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Quantum kinetic equations for nonideal plasmas: Bound states
and ionization kinetics
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(Received 25 May 1999; accepted 1 July 1999

In this paper, nonequilibrium properties of strongly coupled plasmas are considered. Usually, such
problems are dealt with using Boltzmann— or Lenard—Balescu-type equations. However, for the
application to strongly coupled plasmas, these equations exhibit several shortcomings. So, it is not
possible(i), to describe the short time kinetids,), to recover the corre¢energy conservation laws

and thermodynamics, andiii), to account for the formation or destruction of bound states.
Therefore, the kinetics of strongly coupled plasmas is considered starting from the Kadanoff—-Baym
equations, which are known to overcome the above limitations. This is demonstrated by a numerical
solution of the two-time Kadanoff-Baym equations in second Born approximation. To be able to
discuss approximations which are physically more interesting, it is advantageous to proceed to the
time diagonal Kadanoff-Baym equations. In first order gradient expansion, generalizations of the
Boltzmann and of the Lenard—Balescu kinetic equations are derived accounting for the bound state
problem, too. Thus, the shortcomin@$—(iii) mentioned above are overcome. Finally, the kinetic
equations are applied to the problem of ionization kinetics.2@0 American Institute of Physics.
[S1070-664X00)01801-7

I. INTRODUCTION 1 [ dp,dp,dp, _
. ) o ) |(p11t):vfﬁ2775(E12_E12)

In this paper, we discuss the nonequilibrium properties (2m)
of strongly coupled plasmas, which are essentially influenced X|(p1pa| T(Exa+i €)|Prpa) |2
by degeneracy and correlation effects such as dynamical L - -
screening, self-energy, phase space occupation, bound states, X{ffo(1xf)(1xfy)—Fifo(1=f)(1x1,)},
and lowering of the ionization energy. We will show which @)
generalizations of conventional kinetic theories have to be
performed in order to properly include these effects. with f,="f(py,t),f1=F(p;,1),E1n=E,+E,, etc. This colli-

Usually, nonequilibrium properties of many-particle sys-sjon integral shows the typical transition probability for a
tems are described by kinetic equations of the BO|tzma””fwo-particle process in terms of than-shell Fmatrix. Fur-
type, thermore, we have the usual combination of distribution

functions. Due to the phase space occupation factors (1
d JE 9 JE 4 B +1f), the integral(2) is applicable to fully degenerate sys-
ﬁ“L p IR IR dp f(p.RO=1(p,R1). 1) tems, too, where the uppéower) sign refers to bosonder-

mions. For systems with Coulomb interaction, it is appro-

Equation(1) is an equation of motion for the Wigner distri- priate to apply the Lenard—Balescu collision integral which

bution functionf which is the quantum mechanical generali- déScribes dynamical screening effects within the random
zation of the classical one-particle distribution function. Of Phase approximatio(RPA),

special interest here is the collision integtalbecause it o — 2
accounts for the change of the Wigner function as a result Olf(pl,t) - f dp-dp,dp, V(p:— pl)_ ‘ (27)2
correlations. Its form is determined by the type of the inter- (2m)° e}(p1—p1,E1—Eq b)
action between the particles.

In the case of short-range interactions, it is appropriate to X 8(P1+pPr—P1—P2)27S(Eqo— Elz)
apply the binary collision approximation, which leads to the
Boltzmann collision integral X{f1fo(1Ef)(LEfy)—fifo(1Ef) (11},

()

@Author to whom correspondence should be addressed. Electronic mail:
wolf kraeft@physik.uni-greifswald.de In Eq. (3), the transition probability is expressed in terms of
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Here, the first right-hand sideRHS) term accounts for the
influence of initial correlations, and the integral describes
memory effects by integration over the past. For such type of
equations, Prigogine introduced the temon-Markovian
evolution equations.

In this paper, we show how to systematically set up a
quantumkinetic theory for nonideal plasmas which accounts
for the features just mentioned and which overcomes the
shortcomings of Boltzmann-type equations.

