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Positive steady-state
spectral functions

1 How to ensure positive spectral functions in steady-state
when using diagrammatics?

! See Markku’s poster!
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Abstract

Recently, a method was presented [1] for constructing self-energies within many-body per-
turbation theory that are guaranteed to produce a positive spectral function for equilibrium
systems, by representing the self-energy as a product of half-diagrams on the forward and
backward branches of the Keldysh contour. We derive an alternative half-diagram represen-
tation that is based on products of retarded diagrams. Our approach extends the method
to systems out of equilibrium. When a steady-state limit exists, we show that our approach
/elds a positive definite spectral function in the frequency domain.

1. The Problem

» Some approximations for the self-energy can lead to negative valued spectral functions.

« This prevents the probability interpretation of the spectral function, and can lead to insta-
bility in self-consistent calculations.

« This issue arises for example for:

Eaclenn) = g + gﬁ;ir—g: 0}

2. Self-Energy in Terms of Half-Diagrams

e In Ref. [1] it was shown that in zero temperature the spectral function will be positive
i-definite (PSD) if the self- gy can be as a sum of squares of half-

diagrams.
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» For example
« This splitting is obtained by placing a complete basis set at the end-point of the contour
att = oc:
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« The half-diagrams are then (anti)-time ordered.

« This requires the assumption that the initial state | ) is connected to the state obtained
in the distant future:
(oo, —oc)|bg) = | yg). (4)

5. Example: 411" Approximation

The ¢V imation with the RPA funtion P(1.2) = g(1.2)4(2.1) is PSD,
since using

; _jmm'"n,u;l*ﬁ:x,ml'*‘u,z) ®

we can write the xc-self-energy as
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6. ( lized F d Compositions
ln order to define general retarded compositions, we will first define general contour
ordered components
« A contour function that is representable as a diagram can be replaced by a real-ime
function whenever the order along the contour ~ is fixed. For example

SIB 00ty te.tg) when 2 > 3, > 2

Lzelza,

2 (10)
« For a two-point function these components are equal to the greater and lesser compo-
nents:

G20, 3) = G(20. ) (11)
This set of functions for each permutation of the arguments encodes all the information
in the original contour function.

G2(20,3) = G> (200 28)s

6.1 One Vertex

Take for example a half-diagram with a single internal vertex (with diagrammatic represen-
tation on the right):

D(za) = /:I:,,m Za,3p) ®=00 (12)
If one defines a retarded composition
DRt ty) = 8(ta — t4) (D> (tar ts) = D={ta.13)) = OapO" (1, tg). (13)
it follows that
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3. Generalization to Steady-State

o In Ref. [2] we show that the same proof can be performed without the assumption in
Eq.(4), by placing the basis set at t = —oc:

b (x E é > ®

o The PSD nature of the spectral function can now be shown in the steady-state limit.
o In this case the half-diagrams are no longer time-ordered, but retarded. For example

6.2 Two Vertices

A half-diagram with two internal vertices
Diza) = [ daseD (a3, 20) @-000 (15)

motivates the definition of a retarded composition for which

° o

DY (ta) = / dtyiteDROBN g0 14 )
ta

This is achieved for example by

DRUD) _ g, pILAY 4 g Ol 17)
S
m = E o @ ® 6.3 N Vertices
For a general half-diagram with V internal vertices.
where the circling of vertices denotes a retarded piece, the other vertices being retarded °
with respect to the vertex marked with a double circle. Dica) = /,, -0 : 18)
«1n a general half-diagram all internal vertices are retarded with respect to vertex 1 (or 2). g ®
This requires defining a general retarded diagram [2].
one then has
4. Example: Second Born Approximation . @
The 213 approximation is PSD, since DMtn) = [ dtnge - ding D2t tny) -0-(@ ® (19)
ad’.’%@=m' @,}@4[ ] @] with the retarded composition
A DR o S gyt g DIPD—P) (20)
@) s
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Outline

1 The Kadanoff-Baym Equations

! The Generalized Kadanoff-Baym Ansatz (GKBA)

! Different strategies to include initial correlations within GKBA
) Strategy 1: GKBA for imaginary times
) Strategy 2: Write initial correlations in terms of real times

! Numerical example in an inhomogeneous system
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Time-scaling problem of the
Kadanoff-Baym Equations (KBE)

