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Path integral Monte Carlo simulation results are presented which allow to characterize the equi-
librium properties of a few-electron system in a 2D harmonic trap in rigorous manner. In parti-
cular, Wigner crystallization is observed and investigated in a broad range of temperature and
confinement strength. An analytical expression for the phase boundary of the Wigner crystal is
obtained.

In recent years, there was growing experimental [1, 2] and theoretical [3, 4] interest in
few-electron systems confined in quantum dots. These systems promise a large variety of
applications in optics and transport. An important prerequisite for this is a detailed
theoretical understanding of their equilibrium properties which, until now, are only par-
tially known. The limiting behavior at zero temperature has been explored in Hartree-
Fock calculations [4] and exhibits a transition from a Fermi liquid (FL) to a Wigner
crystal (WC) via an intermediate ordered state called ‘“Wigner molecule” (WM).
Furthermore, recently a crossover FL — WM was reported for finite temperatures too
[3].: Up to now, it is not clear if there will be a further transition to WC-like behavior at
finite temperature. In this paper, we present clear evidence for crystallization of quan-
tum confined electrons, analytical results for the whole phase boundary and establish
the relation to the crystallization in quasi-classical systems for which it was originally
predicted by Wigner [5].

The theoretical analysis of quantum confined electrons at finite temperature is com-
plicated since strong Coulomb correlations, degeneracy and Fermi statistics have to be
accounted for simultaneously excluding e.g. perturbation or mean field approaches. The
best candidate to explore this region is the path integral Monte Carlo (PIMC) method.
We, therefore, have performed extensive direct fermionic PIMC simulations for varying
numbers of electrons in a harmonic trap.

We consider a finite 2D system of N electrons with zero total spin in a thermostat of
temperature 7. The electrons interact via the repulsive Coulomb potential and are con-
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fined in a harmonic trap of strength wg. The system is described by the Hamiltonian
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where m™* and ¢, are the effective electron mass and background dielectric constant,
respectively. The characteristic energy scales in the system, corresponding to the three
terms in Eq. (1), are the thermal energy (T) = kg7, the zero-point oscillator energy
Uy = hw, and the average Coulomb energy (V) = €?/ey7; and the relevant length scales
are the extension of the ground state wave function, 2= h/m*a)o, the effective Bohr
radius ag = h’*c,/m? and the mean interparticle distance 7 (first maximum of the pair
correlation function). Our simulations showed that, throughout the WC phase (at least
for N < 40), 7 is always close to ro given by €?/eyrg = m*w?r}/2. The thermodynamic
state of the system is defined by the dimensionless parameters A = e*/eplghwy and
Tw = kB T/ ha)o.

Wigner crystallization is generally known to occur when the Coulomb energy exceeds
a certain threshold. Specifically, in a confined 2D system, (i) in the classical limit, WC is
independent of the confinement and given by a critical value of the classical coupling
parameter, ' = (V)/(T) ~127...137 [6] and (ii) in the limit of strong degeneracy,
WC appears when the Brueckner parameter rs = 7/ap exceeds a critical value which, in
an infinite 2D system, was found to be r&" ~ 37 [7]. Below, we present the first critical
data for finite quantum systems and demonstrate how to connect both limits. To follow
the phase boundary of the Wigner crystal, calculations in a broad range of parameter
values 4, T,, are necessary while keeping the particle number constant. Below we show
results for N =10 and N = 11. We performed path-integral Monte Carlo simulations
which allow to treat quantum, spin and Coulomb interaction effects rigorously (for nu-
merical details, see Ref. [8]).

