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Many-body Hamiltonian

h = hKS � VHxc

How good this Hamiltonian is  
depends on the physics we are  
interested in. Here we assume it is a  
good Hamiltonian 



Wavefunction description 

After the pulse
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Single-particle density matrix

⇢ij(t) = h (t)|d̂†j d̂i| (t)i = ⇢Nij + ⇢N�1
ij (t)

Time-dependence of observables contained in                , a quantity 

independent of 

⇢N�1(t)
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NEGF description 

i
d

dz
� hHF(z)

�
G(z, z0) = �(z, z0) + I ion(z, z

0) + Ic(z, z
0)

I ...(z, z
0) ⌘

Z
dz̄ ⌃...(z, z̄)G(z̄, z0)

⌃
ion,ij(z, z̄) =

X

k

(E(z) ·Dik) gk(z, z̄) (E(z̄) ·Dkj) : ionization self-energy

: correlation self-energy⌃c,ij(z, z̄)

I ...(t) = I<
...(t, t)

GKBA 

⇢̇(t) + i [hHF(t), ⇢(t)] = �Ic(t)� I ion(t)� h.c.



PROBLEMS 
and 

CURRENT
SOLUTIONS 



Initial state

⇢0 = lim
t!1

⇢(t),

computed with an adiabatic  
switched-on interaction initial-correlation 

integral (PRB 2018)

low-intensity fields imply highly accurate thermalizations for the 
pump-induced variations to overcome remnant fluctuations; out of 
reach

thermalization is not always guaranteed: GKBA stability is system 
dependent

⇢̇(t) + i [hHF(t), ⇢(t)] = �Ic(t)� h.c.

Huge effort to correct only slightly the HF ground state

⇢̇(t) + i [hHF(t), ⇢(t)] = �Ic(t)� I ion(t)� I ic(t)� h.c.,



Initial state
Current solution in 2nd Born

⇢̇(t) + i [hHF(t), ⇢(t)] = �Ic(t)� h.c.

In the absence of external field

Explicitely 

I7
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mnpqrsk
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Z t

0
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nm(t, t0)G7
pq(t, t

0)G?
sr(t

0, t)G?
kj(t

0, t).

Ic = I<
c (t)� I>

c (t) wmqsj = vmqsj � vmqjs

We split the set of interacting HF levels in occupied and  
unoccupied. 
We set to zero all Coulomb integrals with more than two
indices in the unoccupied sector 

HF density matrix is stationary 



Initial state
Current solution in 2nd Born

In organic molecules the correlated ground state is very close to the HF 
ground state 
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Mixture consistency

⇢ij(t) = h (t)|d̂†j d̂i| (t)i = ⇢Nij + ⇢N�1
ij (t)

After the pump

However, this is not even true in HF. Since all time-dependence comes 

from          , is it more accurate to solve (1) or (2)?? ⇢N�1

Since the sectors with N and N-1 particles are independent, solving

⇢̇N + i
⇥
hHF[⇢

N ], ⇢N
⇤
= �Ic[⇢

N ]� h.c.

⇢̇N�1 + i
⇥
hHF[⇢

N�1], ⇢N�1
⇤
= �Ic[⇢

N�1]� h.c. (1)

and calculating ⇢ = ⇢N + ⇢N�1 should be equivalent to solving

⇢̇+ i [hHF[⇢], ⇢] = �Ic[⇢]� h.c. (2)



Empirical evidence and more tests

From comparisons with CI we found more accurate to work with a  
mixed density matrix as generated by the ionizing pump

Mixture consistency

Systematic tests are needed

They are centainly possible in HF

Beyond HF the NEGF equations should be solved either using the  
correlation blocks (PRB 2012) or a clever Hamiltonian on the vertical 
track



Ionization

⌃
ion,ij(z, z̄) =
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(E(z) ·Dik) gk(z, z̄) (E(z̄) ·Dkj)

The ionization self-energy

with 

is accurate only for single-photon ionization 


i
d

dz
� ✏k

�
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continuum-continuum  
coupling 