Distribution

Il. GENERALIZED KADANOFF-BAYM EQUATIONS

The starting point for our further considerations are the
generalized Kadanoff—-Baym equati8néBE), which are
equations of motion for the two-time single-particle correla-
tion functionsgy (11'),

(128

2

. 1 = — =

i =+ 5|07 (1)~ | dri2ge(riraty)gr (rotety
FIG. 1. Numerical demonstration of the irreversible time evolution of the( aty Zm) g1 (119 13 he(Mar 1t g1 (Matyty)
Wigner distribution function from the solution of the Boltzmann equation

with the collision integral3) using the RPA dielectric function in the static S - AT AT =,
limit. Parameters are chosen for electrons in a bulk semicond(G&As. = dl[E (11) -3 (11)]91 (11 )
The initial state is taken to be a special nonequilibrium distribution. The to

final state is the Fermi distribution function.

+fttidﬁzéuﬂ+2‘“<1T>][gf<ﬂ'>—gf(ﬂ')];

0
the dynamically screenegotential. In both collision inte- 1=(rs,ts). )

grals, (2) and(3), there is a delta distribution providing the ¢ KBE are essentially determined by the self energy func-
conservation of thé&inetic energy(only) before and after the tionsEz(lf) which are defined by

collision.

Kinetic equations of Boltzmann-typgl) are of funda- T T -
mental importance because they describe the irreversible re- LdlE(ll)g(ll )= —'f d2V(12)g:5(121'27), (6)
laxation towards the equilibrium state starting from arbitrary
initial conditions, and they are the basis of transport theoryWhereC means integration along the Keldysh time contour.
Figure 1 gives a numerical demonstration for a spatially ho!n generalization of the usual KBE, E(p) contains a term
mogeneous nonequilibrium plasma showing the time evolus™(11) which describes the influence of initial correlations
tion of the Wigner distribution based on a numerical solutionon the evolutior?:® This term is defined by the two-particle
of a Boltzmann-type equation with the collision integ(al correlation function at the initial timeg‘fz(to), and is given
using the RPA dielectric function in the static limit. The final by
state is the Fermi distribution function, and during the relax-
ation, kinetic energyonly) is conserved. 3n11)= iiJ' d2V(1-2)

Though Boltzmann-type kinetic equations are essential

tools in physics, there exist many problems and substantial _ L
shortcomings. We give some examplés. The short-time X f drydrodr;dr{gf( 1,27 1te,Tto)

behavior (<t.,,) cannot be described correctlyi) The ki- o .

netic equation conserves the kinetic ene(gy only instead X GST1ror 1T 2:t0) 90 (Tote,2N)} 8(t —t).  (7)

of the total energyT)+ (V). This is unphysical, especially . . > L
for strongly correlite>d n<1a|?1y—particle systertis) No bound The correlation funct|ongl oceurring In the KBE can be'
states(atomg are accounted fofiv) The equilibrium distri- unde.rstood as a far.- going Ee”era"za“or? of the d|s:[r|.but|on
bution function describes ideal particles only. Therefore,funcuon,' The evc_>|uuon Og_l along the d|ago_nalll=t1 n
generalizations have to be formulated. Rather general kineti etl—tl-pla<ne yields the time-dependent W'gf?er function,
equations were given already by Prigogin&iesibois’ (p,t)=;:|g (p_,tt). H0\_Never, d_ue 0 thg two-tlme depen-
Balescu® Zwanzig, Zubarev, and others. These authors cong.ence’gl CO”t‘?'” more information. Their pehaylor perpen-
sidered evolution equations for classical distribution func-dlgUIar to the diagonal refle(?ts .the correlations in thg plasma
tions having the shape (smgle-partlck_a spectrum Thls is most clearly seen in the
spectral functioma(ptt’)=i[g~ (p,tt’)—g=(p,tt’)], for an
illustration, see Figs. 2 and 3. Furthermore, the correlation
m=F+(t)+ Jtdt G (t—tyf(ty) (4) functions determine the thermodynamic and transport quan-
Jt o =0 v tities. For example, the average potential energy is given by
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FIG. 4. The left figure shows the relaxation of an electron gas from a Fermi
function atT=3 K (full line) towards a correlated equilibrium distribution

00 (dotted ling. The parameters are the same as in Fig. 1. The right figure

shows the buildup of correlation energy and the corresponding increase of

FIG. 2. In order to demonstrate specific features, the Kadanoff-Baym equainetic energy, at constant total energy.
tions were solved for ideal particles. For fixed momentum, the results for the
spectral function of electrons are plotted in tet-plane. Perpendicular to
the diagonat=t’, the spectral function oscillates with the one-patrticle en-

ergy, w=E(p)/%. Parameter, electron degenerany’/2=0.39. many-particle system are recoveréid) The structure of ap-
proximations is completely determined by the approximation
for a single function, the self-energy.

