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A recently developed methd@emkatet al,, Phys. Rev. 59, 1557(1999; Kremp

et al, in Progress in Nonequilibrium Green’s Functiofg/orld Scientific, Sin-
gapore, 2000 p. 34] for incorporating initial binary correlations into the
Kadanoff—-Baym equation&BE) is used to derive a generalized T-matrix approxi-
mation for the self-energies. It is shown that the T-matrix obtains additional con-
tributions arising from initial correlations. Using these results and taking the time-
diagonal limit of the KBE, a generalized quantum kinetic equation in binary
collision approximation is derived. This equation is a far-reaching generalization of
Boltzmann-type kinetic equations: It self-consistently includes memory effests
tardation, off-shell T-matricesas well as many-particle effect@lamping, in-
medium T-matricesand spin-statistics effeci®auli-blocking. © 2000 Ameri-

can Institute of Physic§S0022-2488)0)01908-3

[. INTRODUCTION

Nonequilibrium properties of many-particle systems have traditionally been described by
kinetic equations of the Boltzmann-type. Despite their fundamental character, these equations
have well-known principal shortcomings, e.@),the short-time behaviott € 7.,—the correlation
time) cannot be described correctlyi,) the kinetic or the quasiparticle energy is conserved instead
of the total(sum of kinetic and potentiaénergy(iii ) no bound states are contained, & in the
long-time limit, they yield the equilibrium distribution and thermodynamics of ideal particles.

An important generalization are the well-known Kadanoff-Baym equations derived by
Kadanoff and Bayni,and KeldysH However, the original KBE contain no contribution from
initial correlations. Therefore, the KBE are unable to describe the initial stage of the evolution
(to=t=r7.) and the influence of initial correlations which can be important for ultrafast relax-
ation processes.

To include initial correlations into the KBE, various methods have been used, including
analytical continuation of the equilibrium KBE to real timés® and perturbation theory with
initial correlations>®° A convincing solution has been presented by Danielewiaho devel-
oped a perturbation theory for a general initial state and derived generalized KBE which take into
account arbitrary initial correlations. Finally, a straightforward and very intuitive method which
does not make use of perturbation theory but uses the equations of motion for the Green's
functions instead, has been developed in Refs. 1 and 2. While perturbative approaches are re-
stricted to situations where the coupling is weak, our method is valid for arbitrary coupling
strength. In particular, it allows to consider systems with strong coupling, such as Coulomb
systems at low temperatures and/or high dengtg., metals and dense plasmasd nuclear
matter, and to include bound states. In Sec. Il we briefly recall the main ideas of our method. After
this, Sec. Il is devoted to the application of our approach to the T-matrix approximation. In Sec.
IV we derive a non-Markovian Boltzmann equation in binary collision approximation.
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Il. INITIAL CORRELATIONS IN THE KADANOFF-BAYM EQUATIONS

Starting point of our approach is the first equation of the Martin—-Schwinger hiefarchy

(Sac=Uac)Geb= Fab* it Vag,ceGeebds (N
with
SaC=<ihi+@>5 2
at,  2m, ) ¢
together with an initial condition foGe g
Geebdlt,=t,=t, =ty=t,= Geb(to) Ged(to) = Gealto) Genlto) + Ceepalto)- ()

Summation/integration over repeated indices is implied. Heiggnotes initial binary correlations
in the system, andll is an external potential. The self-energy is defined by

0G¢p
6Uqe)

Eachb: *ih Vad,cche,bd: *ih Vadx:e[ GepGed™ (4)

Considering Eq(4) in the limitt=t'—t,, we get explicitly

fcﬁiwuaﬂewle=iﬂhvm£&6mawemuatGmuwewaw+cwbawn.(9

Since the time integration is performed along the Keldysh-Schwinger contour, only time-local
contributions of2, survive on the lhgleft-hand sidé The last term on the rhs shows that there
must exist, in addition to the Hartree—Fock contributiéfirst two termsg, another time-local part,

which is related to initial correlations. That means, the self-energy has the struttdemotes the
self-energy in the adjoint equatipn

Sab=3an+ Zao+ Sab (6)
Sap=SRp 35+ 20, (@)

with the time-local termghere, we give the time arguments explicjtly
St t) =20t to) a(to—t), ®

S )=S0 (to,t) S(t—to). (9)

The further steps aim at the determination of these initial correlation terms and are sketched
here, for details, we refer to Refs. 1 and 2. Insertiiginto (1), one obtains a Dyson—Schwinger
equation fort,t'>t,