The non-perturbative ionization self-energy is
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Ionization

Currently, continuum states for dipole couplings are the  
unoccupied KS states

Improvements are possible, see e.g. Ruberti et al J. Chem Phys. 141, 
164126 (2104),  but they need to be checked

The ionization self-energy

with 

is accurate only for single-photon ionization 


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Correlation in excited states
The ubiquitous spin-exchange scattering 
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Correlation in excited states
Shake-up processes are described by the second-order self-energy 
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Correlation in excited states
Shake-up processes are described by the second-order self-energy 

Spin-exchange requires diagrams beyond 2B
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Correlation in excited states
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Correlation in excited states
Shake-up processes are described by the second-order self-energy 

Spin-exchange requires diagrams beyond 2B

Which are the relevant diagrams? Certainly infinitely many 

Can they be included without spoiling the computational gain of 
GKBA?
Is the self-energy or the collision integral the most convenient 
quantity for approximations?
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Auger decays

Interaction with continuum states has to be included

Unfeasible size of the density matrix for NEGF 



⇢̇(t) + i [hHF(t), ⇢(t)] = �Ic(t)� I ion(t)� Iic(t)� IAuger(t)� h.c.

A possible solution — PRA 2018 
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FIG. 1. (a) Schematic illustration of intramolecular (left) and
Auger (right) scattering. (b) Correlation self-energy in the 2B ap-
proximation (top) and ionization self-energy (bottom).

is the sum of the bound-electrons Hamiltonian Ĥbound =∑
ij
σ

hij ĉ
†
iσ ĉjσ + 1

2

∑
ijmn
σσ ′

vijmnĉ
†
iσ ĉ

†
jσ ′ ĉmσ ′ ĉnσ , the Auger in-

teraction ĤAuger =
∑

ijmµ
σσ ′

vA
ijmµ(ĉ†

iσ ĉ
†
jσ ′ ĉmσ ′ ĉµσ + H.c.), and a

free-continuum part Ĥcont =
∑

µσ ϵµĉ†
µσ ĉµσ . Here hij are the

one-electron integrals, ϵµ are the continuum single-particle
energies, and vijmn (vA

ijmµ) are the four-index Coulomb inte-
grals responsible for intramolecular (Auger) scatterings [see
Fig. 1(a)].

The system is perturbed either by the sudden removal of
a bound electron or by an external laser field. In the dipole
approximation the laser-system interaction reads

Ĥ E(t) = Ĥ E
bound(t) + Ĥ E

ion(t), (2)

where Ĥ E
bound(t) = E(t) ·

∑
ij
σ

dij ĉ
†
iσ ĉjσ describes intramolec-

ular transitions, whereas Ĥ E
ion(t) = E(t) ·

∑
iµ
σ

(diµĉ
†
iσ ĉµσ +

H.c.) is responsible for ionization. The vector dij (diµ) is the
matrix element of the dipole operator between states ϕi and
ϕj (ϕµ). In Eqs. (1) and (2) we are discarding the off-diagonal
elements hiµ, hµµ′ , and dµµ′ as well as all Coulomb integrals
with two or more indices in the continuum. We anticipate that
this simplification only marginally affects the results presented
below.

The electron dynamics is simulated using NEGF. With-
out Auger scatterings the equation of motion for the one-
particle density matrix ρij (t) = ⟨ĉ†

jσ (t)ĉiσ (t)⟩ (with indices
in the bound sector) has been derived elsewhere [26] and
reads ρ̇ = −i[hHF[ρ],ρ] − I[ρ] − I†[ρ]. Here the HF Hamil-
tonian hHF(t) ≡ h + VHF(t) + E(t) · d is a functional of ρ
through the HF potential VHF,ij (t) =

∑
mn ρnm(t)wimnj , with

wimnj ≡ 2vimnj − vimjn. Dynamical correlation and ionization
processes are described by the generalized collision integral

