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Abstract
This paper presents a first step towards combining two well-established
methods used in semiconductor physics—semiconductor Bloch equations
and the Wigner approach to quantum transport. This combination provides
the possibility of including spontaneous emission, i.e., the spontaneous
recombination of excited electron–hole pairs in semiconductors, into the
Wigner approach, which so far has been used only for systems with fixed
particle number. The theory is presented and first numerical results for a
three-dimensional system are shown.
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1. Introduction

The basic elementary excitations in direct gap semiconductors
such as GaAs are excited electrons in the conduction band and
holes (i.e., missing electrons) in the valence band. Electron–
hole pairs can be optically created by the application of a short
coherent laser pulse. Due to the strong Coulomb interaction
and the small masses of those excited quasi-particles, a
true many-body description is necessary to understand the
fundamental processes. One consequence of the Coulomb
interaction is the possibility that electrons and (positive) holes
can form bound states, hydrogen-like bound pairs (excitons),
and even larger complexes. These bound states can be
coherently driven by the exciting electro-magnetic field, thus
leading, e.g., to so-called excitonic resonances which are
observed experimentally as macroscopic polarization. On the
other hand, such polarization typically loses its phase within
times of the order of a few picoseconds. That way, the
polarization dephases while the electron–hole pairs remain
excited. In an ideal semiconductor structure, the excited
electrons and holes can only be destroyed via radiative decay,
i.e., spontaneous emission from the coupling to vacuum
fluctuations of the quantized light field.

After the coherences have decayed, the excited carriers
form a system completely analogous to a dense (possibly
partially ionized) hydrogen plasma. At sufficiently low
densities and lattice temperatures, electrons and holes can
form bound excitons. At higher densities or temperatures,
those excitons ionize, giving rise to a correlated electron–
hole plasma. To treat the theoretically difficult case of strong
correlations (with a Brueckner parameter rs = r̄/aB > 1,
where r̄ is the mean interparticle distance and aB the Bohr
radius of the lowest bound exciton), in recent years quantum
Monte Carlo (QMC) techniques have been developed [1–3]
which allow us to obtain exact results without approximation
in the many-body Coulomb interaction. However, the QMC
approach is limited to thermodynamic and static properties.
To get access to dynamic properties of correlated Coulomb
systems an approach based on quantum dynamics in the
Wigner picture has proved successful [4–9] for systems of
fixed particle number near equilibrium. We know, however,
that in semiconductors true thermodynamical equilibrium is
typically not reached because the thermalization time after an
optical excitation is comparable to the lifetimes of the excited
carriers. Thus, for a realistic modelling, spontaneous emission
(radiative recombination) must be included in the theory.
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During the last few years, a second class of
quantum statistical and quantum kinetic methods has been
developed [10, 11] which are very successful in the description
of semiconductor heterostructures interacting with a quantized
light field [12, 13]. The main advantage of this scheme
is the straightforward inclusion of any kind of interaction,
as for example the coupling to a quantized light field or
to a phonon reservoir. On the other hand, this scheme is
limited by the necessity for an approximate treatment of the
Coulomb interaction in order to decouple the infinite hierarchy
of equations for the reduced density operators (BBGKY
hierarchy).

The goal of this paper is to develop a theoretical and
computational scheme which combines the advantages of the
two approaches. The main idea is to use the experience
from the quantum kinetic theory on the treatment of light–
matter interaction and radiative recombination and incorporate
it into the Wigner dynamics approach. In section 2 we outline
the semiconductor quantum-kinetic theory for the case of a
fixed carrier number N which is transformed into the Wigner
representation in section 3. Sections 4 and 5 are devoted to
the extension of the theory to a variable particle number and
to inclusion of the light field, respectively. Finally, section 6
shows first numerical results.

2. Semiconductor density matrix equations

In this section we outline the semiconductor quantum kinetic
theory for the case of a fixed number N of electrons and
holes [10, 11]. The Hamiltonian of the system H contains
contributions from kinetic energy and Coulomb interaction,

H = H0 +
∑
λ=e,h

∑
λ′=e,h

Hλ,λ′
C ,

H0 =
∑
λ=e,h

∫
�

†
λ(x)

(
− h̄2∇2

x

2mλ

)
�λ(x) dx,

(1)

Hλ,λ′
C = 1

2

∫ ∫
�

†
λ(x)�

†
λ′(x ′)V (|x − x ′|)

× �λ′(x ′)�λ(x) dx dx ′, (2)

where λ and λ′ specify electrons or holes, and V (x) is the
three-dimensional Coulomb matrix element. Further, �

†
λ and

�λ are standard creation and annihilation operators in second
quantization. The quantum many-body theory of this system
starts from the density operator constructed from the fully anti-
symmetrized N -electron–N -hole wavefunctions |x1N 〉,
ρ̂ = ρ̂N N , with

ρ̂N M ≡ 1

N !M!