. 2 . . A
_ L) o d d Vi Vi Therefore, essential progress in the nonequilibrium
<V>_—Z dr 'Hl 'Ii_ ’m 2m theory of strongly correlated plasmas can be achieved by
solving the Kadanoff-Baym equations. Due to the compli-
XQT(rata e, —of =t (8)  cated structure of the equations, only numerical evaluations

are possible. Such calculations were performed, up to now,

Thu_s, the correlation_ functiongf_(ll’) determine all oneé- for simple approximations for the self-energy, for example
particle and two-particle properties of plasmas both in equizor the 2nd Born approximation fo¥
librium and nonequilibrium. '

The self-energy function& occurring in(5) have to be - [ dp’ dq - ,
approximated conveniently. If only the Hartree—Fock self-> (P.LL )_f (2m)3 f (277)3|V(q)|291(p+q,t,t )
energy ye(r4rqt;) is retained and the correlation contribu- -, b=
tions==(11) are neglected, we arrive at Vlasov-type equa- X9 (P’ —a.tt)g (p71 D). ©)
tions. In general, the self-energy is, according to Ej, For plasmasy(q) is taken to be the statically screened po-
defined by the two-particle correlation function. An impor- tential
tant advantage of the nonequilibrium Green’s function ap-

2
proach is that it provides highly efficient quantum field- V(q)=—42£2, (10)
theoretical methods for systematically deriving consistent g+«

approximations to the self-energy. where k1= k(1) is the nonequilibrium generalization of

The Kadanoff-Baym equation$) have the following  the Debye— or Thomas—Fermi-radius, respectively. To dem-
properties:(i) They include all quantum effect@rbitrary  onstrate specific features, first solutions of the Kadanoff—
degeneracy (i) The equations are valid without any restric- Baym equations for ideal particles are shown. For fixed mo-
tion with respect to the time and allow to include arbitrary mentum, the results for the spectral function are plotted in
binary correlations at the initial timé. (i) From these thet’—t-plane, cf. Fig. 2. We see that the spectral function is
equations, the correct conservation laws of an interactingonstant along the diagontl=t whereas, in perpendicular
direction, an oscillatory behavior is observed, where the fre-
quency is determined by the energy of the undamped single
particle excitations. If the interaction according(® is in-
cluded, we see, in Fig. 3, that the oscillations of the single
particle excitations are now modified by damping.

\\\::/// A 0.5 Details of the relaxation of the distribution function,
A \ggﬁ%ﬁi\\\\§§‘ T, starting from a Gauss-type initial distribution, are shown for
\‘\\%%m&w 0.8 two time steps in the left part of Fig. 4. The final result is a

0.008 \%«*/i/?//i““\\t{/ 0:508 correlated Wigner distribution function. At very low tem-

NN Ve

\\t;%/ &\Vﬁ// peratures T—0), there may be strong deviations from the

o rts] E A\ e Fermi T=0-distribution as a result of correlations. In the
right part of Fig. 4, we show the relaxation of kinetic, poten-

% tial and total energy. If initially the plasma is uncorrelated,

FIG. 3. If the inferact ding t9) s included that th Epo(to) =0. As time proceeds, interparticle correlations
.3 e interaction according is included, we see that the : . h .
oscillations of the single particle excitations are now modified by damping.bu”d, up 'ead'”g to an increase of the absolute Valu,e of cor
The parameters are, electron degeneramy’/2=0.39, nonideality I rela“(_)n energwn a stable system, the total correlation en-
=[(V)|/(T)=0.0098. ergy is negative As a consequence of total energy conser-
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vation, this leads to an increase of kinetic energy. The RIA ) o = RA——RA—,
numerical results confirm that indeed the problem of conser-  T12 (tt') =V 8(t—t )+'f dtVGr; (1) Tyo ('),
vation of the total energy is solved if one uses the Kadanoff— (15)
Baym equations.

