. The biexciton to exciton binding energy ratitaynes
FIG. 12. The same as in Fig. 11 but now for the biexciton facton, (a) vs QW width and(b) vs normalized localization poten-
binding energy. Symbols are experimental data of Refs. 4-10.  tjal. Symbols: experimental data for GaAs 4AGa As QWs(Ref.
10). Curves with symbols: PIMC results. Solidasheglcurve is the
periment, in particular forL>150 A where theoretical exciton binding energy withwithout) localization included;(b)
curves are about 0.5 meV below the experimental pointsEe(X2)/Eg(X) vs localization strengtloc/Eg(Xp). Squares are the
Here, the localization effectgin the framework of our €xperimental data; Rhombii are PIMC results.

mode) are not important and cannot be the reason for this . . I
disagreement. count, which makes the comparison only qualitative. In Ref.

21 the biexciton binding energy of about 1.6 and 1.3 meV
has been reported for the 30 and 50 A wide QWs, respec-
tively, and a defect diameter 200 A. These values of the
Now we consider the bhiexciton binding energy. Solid binding energies are less than our result, 1.9 meV, for a non-
(dashedlcurves in Figs. 1@) and 12b) show our theoretical localized biexciton in a 50 A wide QW. With the interface
results in the presenc@vithout) of well-width fluctuations  defect(D=400 A), the PIMC calculations show an increase
which we compare with available experimeni8 (symbols  of the binding energy up to 3.6 meV, which is close to the
in figure). In the case of an isotropic hole mass, we foundexperimental data. For example, in Ref. 3, a valieX,)
that with localization taken into accoufitull line in Fig.  =4.2 meV was attributed to a localized biexciton in a 34 A
12(a)] the theoretical curve passes through the data of Refs. wide QW.
and 7, but the experimental data of Refs. 4, 6, 8, and 9 agree In conclusion, the present comparison of the theory and
with the theory for an ideal QVjsee the dashed curve in Fig. the experiment allows us to conclude that the anisotropic
12(a)]. The inclusion of the localization effects brings the approximation for the hole mass gives better agreement for
theoretical curve slightly above the experiment, predictingnarrow QWs(with L <150 A). On the other hand, for wide
that in, e.g., a narrow 40 A wide QW the binding energy of Qws (L > 150 &) our model calculations show that the use
the biexciton is abouf4.0—-4.1 meV. It is interesting that of isotropic approximation shows better agreement. We ex-
almost the same experimental result is reported in Ref. 1Qvect that the accuracy of the calculatiq@asd of the aniso-
where the value 4.1 meV is found for the 40 A QW. It tropic approximation, in particulaican be further improved
should be stressed however, that our results for the bindingy taking into account the mismatch of dielectric constants
energy, in the presence of a one monolayer well-width flucand particle masses in the well and barrier materials. This
tuation, are close to an upper limit, since the used defeathould lead to a better agreement with the experiment.
diameter(D=400 A) was such that it gave practically the In comparing the theory and the experiment, one should
maximal gain in the biexciton binding energy as due to lo-keep in mind that different experimental, results have been
calization(see Fig. 3. But this value of the defect diameter, obtained from different quantum wells which have not been
D=400 A was found to be a very good estimate of the chargrown under the same conditions and, consequently, their
acteristic defect size in GaAs quantum wéfls. well-width fluctuations may also be different. Nevertheless,
The use of an anisotropic hole mgsse Fig. 1#b)] leads  overall, the present calculations show that even a simple
to a reduction of the biexciton binding energy by almostmodel of localization can satisfactorily explain the experi-
(0.4-0.9 meV. As in the case of trions, for wide QWSs with mental data on the binding energies. We expect that our
L=150 A the anisotropic approximation gives a less satistheory can make reliable predictions if detailed information
factory agreement with the experimental points. From theon the quantum well fluctuations in the samples would be
other hand, for the QW widthis=150 A we found excellent available.
agreement with the experiment of Ref. 10 when localization Next, we consider the so-called Haynes factor, which is
is included in our calculationgsee Fig. 1&b), solid curvé. the ratio between the biexciton and the exciton binding en-
For an anisotropic hole mass and a defect depth of 1 MLergies, v=Eg(X,)/Eg(X). We compare our results, see Fig.
we can compare our results with the variational calculationd 3(a), with the experimental data of Ref. 18olid squares
of Ref. 21. In these calculations, however, a repulsion bewhere the influence of localization on the binding energies of
tween particles of the same charge was not taken into aghe exciton and biexciton was considered. Here, all theoreti-