I(t) =
∫ t

0
dt̄[%>(t,t̄)G<(t̄ ,t) − %<(t,t̄)G>(t̄ ,t)], (3)

where %≶ ≡ %
≶
c + %

≶
ion is the sum of the lesser or greater cor-

relation (%c) and ionization (%ion) self-energies. Both are time-
nonlocal functionals of ρ through the generalized Kadanoff-
Baym ansatz [29] (GKBA) [see Supplemental Material (SM)
for details [30]]. Figure 1(b) illustrates the diagrammatic
representation of %c in the second-Born (2B) approximation
and %ion. The computational cost of these NEGF calculations
scales like N2

t N
p
bound where Nt is the number of time steps,

Nbound is the number of HF bound states, and the power 3 !
p ! 5 depends on how sparse vijmn is. Real-time simulations
of, e.g., organic or biologically relevant molecules can easily
be carried out up to 30–40 fs [28].

The inclusion of Auger scattering processes leads to a
coupling between the density matrix ρ(t) and the occupations
fµ(t) = ⟨ĉ†

µσ (t)ĉµσ (t)⟩ of the continuum states. For these
quantities we have derived (see SM) the following coupled
system of NEGF equations of motion:

ρ̇ = −i[hHF[ρ],ρ] − I[ρ,f ] − I†[ρ,f ],

ḟµ = −J µ[ρ,f ] − J ∗
µ[ρ,f ]. (4)

The generalized collision integral I[ρ,f ] is defined as in
Eq. (3) but %[ρ] → %[ρ] + %Auger[ρ,f ]. The Auger self-
energy is calculated from the second-order (in vA) diagrams,
in accordance with Refs. [31,32], and reads

%
≶
Auger,ij (t,t̄) =

∑

mnpq

∑

µ

G≶
mn(t,t̄)

×
[
G≶

µ (t,t̄)G≷
pq(t̄ ,t)

(
vA

iqmµwA
µnpj + vA

iqµmwA
nµpj

)

+G≶
pq(t,t̄)G≷

µ (t̄ ,t)vA
iµpmwA

nqµj

]
, (5)

where we neglected the off-diagonal elements of the continuum
Green’s function, i.e., G

≶
µν = δµνG

≶
µ . As we shall demon-

strate, this approximation is remarkably accurate. Through
the GKBA, %Auger is a time-nonlocal functional of ρ and fµ.
Finally, the collision integral J µ reads

J µ(t) =
∫ t

0
dt̄[K>

µµ(t,t̄)f <
µ (t̄) + K<

µµ(t,t̄)f >
µ (t̄)], (6)

where the kernel

K≶
µν(t,t̄) = i

∑

mnpq sr

vA
µrpmwA

nqsν

×G≶
mn(t,t̄)G≶

pq(t,t̄)G≷
sr (t̄ ,t)e−iϵν (t̄−t) (7)

is a time-nonlocal functional of ρ only. Equations (4), to-
gether with the definitions that follow it, constitute the first
(methodological) result of this Rapid Communication. The
implementation of Eqs. (4) does not alter the quadratic scaling
with Nt . The scaling with the number of basis functions
changes from N

p
bound to max[Np

bound,N
q
boundNcont] where Ncont

is the number of continuum states and 2 ! q ! 4. Therefore,
the proposed equations can be used to simulate a large class of
molecules of current interest.

Assessment of NEGF approach. To demonstrate the re-
liability of the coupled NEGF Eqs. (4) we consider a 1D
atom with soft Coulomb interactions. On the grid points xn =
na with |n| < Ngrid/2, the single-particle Hamiltonian reads
h(xn,xm) = δn,m[2κ + Vn(xn)] − δ|n−m|,1κ , where the nuclear
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Auger (right) scattering. (b) Correlation self-energy in the 2B ap-
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µσ ĉµσ . Here hij are the

one-electron integrals, ϵµ are the continuum single-particle
energies, and vijmn (vA

ijmµ) are the four-index Coulomb inte-
grals responsible for intramolecular (Auger) scatterings [see
Fig. 1(a)].