∫
· · ·

∫
ρ(x1N |y1M) |x1N 〉〈y1M | dx1N dy1M,

(3)

where we will use the short notation x1N ≡ xe
1N

xh
1N

, with

xe,h
1N ≡ xe,h

1 · · · xe,h
N , for the coordinates of all electrons

and holes, and the coordinate representation of ρ̂ (the den-
sity matrix) is defined as 〈x1N |ρ̂|y1N 〉 ≡ ρ(x1N |y1N) =
Tr[{�†

h (yh
N )}{�†

e (ye
N )}{�e(xe

N )}{�h(xh
N )}ρ̂]. Here, we in-

troduced a short notation for complete N -operator products
{�e,h(xN )} ≡ �e,h(x1) · · · �e,h(xN ). The equation of mo-
tion of ρ̂ is the von Neumann (Heisenberg) equation, ih̄ ∂

∂t ρ̂ =
[H, ρ̂].

As relevant observables of the carrier system in
semiconductors are usually related to single- or two-particle
properties, it is convenient to introduce reduced density
operators of M electrons and M ′ holes (M, M ′ � N )

F̂ M
M ′ = TrN

M+1TrN
M ′+1[ρ̂] (4)

with the matrix representation (reduced density matrix)

F

(
xe

1M

xh
1M ′

∣∣∣∣ ye
1M

yh
1M ′

)

= Tr[{�†
e (ye

M)}{�†
h (yh

M ′)}{�h(x
h
M ′)}{�e(x

e
M )} ρ̂],

which describes correlations between M electrons and M ′
holes, a subset of the total number of N electron–hole pairs.
Since the Coulomb interaction is a true many-body interaction,
the equations of motion for F M

M ′ are not closed, but couple
to the equations involving more than M electrons and M ′
holes, leading to the hierarchy of semiconductor density
matrix equations in analogy to the familiar BBGKY hierarchy,
e.g. [10],

{
ih̄

∂

∂t
−

M∑
i=1

(
h̄2�ye

i

2me
− h̄2�xe

i

2me

)
−

M ′∑
j=1

( h̄2�yh
j

2mh
−

h̄2�xh
j

2mh

)

−
M∑

i=1
j<i

[V (xe
i − xe

j ) − V (ye
i − ye

j )]

−
M ′∑
i=1
j<i

[V (xh
i − xh

j ) − V (yh
i − yh

j )]

+
M∑

i=1

M ′∑
j=1

[V (xe
i − xh

j ) − V (ye
i − yh

j )]

}
F

(
xe

1M

xh
1M ′

∣∣∣∣ ye
1M

yh
1M ′

)

=
∫ ( M∑

i=1

[V (xe
i − x) − V (ye

i − x)]

−
M ′∑
j=1

[V (xh
j − x) − V (yh

j − x)]

)

×
[

F

(
xe

1M , x

xh
1M ′

∣∣∣∣ ye
1M, x

yh
1M ′

)
− F

(
xe

1M

xh
1M ′ , x

∣∣∣∣ ye
1M

yh
1M ′, x

)]
dx .

(5)

This set of equations provides the dynamics for all reduced
density matrices of a system with two types of carrier
experiencing Coulomb interaction. These equations are
similar to the semiconductor Bloch equations [11]. Note that
mean-field (Hartree–Fock) contributions are contained in the
terms on the right-hand side (rhs). This hierarchy naturally
terminates with the coupling to the full N -pair density matrix,
the equation of which (the von Neumann equation), obviously,
has a zero rhs.

Quantum kinetic theories in general, and approaches
based on the semiconductor Bloch equations in particular,
introduce truncations of the hierarchy to make the problem
computationally feasible. Of course, this always leads to the
neglect of certain Coulomb correlation effects. In the next
section we develop an alternative approach which avoids any
truncation.

