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Abstract
Plasma phase transitions in dense hydrogen and electron–hole plasmas are
investigated by direct path integral Monte Carlo methods. The phase boundary
of the electron–hole liquid in germanium is calculated and is found to agree
reasonably well with the known experimental results. Analogous behaviour
is found for high-density hydrogen. For a temperature of T = 10 000 K it is
shown that the internal energy is lowered due to droplet formation for densities
between 1023 cm−3 and 1024 cm−3.

PACS numbers: 52.25.Kn, 52.65.Pp

1. Introduction

The thermodynamics of strongly correlated Fermi systems at high pressure are of growing
importance in many fields, including shock and laser plasmas, astrophysics, solids and nuclear
matter, see [1–6] for an overview. Further, among the phenomena of current interest are
the high-pressure compressibility of deuterium [7], metallization of hydrogen [8], plasma
phase transition etc, which occur in situations where interaction and quantum effects and
partial ionization and dissociation are relevant. Among the early theoretical papers on dense
hydrogen concerning the plasma phase transition (PPT), see Norman and Starostin [9], Saumon
and Chabrier [10] and Schlanges et al [11]; for a more recent overview on the literature, see
[12, 13]. These papers are based upon the chemical picture of a partially ionized plasma where
the conclusion about the PPT is derived from the non-monotonic behaviour of the isotherms
of pressure or chemical potential in a certain density interval.
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There are, however, serious questions about the validity of chemical models for high-
density quantum plasmas close to pressure ionization and dissociation. Therefore, there is
great interest in first-principle simulations of these systems which avoid such approximations.
There has been significant progress in recent years in the development of quantum Monte
Carlo (QMC), e.g., [14–26] and quantum molecular dynamics (QMD), e.g., [27–29]. In fact,
there have been predictions of the PPT from QMC [16] and wave packet MD simulations
which, however, have been revised recently [17, 28].

In this paper, we present new QMC results which are based on direct fermionic path
integral simulations (DPIMC). Our results for low-temperature dense hydrogen show an
instability of the homogeneous plasma state and the formation of droplets. This leads
to a significant lowering of the energy. Furthermore, we performed simulations for
low-temperature electron–hole plasmas in semiconductors where, unlike hydrogen, phase
separation and formation of electron–hole droplets has been clearly observed experimentally
[30, 31]. Our results for the phase boundary of the electron–hole liquid in germanium are in
good agreement with these data. Due to the similarity of the plasma parameters (coupling,
degeneracy, etc) to the situation in dense hydrogen, it is expected that this phenomenon has
its counterpart in the PPT in hydrogen.

2. Summary of the path integral Monte Carlo simulations

First, we briefly outline the idea of our scheme. All thermodynamic properties of
a two-component plasma are defined by the partition function Z which, for the case
of Ne electrons and Np protons, is given by Z(Ne,Np, V, β) = Q(Ne,Np,β)

Ne!Np! , with

Q(Ne,Np, β) = ∑
σ

∫
V

dq drρ(q, r, σ ; β), where β = 1/kBT . The exact density matrix
is, for a quantum system, in general, not known but can be constructed using a path
integral representation [14, 32, 33],

∫
V

dR(0)
∑

σ ρ(R(0), σ ; β) = ∫
V

dR(0) · · · dR(n)ρ(1) ·
ρ(2) · · · ρ(n)

∑
σ

∑
P (±1)κPS(σ, P̂ σ ′)P̂ ρ(n+1), where ρ(i) ≡ ρ(R(i−1), R(i); �β) ≡

〈R(i−1)|e−�βĤ |R(i)〉, whereas �β ≡ β/(n + 1) and �λ2
a = 2πh̄2�β/ma, a = p, e. Ĥ is the

Hamilton operator, Ĥ = K̂ + Û c, containing kinetic and potential energy contributions with
Û c = Û

p

c + Û
e

c + Û
ep

c being the sum of the Coulomb potentials between protons (p), electrons
(e) and electrons and protons (ep). Further, σ comprises all particle spins, and the particle
coordinates are denoted by R(i) = (q(i), r(i)) ≡ (