(Sac_uac_zac)c‘cb: Sabs (10)

which can be cast into the for®, . G.,= d,,. Functional differentiation of this equation with
respect to the external potentidlyields a Bethe—Salpeter equation 86G/sU. Performing the
same steps for the adjoint equation(ip as well, a solution fo6G/ U, which incorporates initial
binary correlations, is obtained

5Gab:G Gt G et o+ 2ey
5Udc ad“ch ae 5Udc

Gip~ GaeGciCet ghGgnGhas (17)

Downloaded 24 Jan 2003 to 139.30.43.211. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



7460 J. Math. Phys., Vol. 41, No. 11, November 2000 Semkat, Kremp, and Bonitz

whereC has the time structure
Cab.cd(talp tetq) =Cap ca(to) 8(ta—tg) 8(t, —tg) 8(t—to) (tg—to). (12

lll. GENERALIZED T-MATRIX APPROXIMATION

In the previous section we have obtained a formal decoupling of the Martin—Schwinger
hierarchy by introduction of the self-energy. Furthermore, our approach shows, that initial corre-
lations can, in principle, be straightforwardly included into this quantity. The next step on the way
to a quantum kinetic equation is to choose a suitable approximation for the self-energy. Among the
standard schemes are the random phase approxim@i®A), describing dynamical screening,
and the T-matrix(or binary collision approximation. The determination &f in these schemes
without inclusion of initial correlations is well-known. For example, the T-matrix approximation
leads to a non-Markovian Boltzmann equation. In Ref. 12, this equation has been derived within
the density operator technique. The nonequilibrium Green’s functions approach, however, opens
the possibility to derive two-time quantum kinetic equations with their well-known advantages
(e.g., they fully include the kinetic and spectral one-particle propgrti@se-time equations are
obtained by taking the time-diagonal limit of the two-time equations in a much simpler way than
within the density operator technique.

In the following, we will use the nonequilibrium Green'’s functions theory to derive a gener-
alization of the usual T-matrix approximation, which includes initial binary correlations.

According to Eqs(4) and(11), the self-energy is determined by the functional equatibns

. A2 pt+ 2]
2ab: *ifh Vad,ce 5chedi 5echd+ Gchengg,thhdi Gch ’ (13)
e
. 2 ar+ 4]
2ab=Fih) 836Gcg* 0acGyet GdgCag,thchhedech Vce,bda (14
e
N_ s s
Sab= Tifi Vagce] GerGeCrg,bnCGha* Ger 57— » (19
60U ge
A”\;
& . a
2= %1% GagCaginGrcGne* 55— Gre| Veeba- (16)
O6U¢qq

Notice especially that, due to the structure of the self-energy, the arguments of the functional
derivative in the equations f& and3 are the same in both cases

E—{-SINZE+EIN:2C+E|N+SIN:§' (17)

We now introduce an effective two-particle potent&élby

Sy 034, G 5G
ab: ab Ef=iiﬁEaf e ef, (18)
O0Ucqg  6Get 0Ugq " 0Ugq
and define a generalized T-matfix
Tab.cd= Eabcd ¥ 17 EaectGigGhelgbhd™ EaectGrgGheCgbind- (19
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In terms of Feynman diagrams, E4.9) reads(the shaded block denotes the initial correlaton

g = = * = *

(1

Comparing Eq(19) with the solution(11) for §G/8U, one obtains the relation

S
Uy

=*if GyeZaebtGrc - (20)

So we could identifyZ7 with the correlated part of the two-particle function without the bare initial
correlationC. The equation for the self-energy now takes the form

S ab=F 11 Vg cel OcbGed® evGedt GeiGeCrg,onGhat i GeiGegTtg ohGhad} - (21

Functional differentiation of this equation yields a relation #y which depends ofi and on the
quantity 53N/ 5G=+i# ®. Inserting this relation into Eq(19), and evaluating the functional

derivative53™N/ 5G, one arrives at two coupled equations foand®, where self-energies arl
have been eliminated. Keeping only the ladder-type terms, these equations can be written as

Tab,cd= Vab,cdT Pab,cdt Vab,efGegGinCyn,cat i1t VabeiGegGnZgh,cds (22
D ap,ca=Cab,etGegGnVghcat 1 Pap etGegGnVgn,cd- (23

Equations(22) and (23) can be solved easilisee the Appendjx yielding an explicit expression
for T

Tab,cd= Tab,catT 17 Tap etGegGinCqn.ijGikGii Tui,cdt Tab,etGCeqGthCqh,caT Cab,etGegGinTghcd:

(24)
or, in terms of Feynman diagrams
7] - [+ [T
7 o
+ +
T ¢ %A T

Here, T denotes the well-known “ladder T-matrix” which obeys

Tab,cd= Vabcdt it Vab,efGengthh,cdi (25

T=M+V T

The system$22) and(23) can be regarded as a generalization of the usual T-matrix equasnn
where Eq.(24) shows explicitly the corrections which are due to initial correlations.