S300



Spontaneous emission of semiconductors in the Wigner approach

3. N -body quantum dynamics in the Wigner
representation

For classical systems, an exact treatment of many-body
correlations is possible and successfully realized by molecular
dynamics (MD) where the only approximation is the mapping
of the N -body system onto a similar one with a tractable
smaller number Nsim, for a discussion see e.g. [10]. Such
a classical approach is, however, not adequate for the
intrinsically quantum dynamics of semiconductors. We,
therefore, develop in the following a quantum MD scheme
which overcomes these shortcomings and, at the same time, is
capable of treating many-body correlations exactly. The basis
is the Wigner representation of the von Neumann equation, the
Wigner–Liouville equation (WLE).

To derive the WLE for the full density matrix ρ(x1N |y1N)

we introduce centre of mass and relative coordinates in the
standard manner, R ≡ R1N ≡ (x1N + y1N )/2 and r ≡ r1N ≡
x1N − y1N . The Wigner distribution function (WF) is defined
by [14]

f (p, R, t) = 1

(2πh̄)6N

∫
ρ

(
R − r

2
, R +

r

2

)
eipr/h̄ dr. (6)

Using this definition it is straightforward to obtain the Wigner
transform of equation (5) for the full density matrix [10, 14]

∂ f

∂t
+

p

m

∂ f

∂r
− ∂V (r)

∂r

∂ f

∂p
=

∫ ∞

−∞
ds f (p − s, r, t)ω(s, r),

(7)

where

ω(s, q) = F (q)
dδ (s)

ds
+

4

h̄(2πh̄)6N

×
∫

dq̄ V (q − q̄) sin
(

2sq̄

h̄

)
, (8)

and F (q) = −∂V (q)/∂q is the classical force. Obviously,
the force term in ω exactly cancels the last term on the left-
hand side (lhs) of equation (7). Retaining these terms allows
us to write the WLE as the classical Liouville equation (lhs of
equation (7)) plus a quantum correction (all terms on the rhs of
equation (7)) which vanish for h̄ → 0. This form allows us to
identically transform equation (7) into an integral equation [4],

f (p, q, t) = f0(p, q)

+
∫ t

0
dτ

∫ ∞

−∞
ds f (pτ − s, pτ , τ)ω(s, qτ ) (9)

where {qτ (τ ;p, q, t), pτ (τ ;p, q, t)} is the classical dynamic
pq-trajectory with initial conditions at τ = t in points p, q

and evolving backwards in time up to time τ (solutions of the
Hamilton equations associated to the WLE)

dpτ /dτ = F (qτ ); qt(t;p, q, t) = q;
dqτ /dτ = pτ /2m; pt(t;p, q, t) = p.

(10)

The first term of equation (9) is the coherent sum of positive
and negative valued contributions of these trajectories related
to the initial WF f0. This WF should be taken at arguments
p0 and q0, i.e. the trajectories at time τ = 0, and contains
all powers of Plank’s constant. Notice that even the first term
may describe the evolution of a quantum many-body state if

the initial WF f0(p, q) is chosen appropriately. The integral
term in equation (9) describes the perturbation of the classical
trajectories due to quantum effects, for details we refer to [4].

The structure of equation (9) suggests constructing its
solution iteratively, starting with f0. Let us, therefore, rewrite
equation (9) in the following compact form, f t = f t

0 + K t
τ f τ ,

where the superscript on the WF denotes the time argument
and K τ2

τ1
denotes the time integral in equation (9) with τ2 and

τ1 indicating the upper and lower integration limits. Then, the
iteration series has the form [4–9]

f t = f t
0 + K t

τ1
f τ1
0 + K t

τ2
K τ2

τ1
f τ1
0 + K t

τ3
K τ3

τ2
K τ2

τ1
f τ1
0 + · · · , (11)

where the first term, as we mentioned before, describes
the classical evolution of an initial (classical or quantum)
WF f0 (it may contain any order of Planck’s constant).
The remaining terms systematically account for all dynamic
quantum corrections (trajectories with momentum jumps, s,
arising from the shifted momentum arguments in the WF
under the integral in equation (7)) including, e.g., tunnelling
effects and correctly accounting for the Heisenberg uncertainty
principle. Thus, the solution of equation (11) can be
understood as a properly weighted sum of classical and
quantum phase space trajectories [4–9]

Using the solution f t we can compute averages of
arbitrary operators in the standard way and obtain any
dynamic macroscopic property of the correlated electron–hole
system without approximations on the Coulomb interaction.
Naturally, the true particle number N is replaced by a greatly
reduced number Nsim which is of the order 50–100. The
solution scheme is a combination of QMC and classical MD
methods: QMC is used to generate the correlated initial state,
MD generates the classical p–q trajectories and Monte Carlo
(MC) methods are applied to perform an important sampling
of the dominant terms of the iteration series [15], see also
section 6.