C. Binding energy of biexciton and the Haynes factor
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cal curves are given only for the isotropic hole masy’ in GaAs/AlGaAs quantum wells. We calculated and ana-
=m;=0.34 and, as in previous figures, the solidashegl  lyzed the exciton, trion, and biexciton binding energies, pair
line is for the casewithout) localization included. The ratio distribution functions and mean interparticle distances in the
of the exciton and biexciton energies calculated using axcitonic complexes in a wide range of QW widths. Our
anisotropic hole mass is very similar and is therefore nomethod is based on first principles and does not invoke ex-
shown. pansions in eigenfunctions. The approach is general, flexible
The lines with small filled symbols are obtained by usingand, what is also important, is not limited to certain specific
the theoretical values of the exciton and biexciton bindingsymmetries of the particle wave function. It allows for a
energies[Figs. 1Ga) and 12a)], which are denoted as simultaneous account of QW confinement, localization, and
E'E?C(XZ)/ E'E?C(X) and Eg(X,)/Eg(X). In addition, since there Vvalence band anisotropy, and thus can give an accurate the-
is a discrepancy between the experimental and the theoretic@fetical treatment of many experimental systems. The only
results in Fig. 10a) for the exciton binding energy which assumption{the adiabatic approximatiofiq. (2)]} appears
affects the Haynes factor, we also calculate the Haynes factd@ be justified for the present application. Simple estimates
as the ratio of the theoretical biexciton binding energy to theshow that its accuracy may be reduced for wide QWs with
exciton energy from the experiméfgshown in Fig. 1¢8) L=250 A.
by the solid squar@sThe corresponding results are denoted Extending our previous analysi$we concentrated on the
in Fig. 13a) as Ellgc(XZ) IEeydX) and Eg(Xp)/ EgyfX). influence of di;orQer, ie., qf the effect of QW yvidth fluctua-
First, we note that the Haynes factor is practically inde-tions on the binding energies. The observed increase of the
pendent of the QW width fok =150 A in agreement with 0inding energies in the presence of disorder is in good quan-
the experiment. However, the value of the constant is differlitative agreement with the available experimental data. Fur-
ent in various cases. When localization is includedlid ~ thermore, we analyzed the influence of valence band aniso-
line) our calculations show a systematic increase of thdropy (hole massand found that, in some casgs particular
Haynes facton=Eg(X,)/Eg(X) by up to 17%. For the exci- for the exciton and biexciton binding enejghis effect is
ton and biexciton localized on the interface defect theMmportantin order to achieve agreement with the experimen-
Haynes factor isy~0.175, while for the ideal Qw, tal data. ,
~0.15. For well widths. =50 A, all theoretical and experi- e also analyzed the case of deep interface defects cor-
mental results exhibit a monotonic decrease of the Hayng€SPonding to several monolayers depth and found that this
factor with increasing.. One can observe that the experi- €0 give an additional 20%—30% increase of the binding
mental results are located mainly between the two theoretic&N€rgy compared to the single monolayer case. This increase
curves corresponding to the localized and not localized biexiS €v&n more pronounced for the negative trion and the biex-
citon. Most of the points lie on the dashed curve with theCIton-: o _ _ _ _
open circlesEg(X,)/ Eq,(X), suggesting that the experimen- The present gnaly5|s is the first one in Whlch exciton,
tally measured binding energies correspond to nonlocalizelfions and biexciton are treated on an equal footing and in

biexcitons, but some of the data are substantially above th@hich the same size and shape of the QW width fluctuation

dashed curve and agree better with the assumption of prés Invoked for different QW widths. We assumed a IML QW

dominantly localized biexcitons. This is the case for well Width f'“C“.J%t'O” over a circular area of dlamemg400 A.
width L =80 A where a strong increase of the Haynes factofNO other fitting parameters were |ntr<_)duced. This led to an
is also found from the theory. For example, our theory gives‘ove_raII gopd agreement (_)f the_we_II-W|dth d_epend_ence of the
a maximum valuer=0.24 without localization and=029  €Xciton, trions, and biexciton binding energies. It is expected
for localized particles. that a bettgr fit with experiment is pogsible if, e.g., we allow
Notice that the agreement between the experimental an(ﬁr a noncircular shape of the well-width fluctuation where
theoretical results with localization is also confirmed by Fig.!n€ anisotropic localization potential will be related to spe-
13(b), where the Haynes factor is plotted against the normal€ifiC crystallographic directions. _
ized localization potential. We compute the localization en- OUr results have two important implications which can be
ergy Ep,. as the difference between the energy of the |Oca|_use_ful in the interpretation of expenme_ntal data. F|r§t, com-
ized and nonlocalized excitonic complgin Ref. 10 the Paring the measured binding energy with our numerical cal-
localization energy was defined from the full width at half culatl_ons for c_hfferent defect sizes allows one to chara_cterlze
maximum of the heavy-hole exciton absorption Jins fol- certain exper_lmenta_ll parameters, such as the magnltL_Jde of
lows from our theory, below 150 A well thickness when the the disorder in a given sample. Second, one can verify or
localization energy becomes of the order of the biexcitorPr€dict whether or not the observed excitonic states are lo-
binding energy an enhancement of the Haynes factor is ofz2/ized or delocalized in a given experimental setup.
served. This indicates that localization has a crucial effect on
the Haynes factor and it must be taken into account for a ACKNOWLEDGMENTS
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