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Abstract
Effective two-body potentials for electron–ion plasmas are analysed. Such
potentials which have been previously derived by Kelbg and others capture
the basic quantum diffraction effects and are exact in the weak coupling limit.
Moreover, using path integral Monte Carlo (PIMC) methods, they can be
applied to strongly coupled plasmas which include bound states. We investigate
the accuracy of the diagonal Kelbg potential (DKP) as well as the off-diagonal
Kelbg potential (ODKP) by comparison with accurate numerical solutions of
the off-diagonal two-particle Bloch equation. A significant improvement is
achieved by correcting the potential value at zero particle separation.

PACS numbers: 05.30.−d, 52.40.−w

1. Introduction

The behaviour of strongly correlated Coulomb systems at high pressure is of growing
importance in many fields, including shock and laser plasmas, astrophysics, metals,
semiconductors, dusty plasmas, etc. There has been significant progress in recent years
in studying these systems analytically and numerically, see, e.g., [1, 2] for an overview.
Analytical methods are based on perturbation expansions in the coupling strength and are thus
limited to regions of small coupling parameters, � < 1 or rs < 1, where � = e2/(r̄kBT )

and rs = r̄/aB (aB is the Bohr radius and r̄ the mean interparticle distance). The alternative
approaches are numerical simulations such as Monte Carlo or molecular dynamics (MD)
which have no limitations with respect to the coupling strengths. However, standard MD is
limited to classical systems. Nevertheless it can be extended to weakly degenerate plasmas
[3, 4] by replacing the Coulomb potential by effective quantum pair potentials, such as
proposed by Kelbg [5], Deutsch [6] and others e.g., [7–9]. However, no rigorous assessment
of the accuracy of effective potentials has been reported yet, which is one of the aims of this
paper. Similarly, this question is important for path integral Monte Carlo simulations (PIMC).
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Here, use of the Trotter formula allows one to map a strongly degenerate and/or strongly
coupled system to a weakly correlated nearly classical one which is dominated by pair
correlations. This, further, allows one to reduce the many-body problem to a two-particle
one which can be solved either exactly or by using quantum pair potentials, e.g., [10, 11]. The
latter case is particularly interesting due to the use of analytical potentials which themselves
have physical relevance, explicitly containing quantum effects.

In the present work we check the accuracy and the range of applicability of the Kelbg
potential for the case of strong two-particle correlations. The discussion of other types of
effective potentials goes beyond the scope of this paper. A detailed comparison of the present
results with other potentials will be given in a forthcoming publication [19].

2. Diagonal and off-diagonal Kelbg potentials

In the high-temperature limit the N-particle density matrix can be expanded in terms of two-
particle, three-particle, etc contributions. If the temperature is sufficiently high, two-particle
contributions are dominant. Here, we concentrate on the available analytical solutions of
the two-particle problem in the limit of weak coupling. In this case the two-particle Bloch
equation can be solved by perturbation theory,

ρij = (mimj)
3/2

(2πh̄β)3
exp

[
− mi

2h̄2β
(ri − r′

i)
2

]
exp

[
− mj
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j )
2

]
e−β�ij
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where i, j are particle indices, ρij ≡ ρ(ri , rj , r′
i , r′

j ; β), β = 1/kBT and �ij (ri , rj , r′
i , r′

j ; β)

is the off-diagonal two-particle effective potential. In the following we will consider
application of this result to Coulomb systems. First-order perturbation theory yields [12]
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ij |, erf(x) is the error function erf(x) = 2√
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j . The diagonal element (r′
ij = rij = ri − rj ) of �ij is just

the familiar (diagonal) Kelbg potential (DKP), given by

�ij (rij , rij , β) = eiej

λijxij

[
1 − e−x2

ij +
√

πxij [1 − erf(xij )]
]

(3)

with xij = |rij |/λij , and we underline that the Kelbg potential is finite at zero distance.
Since the Kelbg potential is obtained by first-order perturbation theory, its application

is limited to weak coupling (� � 1). Our present goal is to improve the Kelbg potential,
extending it to strong coupling, and make it possible to describe bound states of an electron–
proton pair. The improved Kelbg potential obtained appears to be valid for temperatures well
below the hydrogen binding energy.