4. Variable number of particles. Recombination of
electron hole pairs

In order to include recombination effects as discussed in the
introduction, the above Wigner dynamics scheme has to be
generalized to the case of variable electron and hole numbers.
The corresponding generalization of the density operator (3)
is

ρ̂ = ⊕M,L ρ̂L M ,

Tr ρ̂ ≡
∑

M

[
1

M!

∫
· · ·

∫
ρ(x1M |x1M) dx1M

]
= 1,

(12)

where ⊕ denotes the direct sum over Hilbert spaces with
different numbers of particles.

The case of a variable particle number makes the definition
of reduced density matrices slightly more cumbersome, since
now few-particle expectation values contain contributions
from all higher-order statistical operators

F(x1L |y1M) ≡ Tr[{�†(yM)}{�(xL )} ρ̂]

=
N−L∑
s=0

1

s!

∫
· · ·

∫
ρ(x1L , z1s |y1M, z1s) dz1s . (13)
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Here N is again the total (maximum available) number
of particles, so, obviously, L + s � N and M + s � N
and, without loss of generality, we assume M � L . Only
in the trivial case that L = M = N (only the term with
s = 0 contributes and no integrations are performed) is
F(x1L |y1M) = ρ(x1L |y1M). In all other cases F(x1L |y1M)

contains contributions from additional particle complexes
larger than M .

To use these results within the Wigner dynamics approach,
we also need the inverse relation which, after some algebra, is
found to be

ρ(x1L |y1M)

=
N−L∑
s=0

(−1)s 1

s!

∫
· · ·

∫
F(x1L , z1s |y1M, z1s) dz1s . (14)

The generalization to the case of two types of particle is
straightforward.

5. Coupling of carriers to the light field

In this section, we present first results of how to include
the coupling to a quantized light field in a Wigner dynamics
formalism. This method provides a microscopic description of
the effect of spontaneous emission where, for sake of clarity,
we include Coulomb effects on the spontaneous emission at the
simplest possible level. As a result, the system Hamiltonian (2)
acquires two additional contributions, HD andHem. The light–
matter interaction is described by

HD = − 1

ε0

∫
�h(x)�e(x)D(x) · d∗

cv dx + h.c., (15)

with the mode expansion of the quantized electric field [12]
1
ε0

D(x) = ∑
q êq[Fq(x)Bq + h.c.], where we denote Fq(x) =

iEqeiq·x, dcv is the interband dipole matrix element, êq is the
polarization vector of the field mode and Eq the vacuum field
amplitude [16]. The dynamics of the free electro-magnetic
field is given by the Hamiltonian Hem = ∑

q h̄ωq(B†
q Bq + 1

2 ).
The light–matter interaction contribution to the equation

of motion of any reduced density operator F̂ M
M ′ , equation (4),

is given by the commutator [F̂ M
M ′ ,HD] which transforms into

two additional terms on the rhs of the semiconductor density
matrix equations (5) of the form A(x |y) − [A(y|x)]∗ ≡ AD .
The result for the matrix A is

A

(
xe

1M

xh
1M ′

∣∣∣∣ ye
1M

yh
1M ′

)
= −d∗

cv

ε0

M∑
i=1

(−1)i
M ′∑
j=1

(−1)M ′− jδ(ye
i − yh

j )

× 〈{�†
e (ye

M)}′i {�†
h (yh

M ′)}′j {�h(x
h
M ′ )}{�e(x

e
M )}D(ye

i )〉

− d∗
cv

ε0

M∑
i=1

(−1)i 〈{�†
e (ye

M )}′i{�†
h (yh

M ′)}{�h(x
h
M ′ )}

× �h(ye
i ){�e(x

e
M )}D(ye

i )〉 − d∗
cv

ε0

M ′∑
j=1

(−1)M ′+M− j+1

× 〈{�†
e (ye

M)}{�†
h (yh

M ′)}′j {�h(x
h
M ′ )}{�e(x

e
M )}

× �e(yh
j )D(yh

j )〉, (16)

where we introduce the short notation {�(yM)}′i for a product
of operators in its original order with the i th operator missing,

and 〈· · ·〉 from now on denotes averaging with the full density
operator ρ̂.