The system is perturbed either by the sudden removal of
a bound electron or by an external laser field. In the dipole
approximation the laser-system interaction reads

Ĥ E(t) = Ĥ E
bound(t) + Ĥ E

ion(t), (2)

where Ĥ E
bound(t) = E(t) ·
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ular transitions, whereas Ĥ E
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(diµĉ
†
iσ ĉµσ +

H.c.) is responsible for ionization. The vector dij (diµ) is the
matrix element of the dipole operator between states ϕi and
ϕj (ϕµ). In Eqs. (1) and (2) we are discarding the off-diagonal
elements hiµ, hµµ′ , and dµµ′ as well as all Coulomb integrals
with two or more indices in the continuum. We anticipate that
this simplification only marginally affects the results presented
below.

The electron dynamics is simulated using NEGF. With-
out Auger scatterings the equation of motion for the one-
particle density matrix ρij (t) = ⟨ĉ†

jσ (t)ĉiσ (t)⟩ (with indices
in the bound sector) has been derived elsewhere [26] and
reads ρ̇ = −i[hHF[ρ],ρ] − I[ρ] − I†[ρ]. Here the HF Hamil-
tonian hHF(t) ≡ h + VHF(t) + E(t) · d is a functional of ρ
through the HF potential VHF,ij (t) =

∑
mn ρnm(t)wimnj , with

wimnj ≡ 2vimnj − vimjn. Dynamical correlation and ionization
processes are described by the generalized collision integral

I(t) =
∫ t

0
dt̄[%>(t,t̄)G<(t̄ ,t) − %<(t,t̄)G>(t̄ ,t)], (3)

where %≶ ≡ %
≶
c + %

≶
ion is the sum of the lesser or greater cor-

relation (%c) and ionization (%ion) self-energies. Both are time-
nonlocal functionals of ρ through the generalized Kadanoff-
Baym ansatz [29] (GKBA) [see Supplemental Material (SM)
for details [30]]. Figure 1(b) illustrates the diagrammatic
representation of %c in the second-Born (2B) approximation
and %ion. The computational cost of these NEGF calculations
scales like N2

t N
p
bound where Nt is the number of time steps,

Nbound is the number of HF bound states, and the power 3 !
p ! 5 depends on how sparse vijmn is. Real-time simulations
of, e.g., organic or biologically relevant molecules can easily
be carried out up to 30–40 fs [28].

The inclusion of Auger scattering processes leads to a
coupling between the density matrix ρ(t) and the occupations
fµ(t) = ⟨ĉ†

µσ (t)ĉµσ (t)⟩ of the continuum states. For these
quantities we have derived (see SM) the following coupled
system of NEGF equations of motion:

ρ̇ = −i[hHF[ρ],ρ] − I[ρ,f ] − I†[ρ,f ],

ḟµ = −J µ[ρ,f ] − J ∗
µ[ρ,f ]. (4)

The generalized collision integral I[ρ,f ] is defined as in
Eq. (3) but %[ρ] → %[ρ] + %Auger[ρ,f ]. The Auger self-
energy is calculated from the second-order (in vA) diagrams,
in accordance with Refs. [31,32], and reads
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is a time-nonlocal functional of ρ only. Equations (4), to-
gether with the definitions that follow it, constitute the first
(methodological) result of this Rapid Communication. The
implementation of Eqs. (4) does not alter the quadratic scaling
with Nt . The scaling with the number of basis functions
changes from N
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bound to max[Np
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boundNcont] where Ncont

is the number of continuum states and 2 ! q ! 4. Therefore,
the proposed equations can be used to simulate a large class of
molecules of current interest.