If we now insert Eq(24) into the equation for the self-energ®l), we obtain, in T-matrix
(binary collision approximation
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S ac= *ifi TapcdGab* 1% Tap etGegGthCah.cdCab (17)2 Tap etGegGtnCyhij GikGii Tki.cdCab .
(26)

/-<\

— )
(=N =[]+ [ ]+

and analogously,

S ac= *i# Tap caGaptih Cab.etGeqGthTghcdCdb™ (1%)? Tap 01GeqGthCqh.ij GikGji Tki.cdCab

@7
m=T+//T+T

Comparing these results with the predicted structure of the self-energieg6Egrd(8), the
time-local contributions are identified as

SN=*if TapetGegGinCqh.caGab- (28)

SMN=+if CapeiGegGrnTgncdGab (29)

or, diagrammatically

& - T

Interestingly, the correlation pa¥C of the self-energy contains an initial correlation contribution,
too

S5=*ih TapcdGap (1%)? Tape1GeGinCqh.ijGikGii Tki.cdCab. (30)

and, again in diagrams

(A =TT

With Egs.(26)—(30) we have found a generalization of the T-matrix approximation. In addition to
the usual ladder term, the self-energies contain explicitly contributions of initial correlations.

All relations derived so far are valid on the Keldysh—Schwinger contour. In order to obtain the
Kadanoff-Baym equations and kinetic equations for the Wigner function, it is now necessary to
specify the position of the time arguments of Green’s functions on the contour. Then we obtain
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from the Dyson equatiorfl0) the well-known Kadanoff-Baym equations for the correlation
functionsg= (in the following, small letters denote quantities on the physical time axis, and the
time arguments will be shown expliciily

J dt{sac (, t) 0' (t t)}gcb(t t')= J’ dt{aac(t t) Uac(t t)}gcb(t t’ )+J O'ac(t t)
X{gap(t, ) —gg(t,t)}, (3D)
f dt gzt H{sdy(t,t") —ofh(t,t)}= f dt{gac(t,t) —gact, D} ogy(t,t)) + f ga(t,1)

x{og(tt) —og(tt)}) (32
The self-energies read in T-matrix approximation

Ufc(tvt’)ztiﬁtfb,cd(t!t,)gfb(t’at)iihtgt;)l,,r\:ld(tt )Gap(t’ 1) Fifi thy co(t,t)ghu(to.t),

(33
Oae(Lt) =ik t5, cq(t,t)GT,(t 1) T i tS N6t ) ggu(t' D £if thy c(t,t)gR(t’ o),
(34)
a-ac(tt )= +|h(vabcd Uabdc)gdb(tt yo(t—t"), (39
where the initial correlation contributions are given by
ab cd(t t’ ) f dttab ef(t t)gefgh(t t0)Cgh cd(to)é(to t’ ) (36)
ab Cd(t t ) f dtcab ef(to)gefgh(to t)tgh cd(t t )5(t0 t) (37)

tehea(t,t’ )_'ﬁf dtdttab (DGR n(1t0) Canii (1) G1 1 (to, DR ca(tit)), (38)

while the greater—less and the retarded—advanced T-matrices obey the equations

fb,cd(tvt,):ihf dTUab,efBSf,gh(t:t_)tgzh,cd(t_:t’)+iﬁJ' dTUab,efgff,gh(tat_)tgh,cd(t_'t’)'

(39
tahrea(tt) = vap,cqd(t—t') +i f dtvapeDaron(t Dighea(t,t), (40
where we introduced the abbreviations
GRANEE) =g LINGRAME), G5 gn(tt) =gay(tt )R (t.t)), (41)
CEnt ) =2 0L (t=t){G 5 gn(tt) =G 5 gn(tt))}. (42
A further important relation is the optical theorem, which follows from ES) and (40):
tohca(t,t) =ik f dtdttl, ot 0G5 gn(t, Dign calt,t)). (43)
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Equations(31)—(43) represent the Kadanoff-Baym equations in the generalized binary colli-
sion approximation. Here, the T-matrix contains contributions which are due to initial binary
correlations. These additional terms can be separated from the “usual” T-matrix, and, in particu-
lar, do not influence the structure of the Lippmann—Schwinger equéatin