Obviously, the light–matter interaction couples expecta-
tion values over pure carrier operator products to mixed prod-
ucts between carrier and photon operators. In order to elim-
inate those photon assisted terms, we have to establish the
equations of motion for them, solve them adiabatically and
eliminate the photon degrees of freedom. Therefore we have
to set up the equation of motion for a general operator of the
form

〈B†
q{�†

e (ye
M)}{�†

h (yh
M ′)}{�h(x

h
M ′+1)}{�h(x

e
M+1)}〉, (17)

i.e., for terms where one pair of electron and hole creation
operators is replaced by a photon operator. Here various
approximations are possible. In the general solution,

ih̄
∂

∂t
〈B†

q{�†
e (ye

M)}{�†
h (yh

M ′)}{�h(x
h
M ′+1)}{�h(x

e
M+1)}〉

=
(M+1∑

i=1

−h̄2�xe
i

2me
−

M∑
i=1

−h̄2�ye
i

2me

+
M ′+1∑
j=1

−h̄2�xh
j

2mh
−

M ′∑
j=1

−h̄2�xh
j

2mh
− h̄ωq

)

× 〈B†
q{�†

e (ye
M)}{�†

h (yh
M ′)}{�h(x

h
M ′+1)}{�h(x

e
M+1)}〉

+
∫

dz Fq(z) dcv〈�†
e (z)�†

h (z){�†
e (ye

M)}{�†
h (yh

M ′)}
× {�h(x

h
M ′+1)}{�h(x

e
M+1)}〉 + �Stim + �Coul, (18)

the stimulated contribution �Stim contains terms proportional
to the photon number 〈B†

q Bq〉 and is negligible for the case
of weak recombination. The Coulomb contribution �Coul

introduces the Coulombic resonance into the equation of the
photon-assisted terms. Both contributions are neglected in the
present approach.

After some lengthy transformations in momentum space
we obtain for the photon-assisted terms,

−dcv

ε0
〈D(z){�†

e (ye
M)}{�†

h (yh
M ′)}{�h(x

h
M ′+1)}{�h(x

e
M+1)〉

≈ 1

V
π i

∑
q,k

|Eq |2|dcv|2δ
(

h̄2q2

2M
+

h̄2k2

2µ
+ EG − h̄ωq

)

×
∫ ∫

〈�†
e (zh)�

†
h (ze){�†

e (ye
M )}{�†

h (yh
M ′)}

× {�h(x
h
M ′+1)}{�h(x

e
M+1)〉e−ikr e−iq R dR dr, (19)

where the total mass M = me + mh and the reduced mass
1
µ

= 1
me

+ 1
mh

have been introduced. Furthermore, the
integration variables have been chosen as shifted centre of
mass R = me ye+mh yh

M − z and relative coordinate r = yh − ye.
The arguments ze ≡ z − R + r e and zh ≡ z − R − rh are
defined with re(h) = me(h)

M . This equation is valid as long as
recombination out of the continuum is dominant, otherwise
Coulomb interaction in the photon-assisted terms has to be
taken into account. Equation (19) reflects this fact via the
energy δ-function, where only centre of mass and relative
momenta of free electron–hole pairs enter.

In order to obtain a simpler equation, we first note that,
due to the small photon momentum, the δ-function contributes
most for very small centre of mass momenta. Therefore, we
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may drop the exponential factor e−iq R and approximate the
original k-dependent dephasing by a constant,

γk = π
∑

q

|Eq |2|dcv|2δ
(

h̄2q2

2M
+

h̄2k2

2µ
+ EG − h̄ωq

)

≈ π
∑

q

|Eq |2|dcv|2δ(h̄ωq − EG)

= 1

4π

(
EG

h̄c

)3 |dcv|2
ε0

≡ γrad ≈ 3.5 × 10−5 EB, (20)

where EB = 4.2 meV is the 3D exciton binding energy. We
thus obtain

−dcv

ε0
〈D(z){�†

e (ye
M)}{�†

h (yh
M ′)}{�h(x

h
M ′+1)}{�h(x

e
M+1)〉

≈ iγrad

∫
〈�†

e (R)�
†
h (R) · · ·〉 dR. (21)

Approximation (20) corresponds to the requirement that
electron and hole must be at the same position when
recombining. Setting q equal to zero has its counterpart in
the non-locality of the recombination, i.e., the centre-of-mass
position R of the electron–hole pair does not have to coincide
with the photon coordinate z. From equation (20), we can
calculate the corresponding decay constant: τrad = h̄/γrad ≈
4.5 ns.