Assessment of NEGF approach. To demonstrate the re-
liability of the coupled NEGF Eqs. (4) we consider a 1D
atom with soft Coulomb interactions. On the grid points xn =
na with |n| < Ngrid/2, the single-particle Hamiltonian reads
h(xn,xm) = δn,m[2κ + Vn(xn)] − δ|n−m|,1κ , where the nuclear
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one-electron integrals, ϵµ are the continuum single-particle
energies, and vijmn (vA

ijmµ) are the four-index Coulomb inte-
grals responsible for intramolecular (Auger) scatterings [see
Fig. 1(a)].

The system is perturbed either by the sudden removal of
a bound electron or by an external laser field. In the dipole
approximation the laser-system interaction reads

Ĥ E(t) = Ĥ E
bound(t) + Ĥ E

ion(t), (2)

where Ĥ E
bound(t) = E(t) ·
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(diµĉ
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iσ ĉµσ +

H.c.) is responsible for ionization. The vector dij (diµ) is the
matrix element of the dipole operator between states ϕi and
ϕj (ϕµ). In Eqs. (1) and (2) we are discarding the off-diagonal
elements hiµ, hµµ′ , and dµµ′ as well as all Coulomb integrals
with two or more indices in the continuum. We anticipate that
this simplification only marginally affects the results presented
below.

The electron dynamics is simulated using NEGF. With-
out Auger scatterings the equation of motion for the one-
particle density matrix ρij (t) = ⟨ĉ†

jσ (t)ĉiσ (t)⟩ (with indices
in the bound sector) has been derived elsewhere [26] and
reads ρ̇ = −i[hHF[ρ],ρ] − I[ρ] − I†[ρ]. Here the HF Hamil-
tonian hHF(t) ≡ h + VHF(t) + E(t) · d is a functional of ρ
through the HF potential VHF,ij (t) =

∑
mn ρnm(t)wimnj , with

wimnj ≡ 2vimnj − vimjn. Dynamical correlation and ionization
processes are described by the generalized collision integral

I(t) =
∫ t

0
dt̄[%>(t,t̄)G<(t̄ ,t) − %<(t,t̄)G>(t̄ ,t)], (3)

where %≶ ≡ %
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≶
ion is the sum of the lesser or greater cor-

relation (%c) and ionization (%ion) self-energies. Both are time-
nonlocal functionals of ρ through the generalized Kadanoff-
Baym ansatz [29] (GKBA) [see Supplemental Material (SM)
for details [30]]. Figure 1(b) illustrates the diagrammatic
representation of %c in the second-Born (2B) approximation
and %ion. The computational cost of these NEGF calculations
scales like N2

t N
p
bound where Nt is the number of time steps,

Nbound is the number of HF bound states, and the power 3 !
p ! 5 depends on how sparse vijmn is. Real-time simulations
of, e.g., organic or biologically relevant molecules can easily
be carried out up to 30–40 fs [28].

The inclusion of Auger scattering processes leads to a
coupling between the density matrix ρ(t) and the occupations
fµ(t) = ⟨ĉ†

µσ (t)ĉµσ (t)⟩ of the continuum states. For these
quantities we have derived (see SM) the following coupled
system of NEGF equations of motion:

ρ̇ = −i[hHF[ρ],ρ] − I[ρ,f ] − I†[ρ,f ],

ḟµ = −J µ[ρ,f ] − J ∗
µ[ρ,f ]. (4)

The generalized collision integral I[ρ,f ] is defined as in
Eq. (3) but %[ρ] → %[ρ] + %Auger[ρ,f ]. The Auger self-
energy is calculated from the second-order (in vA) diagrams,
in accordance with Refs. [31,32], and reads

%
≶
Auger,ij (t,t̄) =

∑

mnpq

∑

µ

G≶
mn(t,t̄)

×
[
G≶

µ (t,t̄)G≷
pq(t̄ ,t)

(
vA

iqmµwA
µnpj + vA

iqµmwA
nµpj

)

+G≶
pq(t,t̄)G≷

µ (t̄ ,t)vA
iµpmwA

nqµj

]
, (5)

where we neglected the off-diagonal elements of the continuum
Green’s function, i.e., G