3. ‘Exact’ pair density matrix and pair potential

There are various ways of computing the ‘exact’ off-diagonal pair density matrix. First, one can
use a direct eigenfunction expansion of the density matrix and calculate the contributions from
bound and continuum states. This method is particularly useful for the types of potentials where
analytic expressions for the continuum wavefunctions exist. Other cases require a separate
calculation for each matrix element ρ(r, r′; β) which may not be efficient for numerical
simulations with frequent use of the off-diagonal density matrix, such as path integral Monte
Carlo. Usually in such type of simulations it is crucial that the off-diagonal density matrix
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Figure 1. Diagonal effective e–p potentials for several cases: the pure Coulomb potential, the
‘exact’ pair potential Up (4), numerical results of Barker [15], the Kelbg potential �(r, r; β) (3)
and the Deutsch potential [6]. Each potential is given at several temperature values (from top to
bottom) T = 104, 105 and 106 K.

can be quickly evaluated for given initial (ri , rj ) and final (r′
i , r′

j ) particle positions. In the
present work, to solve this problem, we use the matrix squaring technique [13, 14]. If the
two-particle density matrix is known, the ‘exact’ quantum pair potential Up is defined as
(d denotes the system dimensionality)

ρ(r, r; β) ≡ 1

λd
β

e−βUp(r;β) ⇒ Up(r; β) = − 1

β
ln

[
λd

βρ(r, r; β)
]
. (4)

4. Numerical results

In this section we consider application of effective quantum potentials to strongly correlated
electron–electron and electron–proton pairs. First, in figure 1 we compare the effective
potential obtained using the DKP (3) and Up (4). Calculation results by Barker obtained from
a direct eigenfunction summation [15] and the Deutsch potential [6] are also included. First,
we see that the accuracy of the DKP is very good for temperatures T = 106 K and above.
At lower temperatures a systematic offset appears at the origin r = 0 which increases with
lowering of the temperature. However, we can note that in all cases the DKP goes almost
parallel to the ‘exact’ potential Up, in particular, it has the same r-derivative at r = 0, see [16].
This suggests that a simple correction of the DKP value at r = 0 may significantly improve
the accuracy, see below.

One can also note that our results for the ‘exact’ potential Up agree well with the results
of Barker. The comparison with the Deutsch potential shows that it has the same value at
r = 0 as the Kelbg potential but a different spatial derivative U ′

r at the origin, which leads
to deviations for r < aB . As can be seen from the figure, these deviations decrease for low
temperatures.

Next, in figure 2, we compare the effective potentials (given in units of Ha=2Ry) for
electron–electron interaction considering two possible cases of spin projections—triplet (left)
and singlet (right) states. It can be seen that spin effects play an important role, being especially
relevant at small distances (r � aB). The value of U

↑↑
ee (0) is infinite, whereas U

↑↓
ee (0) remains

finite. Even at high temperatures U
↑↑
ee differs significantly from U

↑↓
ee . At low temperatures it

appears as if spin effects become relatively less important, but this is not entirely true. Most
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Figure 2. Diagonal effective pair potentials for electron–electron interaction. Left: parallel
spins, U

↑↑
ee (r; β)—‘exact’ pair potential, ODKP—off-diagonal Kelbg potential, using the

antisymmetrical density matrix (6), DKP—using (7). Right: antiparallel spins, U
↑↓
ee —‘exact’

pair potential and DKP. Each potential is given at four temperature values (from bottom to top)
T = 31 250, 125 000, 250 000 and 106 K.

macroscopic properties depend on e−βU , and with decreasing temperature the product βU

is an increasing function. This means that the importance of the small distance region also
increases.

In figure 2 we also present the effective potentials obtained in the Kelbg approximation.
First, for the case when the electrons are distinguishable particles the potential U

↑↓
ee coincides

with the DKP (3). One can note that, compared to figure 1, showing the attractive electron–
proton potential which contains contributions from the bound states, here (right part of figure 2)
the DKP is closer to the ‘exact’ pair potential.

For parallel spins the coordinate part of the wavefunction (or density matrix) must be
antisymmetric, so the effective potential must be defined as

e−βU
↑↑
ee (r;β) = ρA(ri , rj , ri , rj ; β) = ρ(R, R){ρ(r, r) − ρ(r,−r)} (5)

where the two-particle density matrix is factorized into centre of mass and relative components.
Taking into account that the free particle density matrix ρ(R, R) = 1 and using for ρ(r, r)
equation (1), the effective potential for parallel spins reads

U↑↑
ee (r; β) = − 1

β
ln

[
e−β�ee(r,r) − e

− 4µee

2h̄2β
r2

e−β�ee(r,−r)
]
. (6)