We insert the result of equation (21) into equation (16)
to eliminate the photon field and to get an effective equation
for the carrier dynamics alone which takes into account
the microscopic nature of the spontaneous emission. Thus
we obtain for the full recombination contribution to the
semiconductor density matrix equations

AD

(
xe

1M

xh
1M ′

∣∣∣∣ ye
1M

yh
1M ′

)
= −iγrad

M∑
i=1

M ′∑
j=1

δ(ye
i − yh

j )

×
∫

dz F

(
xe

1M

xh
1M ′

∣∣∣∣ ye
1M, ye

i → z

yh
1M ′, yh

j → z

)

− iγrad

M∑
i=1

∫
dz F

(
xe

1M

xh
1M ′ , ye

i

∣∣∣∣ ye
1M , ye

i → z

yh
1M ′, z

)

− iγrad

M ′∑
j=1

∫
dz F

(
xe

1M , yh
j

xh
1M ′

∣∣∣∣ ye
1M, z

yh
1M ′, yh

j → z

)

− iγrad

M∑
i=1

M ′∑
j=1

δ(xe
i − xh

j )

×
∫

dz F

(
xe

1M , xe
i → z

xh
1M ′ , xh

j → z

∣∣∣∣ ye
1M

yh
1M ′

)

− iγrad

M∑
i=1

∫
dz F

(
xe

1M , xe
i → z

xh
1M ′ , z

∣∣∣∣ ye
1M

yh
1M ′, xe

i

)

− iγrad

M ′∑
j=1

∫
dz F

(
xe

1M , z

xh
1M ′ , xh

j → z

∣∣∣∣ ye
1M, xh

j

yh
1M ′

)
, (22)

where the short notation should be self-explanatory. Arrows
indicate that the given coordinate is replaced by the integration
variable z. While the first and fourth term on the rhs invoke
only density matrices with the same number of carriers as the
one on the left, the remaining four terms reveal in which way
light–matter interaction couples density matrices with different
numbers of carriers. The first and fourth term are, therefore,

the only terms which are present in the equation of motion
of the full density matrix. Using these results, we may now
return to the dynamic equation for the Wigner function of M
electrons and M ′ holes f M

M ′ . This involves use of relation (14)
and incorporation of the recombination contributions given by
equation (22) yielding

f M
M ′(p, q, t) = f M

M ′0(p0, q0)

+
∫ t

0
dτ

∫ ∞

−∞
ds f M

M ′(pτ − s, qτ , τ)ω(s, qτ )

− i2γrad

h̄(2πh̄)3

M∑
j=1

M ′∑
k=1

∫ t

0
dτ

∫ ∞

−∞
dX ds

× cos

(
s(q j

eτ − qk
hτ )

h̄
− X (p j

eτ + pk
hτ )

h̄

)

× f M
M ′

(
p̄eτ , p j

eτ +
s

2
; p̄hτ , pk

hτ − s

2
;

q̄eτ , q j
eτ +

X

2
; q̄hτ , qk

hτ +
X

2
; τ

)

− i2γrad

h̄(2πh̄)6

M∑
j=1

∫ t

0
dτ

∫ ∞

−∞
dz dz̃ ds j

e dsh

× cos

(
( p̃hτ + p j

eτ )z̃

h̄
− (zs j

e + z̃sh)

h̄

)

× f M
M ′+1

(
p̄eτ , p j

eτ − s j
e

2
; p̄hτ , p̃hτ − sh

2
;

q̄eτ , q j
eτ − z̃

2
; q̄hτ , q j

eτ +
z

2
; τ

)

− i2γrad

h̄(2πh̄)6

M ′∑
k=1

∫ t

0
dτ

∫ ∞

−∞
dz dz̃ dsk

h dse

× cos

(
( p̃eτ + pk

hτ )z̃

h̄
− (zsk

h + z̃se)

h̄

)

× f M+1
M ′

(
peτ , p̃eτ − se

2
; p̄hτ , pk

hτ − sk
h

2
;

qeτ , q j
hτ +

z

2
; q̄hτ , qk

hτ − z̃

2
; τ

)
(23)

where the sets qe, pe (qh , ph ) refer to the coordinates and
momenta of M electrons (M ′ holes). Further, a bar (e.g. q̄ or
p̄) indicates that the j th electron (or kth hole) is missing in
the variable set and p̃eτ or p̃hτ denote the momentum of the
additional (M + 1th) electron or (M ′ + 1th) hole.