R(i)
p , R(i)

e

)
, for i = 1, . . . , n + 1, R(0) ≡

(q, r) ≡ (
R(0)

p , R(0)
e

)
, R(n+1) ≡ R(0) and σ ′ = σ . This means the particles are represented

by fermionic loops with the coordinates (beads) [R] ≡ [R(0); R(1); . . . ; R(n); R(n+1)], where q
and r denote the electron and proton coordinates, respectively. The general explicit expression
for high-temperature density matrix [14, 24, 34]) can be written as 〈R(i−1)|e−�βĤ |R(i)〉 =∫

dp̃(i) dp̄(i)〈R(i−1)|e−�βÛc |p̃(i)〉〈p̃(i)|e−�βK̂ |p̄(i)〉〈p̄(i)|e− �β2

2 [K̂,Û c] · · · |R(i)〉. The final
expression for the product of the high-temperature density matrices

∑Ne

s=0 ρs is given by

Ne∑
s=0

ρs(β) =



n∏
l=1

e−βUl (�β)

Ne∏
p=1

φl
pp




Ne∑
s=0

Cs
Ne

det
∣∣ψn,1

ab

∣∣
s

where

Ul(�β) = {
U

p

l (�β) + Ue
l (�β) + U

ep

l (�β)
}/

(n + 1).

Here Ul denotes the sum of proton–proton, electron–electron and electron–proton Kelbg
potentials taken for particle positions Rl and φl

pp ≡ exp
[−π

∣∣ξ (l)
p

∣∣2]
. So the density matrix

does not contain an explicit sum over the permutations and thus no sum of terms with
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alternating sign. Instead, the whole exchange problem is contained in a single exchange matrix

given by
∥∥ψ

n,1
ab

∥∥
s

≡ ∥∥e
− π

�λ2
e
|(ra−rb)+yn

a |2∥∥
s
. In our Monte Carlo simulations this determinant is

calculated by the direct methods of linear algebra [22–24]. As a result of the spin summation,
the matrix carries a subscript s denoting the number of electrons having the same spin
projection. As was suggested by Kelbg the effective potential can be obtained by solving
a Bloch equation by first-order perturbation theory. This procedure defines an effective off-
diagonal quantum pair potential for Coulomb systems, which depends on the inter-particle
distances rab, r′

ab. As a result of a first-order perturbation calculation, we get explicitly

�ab(rab, r′
ab,�β) ≡ eaeb

∫ 1
0

dα
dab(α)

erf
(

dab(α)

2λab

√
α(1−α)

)
, where dab(α) = |αrab+(1−α)r′

ab|, erf(x)

is the error function erf(x) = 2√
π

∫ x

0 d t e−t2
, and λ2

ab = h̄2�β

2µab
with µ−1

ab = m−1
a + m−1

b . To save
computer time we approximated the two-particle interaction potential by its diagonal elements
(r′

ab = rab) �ab(|rab|,�β) ≡ �ab(rab, rab,�β) = eaeb

λabxab

[
1−e−x2

ab +
√{π}xab (1−erf(xab))

]
,

where xab = |rab|/λab, and we underline that the Kelbg potential is finite at zero
distance. With these approximations, we obtain the expression for the high-temperature
density matrix with accuracy of order O[(β/(n + 1))2] and so for the total product of high-
temperature matrices with accuracy of order O[(n + 1) ∗ (β/(n + 1))2] [14, 24]. So for large
n the error of this density matrix representation goes to zero and it is possible to check the
accuracy of our calculations by calculating with different values of n.

To compute thermodynamic functions, the logarithm of the partition function has to be
differentiated with respect to thermodynamic variables. In particular, the internal energy E
follows from Q by βE = −β∂ ln Q/∂β leading to a rather complicated expression which can
be found in [24]. The result is well suited for numerical evaluation using standard Monte Carlo
techniques, e.g., [14]. Our procedure has been extensively tested. In particular, we found
from comparison with the known analytical expressions for pressure and energy of an ideal
Fermi gas that the Fermi statistics is very well reproduced with a limited number of particles
(N � 100) and beads (n � 20) for degeneracy up to nλ3 � 10 [22]. Furthermore, we
have performed simulations for strongly correlated hydrogen in a wide range of densities and
temperatures [22–24]. Below, we present new results for lower temperatures which indicate
the existence of phase separation. Besides the simulations for hydrogen, we have performed an
extensive analysis of electron–hole plasmas. Some of the results are presented in the following
section.