IV. NON-MARKOVIAN BOLTZMANN EQUATION

In the previous section, we presented a far-reaching generalization of the usual T-matrix
approximation by incorporating initial correlations. This way, the Kadanoff-Baym equations have
become sufficiently general to describe the evolution of a many-particle system on arbitrary time
scales, in particular on ultrashort times after an excitation. Their solutions, the two-time correla-
tion functions, contain a tremendous amount of information on the statistical and dynamical
properties of a strongly correlated many-particle system, fully including danipfagime) of the
one and two-particle staté$However, in many cases the information contained in the Wigner
distribution is sufficient. Therefore, in the following, we will derive an equation for this function,
i.e., a kinetic equation in a narrow sense.

For this purpose, we consider the Kadanoff-Baym equafiggs.(31) and(32)] in the limit
of equal timest=t" and subtract them from each other. The result is an equation for the distri-
bution function which reads, in momentum representaiva consider a homogeneous system
without external forces

9 t _ _ _ _
Ef(p,t)=if dt{o”(p,t,t)g~(p,t,t) —o=(p,t,1)g” (p,t,1)
to

+g=(p,t, )0~ (p,t,H)—g” (p,t,1) o~ (p,1,1)}
=1(p,t)+1'(p,1). (44)

This so-called time-diagonal equation is a very general representation of a kinetic equation. The

rhs describes the influence of collisions as well as initial correlations on the Wigner distribution

and is, in principle, determined by the exact self-energy and the two-time correlation functions.
In order to obtain a closed kinetic equation, two major tasks renfigiAn approximation for

the self-energies has to be chosen, @ndthe reconstruction problem, i.e., the determination of

g= as a functional of the Wigner distribution, has to be solved. The first task has already been

dealt with in the previous section, with the result being the generalized T-matrix approximation,

given by Eqgs(33)—(43). Let us now consider the reconstruction problem. In order to obtain the

functional relatiorg==g=[f], we use the generalized Kadanoff-Baym an$at£BA) proposed

by Lipavskyet al1®

g=(p,t,t")=={gR(p,t,t") f=(p,t") —f=(p,tH g*(p,t.,t")}, (45)
with f<=f andf~=1+f. For the productg = then follows:
Gt ) =Gt t ) Ft ) +FRHGt,t), (46)

where we used the abbreviatioﬁ§2=f%(pl)f%(pz) and G1,=G(p1,p,). From Eq.(46) follow
relations between the functiogg¥* andGF'A which were defined in Eqg41) and (42)

R, =GRt INy(t), (47)
Tt =—Ny(HGMt,t), (48)

where we introduced the Pauli blocking factdy,= 1=+ f(p;) =f(py).
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Now we insert the self-energies in T-matrix approximation, E§8)—(38), into the time
diagonal equatiofiEq. (44)], replacingt= with the help of the optical theoreif@3) andG= by
means of the reconstruction ans@édf). The result is the collision integral

— 2
1(p1,t) Uﬁ).[(2wh)3(2wﬁ)3(2wh)3[dtdtdt

)]

+tR(p1p; tﬂ@ﬂ@z(ﬁ_)t’*(ﬁﬁi plpZT) g?z(t:,t) [E1>2(t_) Frt)— E1<2(t_) F 1>2(t=)]

X{t*(p1p; t,EﬁzT)?i‘z(Tt_)tA(EﬁzT. plpzT)g/fz(t:.t)[Efz(t:) Fit)—FF ot

— G OR(p1P2 1 p1p2 DT L, OA(PLP2 1 PPz DIF i DF s 1)~ Fig D F (1)

— R DR(PaPa 1P DG L OA(PIPs tipapa DIF A D i D) — F(DF A D1,
(49)

with GFA=GRA(p;,p,) and tRA(pip,t,pip2 t) = (p1pa|t¥A(t, t)|p1p,), and the collision inte-
gral arising from initial correlations'®

dp, dpy  dp,
(27h)2 (27h)® (27h)3

I'®(py,t) =it f f dt{tR(p1p,t,p1P2 ) K(P1P2 t,P1P2 L)

— K(p1P2 t,p1P2 )tA(P1P2 t,p1P2 )}

—<m>2J dp, dp, dp, dp; dp,
(27h)2 (27h)2 (27h)2 (27h)° (27h)3

X f dtdtdt{tR(p.p,t,psP2 1)A(P1P2 t,P1P2 DTA(PLP2 T,P1P2 N1 1)G1(T,1)