Thus, we demonstrated with this relatively simple ex-where
ample that many of the shortcomings of the Boltzmann equa- RIA eern L > <
tion are overcome. Further numerical results have been given Gz (1) = £O(=(1-1")){Gr,~ Gg}-

Another physically relevant approximation is the random

in Refs. 7-10.
phase approximatiofRPA). The RPA describes especially

the dynamical screening effects. Then we have for the self-
energy

The static Born approximation discussed in the last sec- = I 2 e eI Z e ot
tion is rather simple and does not describe a number of im- 27ty =IVE(tit)g=(tty). (16
portant physical phenomena such as bound states and dXgain we have an optical theorem which introduces retarded
namical screening. To take these effects into account, morg,q advanced dynamically screened potentials
complex approximations are necessary, for which it is advan-
tageous to consider the time-diagonal limit of the Kadanoff—
Baym equation which yields essentially an equation for the
Wigner function. Information related to nondiagonal time _ o _ o
points, i.e., fort’ #t, is lost. The diagonal equation reads Which obey a Dyson-type equation which is physically intui-

lIl. TIME DIAGONAL KADANOFF-BAYM EQUATIONS

Vs (thty) = f dt,d VR4 ) TTE (L) VA(Lt,), (17)

tive
Jd p
VR’A(tlt2)=V6(t1—t2)+f dt, VITRA(t 1) VRA(tt,).
t I —
=F*(t)+ f dt, {37 (p,tty)g=(p,tst) (18)
fo Here,II is the nonequilibrium polarization function which is,
—2<(p,tt_1)g>(p,t_1t)+g<(p,tt_1)2>(p,t_1t) in our approximation, taken in RPA for Fermi particles,
— g7 (p,tt)S<(p,t1t)}, (12) IT=(ttp) = —ig=(t1t)g=(taty),

and is_ the quantum me(_:har_ﬂcal form of the general kinetic  [TR/A(t,t,) =+ @ (= (t;—t ) {17 (tyt,) — IT=(t 1)}
equation(4). However, like in the case of the Kadanoff—
Baym equations, we retained stfl) the influence of initial The second problem which has to be solved isréu®n-
correlations(ii) the effect of retardation, ardi) the validity ~ Struction problemi.e., to express the correlation functions
of conservation laws. The RHS of E(L1) represents a far- g~ as functionals of Wigner functions. This is necessary as
going generalization of usual collision integrals. the equation for the determination of the latter, EdL), still

For explicit expressions for the collision integral, we contains the correlation functiows. The first possibility to
have to solve two problems. First, we have to find approprido this is the Kadanoff-Baym-ansatiBA).* It accounts
ate approximations for the self-energy. Second, we have ttor quasiparticles, however it does not describe retardation
express the correlation functions as a functional of theeffects asf= is taken only at the time diagonal,
Wigner function in order to find a closed equation for the

latter. igz(tlti)Zfz(

t1+ti) .
- ti—t) -9t —t)},
For the determination of the self-enerdy we adopt, as 2 {97t —t) =gt 1)}
a physically relevant possibility, the binary collision approxi- o _ (19
mation, see, e.g., Refs. 11-13, which is the simplest approxi- 19~ (Pw,1)=2m5(w—E(p))f=(p,1),

mation to account for bound states. In this approximation where we have denotet =f,f>=1=f,t=(t, +t})/2;

ST (tyt)) =+iTo(tit))g5 (tity). (12)  arises from the Fourier transformation with respecttto
. . . —t;. An improved further possibility is the generalized
It is co.nvemzent to apply the optical theorem to express th%adanoff—Baym—ansatzGKBA) which is due to Lipavsky
T-matricesT3; by retarded or advanced ones, 14 . - L

et al.* and includes the quasiparticle approximation and full
retardation,

. . . _ 97 (tt) ={gR(tatD (1) — F=(t) g™ (tat)}. (20
where we introduced the special two-particle correlation
function, Finally, the third possibility goes beyond the quasiparticle
= = = , approximation, however it is 1st order with respect to retar-
GiAtit) =01 (1) g5 (taty), 14 gation. This approximation includes the Kadanoff—Baym an-
and the retarded and advancE&dnatrices have to be deter- satz, but moreover it includes correlations between the
mined from a generalized Lippmann—Schwinger equation, quasiparticles?