Here for the off-diagonal density matrix we use the combination of equations (1) and (2). The
contribution to exchange comes not only from the kinetic energy part of the density matrix
but also from the nondiagonal potential �ij (r,−r) (2). If one uses the DKP as the diagonal
approximation for �ij (r,−r), then the above expression reduces to

U↑↑
ee (r; β) = �ee(r, r) − 1

β
ln

[
1 − e

− 4µee

2h̄2β
r2

]
. (7)

For r → 0 this potential shows a logarithmic divergency. In figure 2 the results for these two
cases (6) and (7) are given. One can note that the diagonal approximation (7) is less accurate
at all temperatures. At T = 106 K the effective potential (6) practically coincides with the
potential Uee obtained from the ‘exact’ two-particle density matrix.
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Figure 3. (a), (b) The original, equation (3), and the improved, equation (8), Kelbg potential
versus ‘exact’ result, equation (4) for T = 31 250 K. (c) Fit parameter γ for electron–proton (ep)
and electron–electron (ee) interactions as a function of temperature (γee(S = 0) is for electrons
with different spins, γee is a spin averaged result).

5. Improved diagonal Kelbg potential

Improved potentials were considered in [17, 18]. In [18] it was suggested that for the free
charges the real interactions have the same functional form as the Kelbg potential with an
additional free parameter γij ,

�̃(rij , β, γij ) = eiej

rij


1 − e

− r2
ij

λ2
ij +

√
π

rij

λijγij

(
1 − erf

[
γij

rij
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])
 . (8)

This modified potential preserves the correct first derivative, �̃(0, β)′r = − eiej

λ2
ij

, of the original

Kelbg potential (3) but, at the same time, the height of the potential at r = 0 is governed by
γij : �̃(rij = 0, β, γij ) = eiej

λij γij
. Thus, the parameter γij allows us to correct the height of the

DKP at r = 0 in such a way that the improved Kelbg potential achieves very good quantitative
agreement with the ‘exact’ pair potential Up in a wide range of temperatures.

In figures 3(a) and (b) we compare the DKP, improved DKP and ‘exact’ pair potential
Up for electron–proton (figure 3(a)) and electron–electron interactions (figure 3(b)). With the
additional parameter γij , the improved DKP practically coincides with the ‘exact’ potential
even at strong coupling (T ∼ 0.2Ry) giving a dramatic improvement of the original Kelbg
potential, cf figure 1. The temperature dependence of γij (figure 3(c)) was obtained by fitting
the values of �̃(rij , β, γij ) to Up (4) at r = 0. We also show the case γee corresponding
to results of the fitting procedure applied to the electron potential averaged over spins:
γee = −√

π e2β/λee ln
[

1
2

(
S

↑↑
ee + S

↑↓
ee

)∣∣
rij =0

]
, where See denotes the binary Slater sum for

two electrons.
The physical content of figure 3(c) is the following: in the limit of high temperatures,

both correction parameters γep and γee(S = 0) approach 1, i.e. �̃ij → �ij , which means
that the height of the potential at rij = 0 is determined by the De Broglie wavelength of free
particles, λij .3 For temperatures below one Rydberg γij starts to deviate from 1. The quantum
extension of particles is becoming influenced by interaction effects and is now of the order
λ̃ij = λijγij instead of thermal wavelength λij [19].

3 The analytical form of the Kelbg potential is not well suited to describing the interaction of electrons with parallel
spin. Instead, a suitable analytical approximation is given by equation (7).
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Consider first the e–p interaction. Here, obviously, for T → 0 the correct potential value
is given by the ground state energy of a hydrogen atom, i.e. �̃ep(0) → − e2/2aB . This leads
to γep → 2aB/λep, i.e. the effective quantum extension of the electron is given by the Bohr
radius. For a pair of electrons, on the other hand, if the temperature is lowered, Coulomb
repulsion leads to a growth of the effective quantum wavelength above the De Broglie value,
as can be clearly seen in figure 3(c). Due to the corrected value of the electron ‘size’, the
improved Kelbg potentials (8) are much closer to the ‘exact’ expression (4). Most importantly,
the potentials (8) are not limited to weak coupling as the original Kelbg potential and are,
therefore, of high value for both analytical and computational studies of quantum plasmas. A
more detailed analysis will be given in a forthcoming paper.

Acknowledgments

We acknowledge stimulating discussions with V Filinov, W D Kraeft, D Kremp, B Militzer
and M Schlanges. This work has been supported by the Deutsche Forschungsgemeinschaft
(BO-1366/3) and by grants for CPU time at the NIC Jülich and the Rostock Linux-Cluster
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