+G (LN (DR plpzT.EﬁzT) K(pap2 t,pap2 )A(P1p2 t,p1p2 1)}, (50)
with
K(p1p2 t,p1p2 1) =G 5L, to)C(Papa.P1P2;ito) Grslto, 1) (51)

With Egs.(44), (49), and(50) we have obtained a very general quantum kinetic equation. The
character of its approximations goes far beyond that of the usual Boltzmann equation. The colli-
sion integrall (p;,t) was derived without any approximation with respect to the times and thus
fully includes retardation and memory effects which is usually referred to as non-Markovian
behavior. Many-particle effects, as for instance self-energy and dartpimgg spin statistics
effects(Pauli blocking are included. So far, no restriction has been introduced with respect to the
retarded and advanced propagai@Fé”. In principle, they are to be determined self-consistently
from their KBE which follow easily from Eq(10). However, to avoid this essential complication,
in most cases approximations are used. For example, in the quasiparticle approximation, the
propagators are given explicitly by

GRAL) =

(ih)z@[t(t_tr)]e—i/ﬁ[E12+iF12](t—t')' (52)

with E;,=(p3/2m) + (p3/2m) + Reot+Reoy andT ,=Im of+Im of.
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Furthermore, the retarded and advanced T-matrices are many-particle generalizations of the
familiar T-matrices of quantum scattering theory. They have to be determined from the
Lippmann—Schwinger equatidqd0) which reads in momentum representation

tRA(p1pat,pipst ) =v(py—py)(27H)3S(py+pa—py—Ps) S(t—t)
" f dp;  dp,
(27h)3 (27h)3

fdTv<p1—Hl)<2wh>35<pl+pz—ﬁ—ﬁz)

XGRA(py, P2t DIRA(Pypo t,pipst!). (53

The collision integral '®(p,,t) contains the terms arising from binary correlations, existing in
the system initially. It should be stressed explicitly that the structure of these contributions is
completely general and does not depend on parameters characterizing the system, such as coupling
strength or degree of degeneracy. Furthermore, the inclusion of initial correlations does not de-
pend on their actual form, i.e., the form of the functionThe damping of the two-particle
propagators leads to a decay of this collision term, i.e., the initial correlations die out on a time
scale which is determined by the one-particle damping rétes.

Finally, we want to remark here that our result for the non-Markovian Boltzmann equation is
in agreement with the result derived within the framework of the density operator technique, see
Ref. 12.
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APPENDIX: SOLUTION OF THE GENERALIZED T-MATRIX EQUATIONS

We rewrite Egs.(22) and (23), which contain the ladder-type terms of the generalized
T-matrix (19)

Zalb,cd: Vab,cd+ (bab,cd+ Vab,efGengthh,cd+ it Vab,efGengh%h,cd ' (Al)
q)ab,cd: Cab,efGengthhcd"' if (I)ab,efGengthh,cd . (AZ)

Due to the structure of EqA1), 7 can be split into three parts

Tabca=TSncat Tapeat Topeds (A3)

T o= Vab,catif Vap etGedGnTincd (A4)

T8 6= Vab,etGeGhCahcdt i7i Vab etGegGinT Sncd. (AS5)
TG ca=Pavcatifi Vap eiGecGinT Sica- (AB)

Obviously, Eqg.(A4) coincides with the well-known ladder equation of the T-matrix approxima-
tion. Thus, we can identif@® with the usual T-matrixI. The ladder equatiotA4) now serves
as a basis for the solution ¢A5) and (A6). If one assumes fo¥(B) the form

ﬁ%?cd:Tab,efGengthh,cdi (A7)

Eq. (A5) is valid if (A4) holds. In order to determin&(©), Eq. (A2) has to be considered. This
equation is fulfilled if® is of the structure
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q)ab,cd:Cab,efGengthh,cdv (A8)

if the adjoint equation tqA4) is valid. Due to the symmetry properties ©f Eq. (A4) and its
adjoint are equivalent. Inserting\8) into Eq. (A6) and assuming‘® to be of the structure

T;%?cd: Cab,etGegGtnTghcat it Tap eiGegGinCqn.ijGikGii Tki,cd: (A9)

Eq. (A6) is fulfilled, again under the assumptidqA4). Collecting all parts togethef] can be
represented as

Tab,cd= Tab,cdt 17 Tap etGegGinCyh,ijGikGii Ti,cdT Tab,efCegGinCyn,cat Can,efGegGinTgh,cd:
(A10)
together with the equation for the well-known “ladder T-matrix”

Tab,cd:Vab,cd+iﬁ Vab,efGengthh,cd- (A11)
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