Trltity) =i J dtdELTHLI) TR L) TR, (19
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i (0,0)= 2780~ ) (1)~ —= (= (1) g L
=19 (o U=cmolw w—Edt “at) (2m)3
7)/ H < J R
—E(il)ﬁ (0,0)+275(w—E) X %Re(plerr (®)|p2p1) fifs
|w=f(p1)+f(p2)
d P
(] <(. do
XJ 2 E—E(_I)E (1), 21 —fE(plpz|T<(w+e(p2))|p2p1)
' . . . . ,P;
whereP’ denotes the derivative of the principal valie Xw—e(pl)(l_fl_fz)]' (25)

IV. FIRST-ORDER GRADIENT EXPANSION, BOUND 'T” th?.sﬁcontd bco?t[('bunof? ﬁt "th$thHS of Eff‘:’)t’htheh |
STATES, CONSERVATION LAWS -matrix nas to pe taken ofr-sneill. at means tha e wnole

two-particle spectrum, scattering as well as binding energies,

Let us come back to the time-diagonal Kadanoff-Baymbecomes accessible. Inserting a bilinear expansion for the
equation(11), in which, on the RHS, still occur two-time T-matrix, one is able to separate bound state and scattering
correlation functions. Whereas in the equilibrium case thesétate parts. This expansion reads
guantities depend on the differences of the two times only,
now the situatign is of course more cqmplicated. Writing inz(w,t)=2 VWK WKIVNS2m8(w—Ey),  (26)
g=(ty,t;) andX=(t,,t;) as functions of difference and sum K
variablest;—t; and (;+t;)/2 (microscopic and macro-
scopic timeg respectively, the two time scales are coupled
in (11) due to the non-Markovian property of the collision
integral. A decoupling can be achieved within the so-called(EK_e(pl,t)_E(pz,t))<p1pz|qﬂ<>
gradient expansiofiFollowing the ideas outlined in Ref. 12,
we consider the Kadanoff-Baym equations in the so-called — (1= f(p,t) —f(p2.1))
first-order gradient expansion which is here a first-order ex- dp,dp,
pansion with respect to the retardation X f W(plpﬂVWzﬁlXﬁlﬁzWK):O- (27

with wave functions|W*) and energy eigenvaluesy fol-
lowing from the effective Schiinger equation:

af(p,t) For bound states we haw (t) = F;(P,t), whereF(P,t) is
at =1%(p,) +1*(P,1), (220 the distribution function of bound particles in the stéje
for scattering states, it hold$, (t)=f(p.t) f(p,t).
A bound state contribution ih! follows only from the

with off-shell T-matrix in (25), and we get
+ dw d dp2 . ~
0 = i ' -l 4| iPy(JpiP _
| (plt)—fﬁwz[(il)2<(wt)lg>(wt) "=l scart at f (277)3j2p (P1p2| WI") (W pap1)Fj(P),
(28)
—i27(0t)(x)g™(wt)], (23 . ,
with j, P being the set of quantum numbers of bound states.
d If we consider the bound states to be a new species, we have
an now a three component system consisting of free electrons,
ions and atoms. It is obvious to introduce the distribution
J (+*dwdw, P . function of free electrons by
1 _ >
[=(pst) ﬁtf 2m)2 wl_w2[|2 (0)(£1)
< NS <( o ia” fF(pst)="f(p t)—f&E (Pap2|¥'7)
X g™ (wy1) = (£1)Z " (10)ig™ (w,1)]. (24 : W= ) m3 e (PP
Equation(22) represents a kinetic equation for the Wigner X(WIP|p,py)F(P;t). (29)

distribution function. On the RHS, the collision integrals are
given in terms of the one particle correlation functiayrs
and the self energy functio=. The latter are, again, func-
tionals of theg=, for instance one could use the binary col- ¢ .
lision approximation, or the RPA, respectively. Therefore,mf (pt)=
using the reconstruction formu(@1) in 1° andl?, one gets a
closed kinetic equation for the Wigner distribution functfon with e— 0, and wheréR(p) includes all 1st order retardation
In T-matrix approximation, the collision integrat can  terms which arise from* as well as from ° [from the use of
be written as the optical theoren{12), and from(21)]. The termlg(p)

We arrive at a generalization of the Boltzmann equation
which has the compact structufe,