≶
µν = δµνG

≶
µ . As we shall demon-

strate, this approximation is remarkably accurate. Through
the GKBA, %Auger is a time-nonlocal functional of ρ and fµ.
Finally, the collision integral J µ reads

J µ(t) =
∫ t

0
dt̄[K>

µµ(t,t̄)f <
µ (t̄) + K<

µµ(t,t̄)f >
µ (t̄)], (6)

where the kernel

K≶
µν(t,t̄) = i

∑

mnpq sr

vA
µrpmwA

nqsν

×G≶
mn(t,t̄)G≶

pq(t,t̄)G≷
sr (t̄ ,t)e−iϵν (t̄−t) (7)

is a time-nonlocal functional of ρ only. Equations (4), to-
gether with the definitions that follow it, constitute the first
(methodological) result of this Rapid Communication. The
implementation of Eqs. (4) does not alter the quadratic scaling
with Nt . The scaling with the number of basis functions
changes from N

p
bound to max[Np

bound,N
q
boundNcont] where Ncont

is the number of continuum states and 2 ! q ! 4. Therefore,
the proposed equations can be used to simulate a large class of
molecules of current interest.

Assessment of NEGF approach. To demonstrate the re-
liability of the coupled NEGF Eqs. (4) we consider a 1D
atom with soft Coulomb interactions. On the grid points xn =
na with |n| < Ngrid/2, the single-particle Hamiltonian reads
h(xn,xm) = δn,m[2κ + Vn(xn)] − δ|n−m|,1κ , where the nuclear
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FIG. 1. (a) Schematic illustration of intramolecular (left) and
Auger (right) scattering. (b) Correlation self-energy in the 2B ap-
proximation (top) and ionization self-energy (bottom).

is the sum of the bound-electrons Hamiltonian Ĥbound =∑
ij
σ

hij ĉ
†
iσ ĉjσ + 1

2

∑
ijmn
σσ ′

vijmnĉ
†
iσ ĉ

†
jσ ′ ĉmσ ′ ĉnσ , the Auger in-

teraction ĤAuger =
∑

ijmµ
σσ ′

vA
ijmµ(ĉ†

iσ ĉ
†
jσ ′ ĉmσ ′ ĉµσ + H.c.), and a

free-continuum part Ĥcont =
∑

µσ ϵµĉ†
µσ ĉµσ . Here hij are the

one-electron integrals, ϵµ are the continuum single-particle
energies, and vijmn (vA

ijmµ) are the four-index Coulomb inte-
grals responsible for intramolecular (Auger) scatterings [see
Fig. 1(a)].

The system is perturbed either by the sudden removal of
a bound electron or by an external laser field. In the dipole
approximation the laser-system interaction reads

Ĥ E(t) = Ĥ E
bound(t) + Ĥ E

ion(t), (2)

where Ĥ E
bound(t) = E(t) ·

∑
ij
σ

dij ĉ
†
iσ ĉjσ describes intramolec-

ular transitions, whereas Ĥ E
ion(t) = E(t) ·

∑
iµ
σ

(diµĉ
†
iσ ĉµσ +

H.c.) is responsible for ionization. The vector dij (diµ) is the
matrix element of the dipole operator between states ϕi and
ϕj (ϕµ). In Eqs. (1) and (2) we are discarding the off-diagonal
elements hiµ, hµµ′ , and dµµ′ as well as all Coulomb integrals
with two or more indices in the continuum. We anticipate that
this simplification only marginally affects the results presented
below.

