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We present first-principle path integral Monte-Carlo (PIMC) studies of strongly correlated electron-hole
complexes such as excitons, trions (charged excitons) and biexcitons in���������� quantum-well struc-
tures. The correlation and binding energies are calculated as function of quantum well width�, for
���̊ � � � ����̊ and compared with available experimental [1] and theoretical [2, 3, 4] data. As in
the experiments, we observe a maximum of the binding energies in GaAs/AlGaAs quantum well samples
around� � ���̊ the physical reason of which is the non-monotonic dependence of the electron (hole) con-
finement on the well width. The developed method is a powerful tool for further systematic investigation of
the influence of temperature and many-body effects on bound states in heterostructures (e.g. depedence on
finite exciton, biexciton densities) and disorder (e.g. well-width fluctuations).

1 Introduction. With recent developments in semiconductor technology quasi one-dimensional and
thin-layer structures have attracted much attention. These systems show nontrivial Coulomb correlation
effects leading to interesting optical and transport characteristics which are not seen in bulk materials.
For example, a strong increase of exciton binding energies has been found experimentally [1] at specific
quantum well (QW) widths. Also, crystallization of electrons in quantum dots with a finite number of
particles has recently been predicted theoretically using PIMC simulations [5].

In this paper we investigate Coulomb correlations in electron-hole systems in QW’s and clearly show
that the observed effect of the increase of the binding energies in these systems is connected with changes
in the effective in-plane interaction potential. We develop a novel first-principles approach based on PIMC
simulations which does not involve expansions in terms of basis functions or any symmetry assumptions
and is, thus, expected to allow for an efficient treatment of complex experimental systems in the future.

2 Quantum well model. We consider a single quantum well consisting of a thin semiconductor film of
thickness�. In the effective-mass approximation the electron-hole Hamiltonian reads
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where�� and�� are masses and charges of particles, and we take dielectric constants� of the well and
barrier materials to be the same. The confinement potential for electrons in the conduction band,� �, and
holes in the valence band,��, is modeled as a square well of finite width� and depth�� , where for a
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 QW, we use:��� � ��	
� ����		�� ���
��� �� and��� � ��
�� ����		��
���
��� �� . In the numerical simulations below we use an�� concentration of� � ��� as well as
� � ���	�, �� � ����
��, �� � ���
�� (�� is the free electron mass), and the spatial and energy
scales are given by�	 � ������� �

� � ���
 �̊ and
��� � ������ �	� � 	�
� ��� . Further, to sim-
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Fig. 1 Correlation energy of excitons (�),
positive (��) and negative (��) trions and
biexcitons (��) vs. QW width�.

plify our Monte Carlo simulations we use anadia-
batic approximation and neglect the influence of in-
plane electron-hole correlations on their motion in the
�-direction perpendicular to the QW plane. This as-
sumption appears to be valid due to strong quantiza-
tion in square wells of widths� � �	 where
��
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ing the level spacing in the QW and��	 �
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being the correlation and binding energy of exciton,
biexciton, respectively.

In the adiabatic approximation, the full� -particle
density matrix (DM) factorizes

�����
	 �� � ����	 �� ����	 �� ���
��	 ��	 (2)

where���
 ����� � ��� �	 �� �	 � � � 	 ����
� �� �	 �� �	 � � � 	 ����

� is a�� (��) vector of all particle co-
ordinates,�� ��� is the� coordinate of all electrons (holes),����	 �� and����	 �� are the DM’s of free
electrons and holes confined in the� direction by the square well and� � ���	� . We underline that the
DM �����	 �� includes all in-plane electron-hole correlations and obeys the N-particle Bloch equation.
Using (1) with (2) and averaging over�, we obtain the two-dimensional Bloch equation which contains
an effective 2D in-plane potential� ��
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3 Simulation idea. We numerically solve the Bloch equation (3) using the path integral representation
of the DM in terms of� factors, each taken at an� times higher temperature,
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where! � �����	� �, � is the� -particle exchange operator and���	� �� !� � 	�����
	� ���
 is the

coordinate representation of the� -particle DM at the new inverse temperature! .
To find the� -particle high-temperature DM we use its pair approximation which turns out to be valid

for ! � �������� (where the effective Hartree energy��� � � ���),
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where#	 $ are particle indices and�
�� ��
��� is the one(two)-particle density matrix. In the next step we
obtain the DM�
�� from a direct solution of the two-particle Bloch equation, substitute it into Eq. (6) and
perform a numerical integration in Eq. (5) with the use of Monte Carlo algorithms.
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4 Correlation and binding energies in quantum wells. In this section we investigate the influence
of the finite QW width� on bound states of the electron-hole system in a single layer. We study the
correlation (��) and binding (�
) energies of excitons�
�%�, positive and negative trions (�
�%

��) and
biexcitons�
�%%�which are defined by�
�%� � ��������%�;�
�%�� � ��%����������%

��
and�
�%%� � ���%� � ��%%�, where the total energy of�� electrons and�� holes is defined as
����	 ��� � ���� ����� ������	 ���, and�� ��� is the energy of a single free electron (hole).