1 dd B 5
1+§6&& Ig(p,e)=lg(p)+17(p), (30

€1:8¥'L) €202 4990100 61
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=lim__ 1s(p,€) is the local contribution, i.e., without retar-

dation, cf. Eq.(2). The collision integral g(p, €) is given by ﬁ{<T>+<V>}:O' (34)
dp,dp.dp, ( dw In the case of the binary collision approximation, we get for
lg(P1,€)= f 3 f the mean value of the potential energy
(2m) 27
. 1
2¢ ¢ <V>b|n.coll.: <V>HF+ E-|-r12
(0= E1)?+ € (0—Epp)?+e?

o x| [TR(E) P {NNG, NNz |, (29
><|TR(w+ie)|2[N1<2N1>2—Nsz1<2]}, (31 E-E
where Tr denotes the trace. Here, the bound states come into

where we used the abbreviatiohs,=f,f,,N,=(1=f,)  the play via the off-shell-matrix.
X(1+1,). In RPA, the mean value of the potential energy is ex-

Similar considerations can be done in the case of a gerpressed in terms of the dynamically screened potential
eralized Balescu—Lenard equation. Here, one gets from a 1
retardation expansion a kinetic equation similar to 8§), (V)RPA= (W)HF L T,
but now one has instead of(e) a generalized Balescu— 2
Lenard term'®

_ P .
X| IVS(E)P——{NIN NN . (36)

oL (P E)_J dp,dp;dp, [ dw B
BL\M1:®) ™ .9 ~
2m)° 2
(2m) T With these expressions for the mean value of the poten-
2¢ 2¢ tial energy, the equation of statEOS may be derived from
X — — the well-known charging formul&

(0—E +E;)?+ € (w+Ey—E,)2+é?

) 1 (1di 3
y V(py—P1) p‘Do-‘ﬁLTQWx- (37
R =

€(p1=P1,®) Inserting(35) or (36) into (37), one gets the thermodynamics
On behalf of Eqs(28), (29), the kinetic properties of the in the approximation of the second virial coefficient, or of

plasma are influenced by bound states only, if the tempordhe quantum ring sum, respectively.

change of the occupation number of bound states is different

from zero, i.e., if there occurs a formation or a decay of

bound states in three-particle collisions. Furthermore, for/- DYNAMIC SCREENING EFFECTS IN IONIZATION

nonequilibrium systems, the distribution functldﬁsandF AND RECOMBINATION RATES

are independent. Therefore, an extension of the binary colli- In the previous section, the system of kinetic equations

sion approximation to three-particle collisions is necessary(33) was given to describe the nonequilibrium properties of

Moreover, we still have to consider an equation for theplasmas which are influenced by the existence of bound

[ N1<2N 1 NTZN 2l (32

bound states. The result is a set of coupled equations  states. In addition to the free particle kinetics, the kinetics of
dfF(p,t) bound states in different statéj is included taking into
T:|B(p,t)+ I R(p,t)—l—lg(p,t), account elastic, inelastic, and reactive three-particle pro-
cesses. In this way, the kinetic equati@B8) form the basic
dF.(P,t) (33 equations to describe the ionization and population dynamics
T=Ijs°attP,t)+lgea°tP,t). in dense nonequilibrium plasmas. In this section, we will

focus on the population dynamics of atomic and ionic bound

Here, in the equation for the free particles there was includedtates in spatially homogeneous hydrogenlike plasmas con-
a three-particle collision term describing all possible threesisting of free electrons and ions with densitiesand n; ,
particle collision processeggncluding bound state formation and of two-particle bound states with density.
and decay. The reaction ternh™2“provides for the possibil- We will show how the many-particle effects relevant for
ity of changes of the composition by three-particle collisionsstrongly coupled plasmas influence the reaction rates. To do
in the kinetic equation for the bound state distribution func-this we start from a quantum kinetic equation for the distri-
tion and will be discussed in Sec. V. In the way sketchedbution functions of bound states including dynamic screen-
above, we have solved a further problem, the introduction ofng in the collision terms of elastic, inelastic and reactive
bound states into the kinetic theory. processes. In Ref. 16, such a kinetic equation was derived

In the framework of the kinetic theory in gradient expan- starting from the Bethe—Salpeter equation for the two-
sion presented above, we could show that the energy conseparticle correlation functions. The effective interaction ker-
vation holds'? for an approach basing on density operatornel was determined in the frame of the polarization approxi-
techniques see Ref. 13, mation and could be expressed in terms of the dynamically
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screened Coulomb potential. Then, the following Lenard-with V(q)=4me?qg?> being the Coulomb potential, and