The electron dynamics is simulated using NEGF. With-
out Auger scatterings the equation of motion for the one-
particle density matrix ρij (t) = ⟨ĉ†

jσ (t)ĉiσ (t)⟩ (with indices
in the bound sector) has been derived elsewhere [26] and
reads ρ̇ = −i[hHF[ρ],ρ] − I[ρ] − I†[ρ]. Here the HF Hamil-
tonian hHF(t) ≡ h + VHF(t) + E(t) · d is a functional of ρ
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∑
mn ρnm(t)wimnj , with
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processes are described by the generalized collision integral

I(t) =
∫ t

0
dt̄[%>(t,t̄)G<(t̄ ,t) − %<(t,t̄)G>(t̄ ,t)], (3)

where %≶ ≡ %
≶
c + %

≶
ion is the sum of the lesser or greater cor-
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nonlocal functionals of ρ through the generalized Kadanoff-
Baym ansatz [29] (GKBA) [see Supplemental Material (SM)
for details [30]]. Figure 1(b) illustrates the diagrammatic
representation of %c in the second-Born (2B) approximation
and %ion. The computational cost of these NEGF calculations
scales like N2

t N
p
bound where Nt is the number of time steps,

Nbound is the number of HF bound states, and the power 3 !
p ! 5 depends on how sparse vijmn is. Real-time simulations
of, e.g., organic or biologically relevant molecules can easily
be carried out up to 30–40 fs [28].

The inclusion of Auger scattering processes leads to a
coupling between the density matrix ρ(t) and the occupations
fµ(t) = ⟨ĉ†

µσ (t)ĉµσ (t)⟩ of the continuum states. For these
quantities we have derived (see SM) the following coupled
system of NEGF equations of motion:

ρ̇ = −i[hHF[ρ],ρ] − I[ρ,f ] − I†[ρ,f ],

ḟµ = −J µ[ρ,f ] − J ∗
µ[ρ,f ]. (4)

The generalized collision integral I[ρ,f ] is defined as in
Eq. (3) but %[ρ] → %[ρ] + %Auger[ρ,f ]. The Auger self-
energy is calculated from the second-order (in vA) diagrams,
in accordance with Refs. [31,32], and reads
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×
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)

+G≶
pq(t,t̄)G≷

µ (t̄ ,t)vA
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]
, (5)

where we neglected the off-diagonal elements of the continuum
Green’s function, i.e., G

≶
µν = δµνG

≶
µ . As we shall demon-

strate, this approximation is remarkably accurate. Through
the GKBA, %Auger is a time-nonlocal functional of ρ and fµ.
Finally, the collision integral J µ reads

J µ(t) =
∫ t

0
dt̄[K>

µµ(t,t̄)f <
µ (t̄) + K<

µµ(t,t̄)f >
µ (t̄)], (6)

where the kernel

K≶
µν(t,t̄) = i

∑

mnpq sr
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nqsν

×G≶
mn(t,t̄)G≶

pq(t,t̄)G≷
sr (t̄ ,t)e−iϵν (t̄−t) (7)

is a time-nonlocal functional of ρ only. Equations (4), to-
gether with the definitions that follow it, constitute the first
(methodological) result of this Rapid Communication. The
implementation of Eqs. (4) does not alter the quadratic scaling
with Nt . The scaling with the number of basis functions
changes from N

p
bound to max[Np

bound,N
q
boundNcont] where Ncont

is the number of continuum states and 2 ! q ! 4. Therefore,
the proposed equations can be used to simulate a large class of
molecules of current interest.

Assessment of NEGF approach. To demonstrate the re-
liability of the coupled NEGF Eqs. (4) we consider a 1D
atom with soft Coulomb interactions. On the grid points xn =
na with |n| < Ngrid/2, the single-particle Hamiltonian reads
h(xn,xm) = δn,m[2κ + Vn(xn)] − δ|n−m|,1κ , where the nuclear
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Focussing on the      - dependence µ

ḟµ =
X

IJµ

CIJ
µ [⇢]vµIwµJfµ

⇢̇ = A[⇢] +
X

IJµ

BIJ
µ [⇢]vµIwµJfµ

The continuum occupations are, in general, anisotropic  
due to anisotropy of Coulomb integrals 

Too many continuum states!

Is it possible a description in terms of reduced quantities like, e.g.

?f(✏) =
X

µ

g(✏µ)fµ�(✏� ✏µ)
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What is                    ?⌃vc, ⌃vv
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