The dependence of the correlation energy on

Symbols are experimental results
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Fig. 2 PIMC results for binding energies��	�


(a), ��	��
 (b), and ��	�
�
 (c) vs. QW

width � together with experimental data [1] and
simulations of [2].

the QW width� is shown in Fig. 1. This de-
pendence is non-monotonic and has two impor-
tant limits. First, for� � �	 , the QW con-
finement has practically no influence on the e-h
bound states, and we simply recover the corre-
lation energies and binding energies (see below)
of the �� system. In the opposite limit of a
very narrow QW,� � �, the electron and hole
wave functions extend significantly into the bar-
rier material (see upper figures in Fig. 3). This
case again results in a practically pure�� solu-
tion for the e-h pair. Here the important note is
that in a very narrow QW (� � �	) approxi-
mation (2) cannot be applied. In QW’s of finite
height there is always a possibility for at least
one bound state to exist, however, this bound
state may be very close to the continuum. Even
at zero temperature the e-h interaction can ex-
cite states of the continuum, and electrons with
holes cannot be considered further to be at the
center of the QW in the�-direction. For this
reason, at� � �, we performed a full�� cal-
culation. From Fig. 1 one can see that the in-
fluence of the confinement on the bound states
becomes important for QW widths� � �	 , and
at� 
 ��
 �	 the correlation energies reach a
minimum, in very good agreement with the re-
sults of Ref. [3]. Next, in Fig. 2 (a), (b) we show results for the exciton (%) and biexciton (%%) binding
energies. These results demonstrate that our model and the accuracy of the PIMC simulations are suffi-
cient to ensure quantitative agreement with available experimental data [1]. For a quasi-2D�� �
�����

sample with� 
 ��
 �	 , we found that the biexction binding energy (��� meV) is aboutfour times larger
than in the same bulk material.

In Fig. 2 (c) we report data for the�-dependence of the binding energies of negative and positive trions
(solid and dashed lines respectively). Interestingly, the�	�%


� is about��� larger than�	�%
��. This

can be explained by the fact that in the%
 state we have two holes which are aboutfive times heavier
than the electron, and so the contribuion of zero point fluctuations of all three particles, which always act
to destroy bound states, are smaller than in the case of%�. In Fig. 2 (c) our PIMC results are compared
with the variational Monte Carlo calculations of Ref. [2] (shown by diamonds) and experimental data from
Ref. [1]. The results for the binding energies show that this quantity reaches a maximum around� 

��
 �	 . To explain this interesting feature of a strong increase of e-h correlations at� � 
� �̊ observed
in all figures, let us return to the Bloch equation (3). The only quantity that may have the�-dependence is
the effective potential� ��

�� . The�-dependence of this potential comes from the integration,
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Eq. (4), over free electron and hole density matrices corresponding to solutions in the square well potential
of varying width�.

In Fig. 3, we present the electron and hole den-
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Fig. 3 Left: electron	�	

 and hole	�	


density matrix in the QW (dotted lines indi-
cate QW walls). Right: �-dependence of ef-
fective electron-electron (ee) and electron-hole
(eh) potentials, Eq. (4).

sity matrices in the square well confinement, the
QW width is varied in the range�� �̊ � � �
��� �̊. The left figures confirm that, due to the
lighter mass, the electron is more delocalized than
the hole and, at� � ���̊, most of the electron
density matrix resides in the barrier material. (In
cases where the dielectric constants of the well and
barrier material are strongly different, this would
have to be taken into account giving a significant
effect in narrow QW’s. In
��
���
��
 struc-
tures with close values of� this effect is not so im-
portant.) As� approaches�	 � ���
 �̊ the finite
depth of the square well has practically no influence
on the solutions, and the density matrix for both
particles vanishes at the QW edges. The effective
in-plane potential� ��

�� is shown in the right set of
figures. Obviously, it depends in a non-monotonic
way on� reaching a maximum (absolute) value at
� � 
� �̊. It is this increase at intermediate�
causing a growth of interparticle correlations and
thus is the main reason for the increase of the bind-

ing energies at intermediate QW widths as observed experimentally and found in our simulations, cf.
Fig. 2.

5 Conclusion. Using a path integral Monte Carlo approach, we have calculated the correlation and
binding energies of excitons, trions and biexcitons in
��
���
��
 quantum wells of different widths
which agree well with experimental results. Our method is based on first principles and does not invoke
eigenfunction expansions and is not limit to certain symmetries. Thus it also yields the temperature depen-
dence of the binding energies and all pair distribution functions [6]. The only assumption – the adiabatic
approximation (2) – appears to be justified for the present application but it can be easily dropped. Thus,
the extension of our method to more realistic situations, including disorder, well-width fluctuations etc. is
straigtforward.
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