Balescu-type kinetic equation for the distribution function of (g, w) being the retarded plasma dielectric function. The

bound particles in the statp could be obtained, macroscopic variables were dropped for simplicity. The di-
electric function is considered in RPA,

J
—F.(P,t)=15%P,t) +11°%(P,1). (38
e ’ J €(0,0) =13 Voo @TIEAQ,0), 42
Here, the first collision integral describes the elastic and in- é
elastic scattering processes which accounts for the contribution of free particles to the
o screening determined by the free particle polarization func-
(a+b)+ce(a+b)+c. tion TIFPA. Of course, a consistent treatment of screening in

partially ionized plasmas requires the inclusion of the contri-
o butions of two-particle bound and scattering states, i.e., one
(2m)* dP dp dq , has to go beyond the RPA. This was considered in the work

7Py = Y] Z (2m)* (2m)3 (277)320|PiP,J ADI*  of Kiimontovich!” of Ripke and Def® and recently, for
e nonequilibrium systems, based on real-time Green’s function

The explicit expression is

X|VR(q,E[(P)—E;(P)|28(E;(P)+ ec(p) technique, in Ref. 16. N

. o The atomic form factor describing the bound—-bound,
—Ej(P)—ec(p+ ) X{[1—-fJ[1+FjIfF} and bound-free transitions is given by
—feF[1—fIl1+F;1}. (39)

PK,K’(Q):J dradrbwz(rarb)(zae_iq.ra
The second contribution describes the formation and the de-

cay of bound states in three-particle collisions + 2,7 19TO)W (1 ary), (43
(a+b)+c—a+b+cC whereK and K’ denote the set of quantum numbers, i.e.,
o K=P,j for bound states an =p,,py, for scattering states,

and is given by and z, is the charge number. The wave functiofx are

reac(p 1) determined by an effective Schiinger equation as given by
J ' (27) which accounts for the influence of many-particle ef-
(2m)* dp, dp, dp dq fects on the two-particle states.
Y, Z 2m)3 2m)3 27)° (27)° Now, the kinetic equatiolt38) can be used as the start-
le ing point for the derivation of rate equations, which are ob-
><z§|79jpiapfb(q)|2|VR(q,E-(P)—?a—?b)|2 tained by integration with respect to the momentum. Only
B o the collision terms of inelastic and reaction processes con-
X O(Ej(P)+ €(p) — €a(Pa) — €n(Pp) — €c(P+ 1)) tribute to the rate equation,

X {fafpf[1+F[1—fo]—[1—T, an;
{fafof[1+FJ1=fe] = [1~Ta] &—tJ:Z (NenjKj; = neniK ) + (NinZ 8 — neh; ;).
j

X[1=fol[1-fFfe}. (40) (44)

In (39) and(40), clabels the free plasma species. Like abovek; are the coefficients of collisional excitatiofdeexcia-
we introduced the abbreviations;=F;(P),F;=Fj(P),f.  tion), and «;,B; are the impact ionization and three-body
=f.(p),f.=f.(p+0q), etc., the atomic form factorB,. are ~ recombination coefficients, respectively. Let us consider the
given below,(43). coefficient of electron impact ionization. From the reaction

Let us discuss the expression for the collision integralsterm of the kinetic equatiori38), we get in adiabatic ap-
The energieg, are quasiparticle energies which we considerproximation (ne<m;),**2°

in the so-calledrigid shift approximationt® i.e., ey(p) 2m? [ do dp dg
=e2(p)+A, with A, being a thermally averaged self- = |P: ()|

Yoy shi 0 =", ) 2m? (2m)? (22 1R
energy shift. The bound state energlegP)=Ej(P)+A; e

2

are determined by an effective Sctioger equatiort!® .
2775(I]eﬁ+ € 684— eg,q)

The transition rates i39) and(40) are given in terms of the
dynamically screened interaction potenfiéi(q,w), by the
atom_ic form fac_torPK,K,, and by the se_t of distribution X[1=fo(p—DI[1—fo(P)]fe(p), (45)
functions including phase space occupation effects. In gen- . o

eral, the screened potential is determined by the screeninfjhere we introduced the effective ionization energy
equation(18). In local approximation and after Fourier trans- |fff:|E]Q| +AHA—A. (46)

formation with respect to the difference variables, the re- . o o

sumed to be a local equilibrium one. Furthermore, we con-
V(a) (41) sider the nondegenerate case which allows to waitein
e(q, ) terms of a cross section, i.e.,