3. Numerical results for electron–hole plasmas

Since the PPT in dense hydrogen is still hypothetical and has not been observed experimentally,
it is reasonable to look for other systems where similar conditions exist. A suitable example
is electron–hole plasmas in low-temperature semiconductors, for which droplet formation
was well established and observed experimentally three decades ago [30, 31]. We, therefore,
performed DPIMC simulations for electron–hole plasmas. Below a critical temperature the
simulations exhibit anomalously large fluctuations and an unstable behaviour of the pressure.
The e–h plasma is found to phase separate and form large droplets [35]. The phase boundary
of the electron–hole liquid (e–h droplets) in germanium obtained by our DPIMC method is
presented in figure 1 together with the experimental data. We observe good agreement at the
wings of the curve, in particular at low density. At higher density (metallic branch) there may
be different sources of deviation, in particular not only difficulties in the numerical studies of
highly degenerated systems but also the complex band structure of germanium which, in the
simulations, was approximated by a two-band parabolic mass model.
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Figure 1. Phase boundary of the electron–hole liquid in bulk germanium [30, 31]. Temperature is
presented in units of the exciton binding energy.

4. Numerical results for high-density hydrogen

Let us now come to the numerical results for dense hydrogen. In this paper we concentrate
on the internal energy for T = 10 000 K which is well below the critical point of the PPT
predicted by chemical models (around T = 15 000 K). Consider first the general behaviour
of the energy, figure 2. The overall trend is an increase in the energy with density which is
particularly rapid at high densities due to electron degeneracy effects; this is clearly seen from
the ideal plasma curve (dash-dotted line in figure 2(b)). The nonideal plasma results show an
analogous trend. However, due to the Coulomb interaction the energy is always below the ideal
result. The deviations are particularly strong at intermediate densities, between 1022 cm−3 and
1024 cm−3, where the energy becomes negative. This is due to strong Coulomb correlations
leading, in particular, to the formation of bound states. This region where correlations
and quantum effects are strong is particularly challenging for theoretical description due to
the failure of perturbation methods and strong variation of the fractions of free and bound
particles. For this reason, here first-principle simulations such as PIMC are of particular
value.

In previous papers we concentrated on hydrogen at higher temperatures where the plasma
is weakly degenerate and moderately coupled [22–24], and we have obtained good agreement
with independent calculations by the restricted PIMC method (RPIMC) [18, 19] for the high
densities of interest here, i.e. n ∼ 2.5 × 1023 cm−3 and temperatures above T ∼ 50 000 K.
Turning now to lower temperature we find energies which are systematically lower than the
RPIMC results for plasma densities in the range of 2.5 × 1022–1024 cm−3 which is shown
in figure 2(b). Our analysis revealed that in the region where the average distance between
plasma particles is of the order of the size of a hydrogen molecule the homogeneous plasma
state becomes unstable, and many-particle clusters appear which are energetically favourable.
Such clusters and the possibility of an inhomogeneous plasma state are apparently excluded
in the RPIMC calculations by the additional assumptions (on the nodes of the density matrix)
used to reduce the region of integration and the sum over permutations to even (positive)
contributions only [17–19]. To verify that the deviations between DPIMC and RPIMC are
indeed due to many-particle clusters, we repeated the computations in a slightly modified way:
we artificially reduce the region of integration in the partition function to exclude configurations
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Figure 2. Internal energy of hydrogen for T = 10 000 K, (a) normalized to the energy of a
noninteracting electron–proton system and (b) in units of 2N · Rydberg. The curves show results
of PACH calculations (‘Pade’), our Monte Carlo simulations (‘DPIMC’), density functional theory
(‘DFT’) [36] and restricted PIMC data (‘RPIMC’) of Militzer et al [19].

with many-particle clusters, namely configurations, in which distances between three and more
particles are smaller than a value dmin varying from 1.3 to 2ao. As a result the simulations
revealed a plasma consisting of electrons, protons, atoms and molecules which were again
homogeneously distributed. At the same time the energy rises significantly and is now very
close to the RPIMC result (in the density interval where RPIMC data are available), see curve
labelled ‘DPIMC homogeneous’ in figure 2.