6. Numerical results

From a mathematical point of view, the WF f M
M ′ = f̃ M,M ′

can
be considered as a countervariant tensor of valency two [17].
So the integral equation (23) and its related solution are
nothing more than the tensor generalization of the integral
equation (9) and the iteration series (11). The possibility to
convert a series like equation (11) into a form convenient for
probabilistic interpretation allows us to apply MC methods
to its evaluation [4–9]. In order to sum up the terms
giving the dominant contribution to the WL function in the
tensor iteration series, we should generalize the MC approach
developed in [4] to sample trajectories in phase space of various
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dimensionalities related to different values of M (number of
electrons) and M ′ (number of holes). Formally speaking, M
and M ′ independently take values from zero up to infinity,
and trajectories are described by the following set of dynamic
variables: M , M ′ and the pq-trajectory in the phase space of
dimensionality (6 M + 6 M ′). In principle, it is possible to
restrict the values of M and M ′ by a certain large number
Nmax. In this case, we should simulate the dynamics of
N 2

max independent electron–hole systems as following from
equation (23) with γrad = 0.

To understand the algorithm of sampling trajectories,
let us consider the physical meaning of the terms on the
rhs of equation (23). The first term, as we mentioned
above, describes the classical evolution of the initial quantum
WF. As a first test, here we use the approximation which
takes into account only the quantum corrections to classical
trajectories (position and momentum jumps), which arise from
electron–hole recombination, while momentum jumps related
to the Heisenberg uncertainty (second term on the rhs of
equation (23) [4, 9]) are neglected. This simplification of
the problem allow us to analyse the influence of the terms
proportional to γrad. The third term in equation (23) with f M

M ′
conserves the numbers M and M ′ and describes the electron–
hole recombination (photon emission) in one space point and
the immediate (photon absorption) creation of an electron–hole
pair in another space point. This term describes momentum
and space jumps of one electron–hole pair and conserves the
virtual momentum of the trajectory and the number of particles
in the system. So in our algorithm, it is necessary to break
the dynamics of classical virtual trajectories by jumps of this
type. As a result of the tensor multiplication in the iteration
series, the fourth and fifth terms in equation (23) with f M

M ′ +1 and
f M+1

M ′ are responsible for the appearance of the new nonzero
tensor elements f M

M ′ with smaller values of M and M ′. So
these terms describe the evolution of numbers M and M ′,
which physically relates to the processes of disappearance
of one electron or one hole. To simulate the evolution of
the electron–hole systems with M = M ′ giving the main
contribution to quantum observables we should introduce two
subsequent momentum and space jumps of the classical virtual
trajectories resulting in the disappearance of one electron and
one hole. So, the WF can be presented in the form of the
initial WF contributions of the trajectories with jumps of the
above mentioned types. Certainly, to simulate N2

max electron–
hole systems simultaneously is impossible as it would require
excessive computer resources. To overcome this difficulty
we use an approximation where instead of the transitions to
systems with smaller number of particles M and M ′ and,
consequently, smaller density, we increase the volume of the
system. Further details of the theory and of our numerical
approach will be published elsewhere.

Figure 1 presents first results for the evolution of the
electron–hole density due to recombination. The initial
WL function f0 corresponds to a fully ionized laser-excited
electron–hole plasma under conditions of strong Coulomb
correlations, rs = 10. We clearly observe the decay
of the carrier number due to recombination confirming the
correctness and feasibility of our method.

0 1 2
Time [ns]

n/
n 0 0.9

1.0

0.8

Figure 1. Reduction of the density of laser excited electron hole
pairs in a strongly correlated semiconductor with rs = 10. Density
is in units of the initial density n0. The excess energy of the initial
electron hole plasma is 0.2 Ryd.
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