Figure 1a shows a snapshot of the density distribution of 11 electrons in the WC
phase. We observe two shells containing 8 and 3 electrons, respectively (in the case of

Fig. 1. Snapshots of the density distri-
bution of N =11 electrons in a harmo-
nic trap for three values of the confine-
ment strength 4 and 7,, = 0.04 = const:
a) in the WC phase (4 =32), b) near
the melting point (A =14), c) in the
WM phase (4 =10). Coordinates are
scaled in units of ry. d) Angular pair
distribution functions of electrons on
the outer shell for the cases (a) to (c).
a denotes the angular distance between
two of the outer electrons with respect
to the trap center




Path Integral Simulations of Crystallization of Quantum Confined Electrons 233

18 [ - neto  Ne10 Fig. 2. Heat capacity for N = 10
16| — =11 — Nz (dashed line) and N = 11 (full line)
S 14 electrons in the vicinity of the
< 12 Wigner crystallization transition for
g, A=76 A =26 (left) and A =76 (right). C,
3 0 in units of kg
o 8
Q
5 6
T 4
2
T S0 . s e 107 S0 . s a0

log T, log T,

10 electrons, there are 2 electrons on the inner shell). Melting of the WC occurs if
electrons start to hop from one shell to another which may be caused by an increase of
temperature or density. Figures 1b and c¢ show melting by compression (decrease of 1)
at constant 7, where (b) is near the transition point and (c) in the WM phase. Evi-
dently, from (a) to (c) the individual peaks broaden until their width becomes compar-
able with the inter-particle distance, and we observe increased tunneling between the
two shells which eventually leads to melting of the crystal. Notice that across the phase
boundary, the electron probability density (Figs. 1a to c) and the pair distribution func-
tions (Fig. 1d) undergo continuous changes and are, therefore, not suitable to localize
the phase transition. Similar, most macroscopic quantities, such as the total energy,
change smoothly. A more sensitive quantity is the specific heat which is shown in Fig. 2.
We have found that even more sensitive to the WC transition is the magnitude of the
radial fluctuations (1) = N~ SN {(r2) — (r)*} (r; is the distance of particle i from the
center of the trap), which exhibits well pronounced jumps along the whole phase
boundary [8] and thus is a suitable criterion for the transition.

We have performed extensive simulations in order to obtain the phase boundary of
the Wigner crystal in the whole A-T,, plane, the results are shown by the crosses in
Fig. 3. In particular, we found that the zero temperature asymptotics is given by
Aa(Ty =0) = 15 £ 1, for N =11 (and 28 + 1, for N = 10). This corresponds to a critical
value of ry =46 +4 (107 £5). On the other hand, for sufficiently high temperatures,
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Fig. 3. Phase diagram for the Wigner crystal
with N =11 electrons in a harmonic trap.
Crosses are the simulation points. Dashed line:
phase boundary of a macroscopic classical 2D
; WC, I'; =137. Full line: phase boundary for
/  WIGNER MOLECULE the WC computed from Eq. (4) using y = 10.

r 7/ . For comparison, the dash-dotted line shows the
L //" | analogous result for the phase boundary in the
ot case of N = 10 particles
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T, > 0.1, we observe that the phase boundary is well approximated by the classical
coupling parameter ' using critical values of I’ gL ~ 143 +£9, for N =10, and 100 £ 5,
for N =11. Our analysis has revealed that there exists a simple analytical expression
for the whole phase boundary. To derive it, we consider the mean kinetic energy of
particles in a harmonic trap at temperature 7,

ha)() ha)o

h 2
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where y is a free parameter (the familiar result for non-interacting particles corre-
sponds to y = 1). This suggests to define a generalized coupling parameter (order param-
eter), in analogy to I'“!, as
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The phase boundary of the WC obtained from Eq. (3) is given by
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and depends on two parameters, I and y. It is obvious to choose [y=T g} to assure
the correct high-temperature limit of formula (4). Further, we determine y in order to
fit the zero temperature simulation data. We found that a value y = 10 works for both,
N =10 and N = 11 particles. Most interestingly, this choice of y fits the whole phase
boundary data without any additional parameters as can be seen from Fig. 3 (cf. the full
and dash-dotted lines for N = 11 and N = 10, respectively).

The reason for this surprising agreement is that our definition of y effectively re-
scales the oscillator energy, fiwmg — hwo/y, cf. Eq. (2), which is of the order of the en-
ergy needed for inter-shell tunneling — the dominant melting mechanism at low tem-
peratures. To generalize our result to other particle numbers and situations remains an
interesting question for future investigations. We expect that Wigner crystallization
should be observable in semiconductor quantum dots with sufficiently weak confine-
ment potential (below 1 meV) at helium temperatures.
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