Let us now compare the DPIMC results to data from other approaches. One well-
tested method is based on Padé approximations within the chemical picture (PACH), see,
e.g., [4, 24] and references therein. These are analytical formulae constructed in such a
way that they correctly reproduce the known limiting cases of high and low densities and
temperature and interpolate between them. Another independent theoretical method is based
on density functional theory (DFT). Recently, Xu and Hansen [36] published data for hydrogen
at T = 10 000 K and rs � 1.5 which are included in figure 2(a) together with the Padé results.
Evidently, in the high-density limit, PACH and DFT coincide, cf figure 2. This good agreement
is not surprising, as the ideal Fermi gas limit is ‘built into’ each of the approaches. On the
other hand, the DPIMC data are systematically below these data for n > 1024 cm−3 because
there electron degeneracy becomes very strong which would require a drastic increase in the
number of beads and particles. However, the Padé results (in their present form) do not apply
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to situations with low degree of ionization and they exclude larger bound complexes such as
molecules and clusters. The DFT data, on the other hand, do not extend to the energy minimum
since they also do not include bound states. Interestingly, both Padé and DFT yield strong
fluctuations and increasingly unstable results for the thermodynamic functions below densities
corresponding to rs = 1.5, which is interpreted by the authors as the precursor of a possible
first-order phase transition [36]. In the region of the phase transition not only the equation
of state but also other thermodynamic quantities (e.g., the chemical potential isotherms) are
expected to have peculiarities such as van der Waals loops [3, 4, 11].

5. Discussion

Let us briefly discuss the implications of our results and note limitations. Our interpretation of
the droplets (which are clearly visible in the electron–proton configurations in the simulation
box [26, 35]) is that they are a direct indication of a first-order phase transition as discussed
in the introduction [9–12]. This is supported by our analogous results for electron–hole
plasmas in semiconductors in section 3. Despite this analogy, there are qualitative differences
between the two systems. E–h droplets in semiconductor are known to have a stable average
size (in the range of micrometres) which is established by the balance of surface energy and
recombination where the former tends to increase and the latter tends to reduce the droplet. In
dense plasmas, on the other hand, the latter mechanism is missing. This means that coexistence
of the two phases—the dense matter in the droplets and the low-density phase between
them—may be difficult to observe in a canonical simulation. Therefore, it seems preferable
to perform analogous simulations in the grand-canonical ensemble. This is also expected to
significantly reduce the instability region and the critical temperature which would then become
closer to the experimental result (for the semiconductors) or the theoretical prediction (for
hydrogen).

The main point of debate of the present DPIMC results is the low value of the energy
in the region of droplet formation, which at minimum is about three times lower than that
of molecular hydrogen. This is much lower than one would expect for a macroscopically
large system (interestingly, the energy in the semiconductor case is only slightly less than the
bi-exciton energy). There are two possible factors which determine the simulation accuracy
and which may be responsible: the limited number of particles and the finite number n of
beads (n = 20 in the simulations). These figures are determined by the presently available
computer resources. In particular, the limited number of beads poses problems as the density
increases. On the other hand, at densities around n = 1022 cm−3 where we first observe an
instability of the homogeneous state, degeneracy effects are still small and so is the lowering
of the energy due to the droplets. We therefore expect that this limitation has no influence on
the general existence of the droplets as could be proved by test simulations with n = 60. It
may certainly affect the observed value of the total energy at higher densities.

The second problem—small size of the simulations (only 56 electrons and protons are
presently feasible)—makes it impossible to extrapolate to a macroscopic system. Finite-
size effects are, of course, particularly important if the system is inhomogeneous as they
overestimate surface energy effects: our simulations yield just a very small number of droplets
(typically one to six) each containing 4 to 50 electron–proton pairs most of which are located
on the surface of the droplet. This, of course, leads to a lowering of the energy. Therefore, in
order to obtain more accurate data for the internal energy of a macroscopic two-component
plasma at ultrahigh compression, an increase in the simulation size (CPU time) by at least a
factor 10 is desirable which should become feasible in the near future.
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