V(q)
e(q,ljeﬁ-i- E%)

VR(q,0)=
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FIG. 5. Total cross section for ionization from the-Rvel of hydrogen vs

impact energy for different screening parameteeg («, inverse Debye N - . .

screening length The hydrogen plasma is considered at temperalure EIG' 6 Iotmze:uon coet’rflt_:élinggf (\/yd;_ogenllke ca_rbo?_ ions vs free electégn

=30000 K. Two approximations are compared; dynamic screening in- ensny at a temperatur ) €V. TWO approximations aré compared,

cluded in the scattering potentiedolid), and static screenin@lashed dynam!c screening included in the scattering poterttalid), and static
screening(dashegl There are shown the ratios of the rate coefficients to

their ideal values.

8mmg o ion €
" QT | o< R ~ g ] 4D L &%
]
i=— | =—=d%q|Pi5(a)|?V(9)2
with the total cross section for impact ionization from the “i nef (2m)* q 'B(q)| (@
atomic statg, XIm e 1(q, e+ 1 ng( 5ot 161, (49)
2 _
O_[on:877ﬁ f d€dy, fpmaxdeQ—fqmaxdqq with ng(w)=[exp(Bw)+1] ! being the Bose function.
I pZag A P ) qunin The expressions derived above make it possible to cal-
2 culate ionization and recombination coefficients for nonideal
Ved @) i i ionizati
—— = Pi5(q)] . (48) plasmas. Effects of dynamic screening on ionization rates
e(q.ept15) P were discussed, e.g., by Murillo and Weisfgivho used a

&nodified version of the expression given 49), and by
Schlanges, Bornatét al1°?°on the basis of quantum kinetic
theory.

Now, we will present some results for the rate coeffi-
cients. Figures 6 and 7 show the coefficients of ionization
tion, (iii ) dynamic screening is accounted for in the electron—and Teco”.‘b'”a“"” for different states of hydroggnhke car

bon ions in a dense carbon plasma as a function of free

atom scattering potential. lectron density. Th binati Hicient I
In Fig. 5, numerical results for the cross section are" €Ctron densily. 1he recombination coetlicients were calcu-

shown to demonstrate the influence of the many-particle e#—ated using the relation
fects. To discuss dynamic screening effects, two different ﬁj:AgaJ exp(lje“/kBT), (50

approximations are considered) static screening, angi), with A= (272/mksT)V2 being the thermal wavelength.

the scattering potential is taken with the dynamic RPA di—W b ¢ densitv d d f th ¢ ith
electric function, whereas the effective ionization energies € observe a strong density dependence of the rates wi

@creasing density. This is mainly an effect of the lowering

In comparison to the ionization cross section of an isolate
electron—atom problem, there are the following differences
(i) the threshold is determined by the effective ionization
energyl f“, (ii) the wave functions in the atomic form factor
have to be calculated from an effective Salinger equa-

and the form factor are calculated assuming static screenin SN ; . .
like in the model used in Refs. 21 and 22. We observe smal t'he |on|zat|qn energy. But therg 'S a cgn5|derable cqntn-
deviations if the screening paramete is small. However, ution determined by the scattering continuum. Especially,
at higher plasma densities, the cross section including dy-
namic screening shows an irregular behavior for high ener-

gies, i.e., it increases with increasing energy. This behavior H T= 150 eV
is connected with collective excitations in dense plamas, and 105

it indicates that the picture of a single electron scattering on 2

an atom breaks down. Indeed, one can show that, with a g 10°

lowered ionization energy, the energy argument in the di- S s

electric function can take values near the plasma frequency. < 02.

Therefore, ionization and recombination are governed by 15

collective effects, i.e., by absorption and emission of plas- 2

mons. This makes the usual cross section definition unsuit- 10° =

510232 5102 510%2 s

able. Although it is possible to calculate the ionization coef- 3
n, [cm 7]

ficient according tq47), it is more appropriate to rewrite the
pa§|c $tat|St'Cal_ 9xpre;ssmn of tzr;')e rate coefficients. For thelG. 7. Recombination coefficients of hydrogenlike carbon ions vs free
ionization coefficient, it follow&” electron density. Same parameters as in Fig. 6.
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