[igt - hHF(t)] G=(t,t") =

G=(t,t) [—z‘gt, — hHF(t’)] —

ta' Backward branch t—|—

#Vertical (Matsubara) branch

o= e PHY
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5G4 2R .G 4 51k gl

G<.3A4LGR.x<1glxxl

[A- B](t,t') = / dt A(t,t)B(t,t") Real-time convolution
0

5
® tE)I_ — 13 [Ax B](t,t') = —z'fo d7A(t,7)B(7,t") Initial correlations



From KBE to the equation of motion for p

Subtracting the two KBE equations and letting ¢’ — ¢ yields equation for density matrix p(t) = —iG=(¢,1):

App(t) + i [hur(t), p(t)] = — (Z(t) + () + Hee.)

t
I(t):/df (27 (t,0)G(t,t) — X=(t,1)G7 (L,t)]  collision integral
0

. B
(t) = —i / A7 X 1(t,7)G (7, t)  initial correlation integral
0

1 p(t) is single-time object, and involves real-time convolutions -> Scales like (nr of timesteps)?: one
order of magnitude gained compared to KBE!

[ Caveat: Not a closed equation for p(t); Collision integral involves off-diagonal parts of G.

] Fix for real times: the GKBA

Daniel Karlsson 11 March 2019 6




Dup(t) + i [haw (1), p(t)] = — (Z(t) + T(t) + H.e.)

t
Z(t) :/ dt (27 (t,6)G<(t,t) — 2<(t,£)G” (L, t)]  collision integral
0

The GKBA

S(t,t") = =[Gt )p(t") — p(t)G (1, 1").
In the collision integral, we make the approximation >(t t’) _ [QR(t t')ﬁ(t') B ﬁ(t)Q’A(t t')]

To close the equation, the retarded/advanced Green’s  G#(¢ ¢') = —if(t — t)T {e—i S hHF(ﬂdf}
function come from non-interacting system

Useful manipulations within GKBA: ‘Group property’:  GZ(t,t') = iG(¢t, t0)G¥ (to, t').

11 March 2019 7
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The GKBA

<(t,1) = = [g7(t.)p(t)) — p(t)G (8, 1))
~(t,t) =[G (¢, ¢)p(t) — p(HGA (L t)

8
4
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The issue with the GKBA

G=(t,t) = — [G" (. ¢)p(t') — p(t)G (1, 1)]
ta Forward branch 1A g>(tvt,) — [gR(t7 t’)ﬁ(t,) o ﬁ(t)gA(t,t,)} ?

Issue: GKBA Ansatz for real times only!
Initial correlations concerns imaginary-time.
No GKBA exists for imaginary times!

Daniel Karlsson 11 March 2019



Adiabatic switching technique

N_4:, time steps N, time steps Total effort: (N4 + Ni¢)?

ﬁ
If we could separate

e N2 2
calculations: Ny ;4 + N¢

region

Correlations built up

%0 Transients, time-

S dependent phenomena
o : :

c Ad!abatlc Interesting

S switch region

O

e

3

£
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What happens if we anyway start with a
correlated state? o — Pt L L Ty

— I s
Calculation 1: Adiabatic switch-on from T=-100 HOMO

Calculation 2: Save density matrix p,, from adiabatic —
0055 — Adiabatic evolution

switch at time t=0, then start another calculation from -0
t=0 with p(t = 0) = peq. IC term neglected. e
B Unphysical
. oscillations MM MMWM

Op(t) + i [hur(t), p(t)] =

|
~—
ﬁ
—~
-
~—
_+_
e
~—
_|_
=
e
~—
LUMO density
=
T
o
I
=
. -
! -]
=
1

What went wrong? Stationarity condition: 0,051
Z°0) =Z(t) + 2" (1) 100 50 0 50 100

Intricate cancellation from initial correlation term and

collision integral

11 March 2019




Specific goals

! Stationarity without external fields

! Obtain expression for initial correlations independent on adiabatic switching
! Expressions valid without assuming losses, or homogenous systems

1 Basis-independent expressions

! Separate the time propagation from the obtaining of the initial state

! Efficient implementation in existing GKBA codes

Daniel Karlsson 11 March 2019 12




Outline

1 The Kadanoff-Baym Equations

! The Generalized Kadanoff-Baym Ansatz (GKBA)

! Different strategies to include initial correlations within GKBA
] Strategy 1: GKBA for imaginary times : _ &
T(t) = —i | d7X!(t,7)G! (7,1t
0

) Strategy 2: Write initial correlations in terms of real times

! Numerical example in an inhomogeneous system
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Initial correlations within GKBA:
The lesser function g¢<(,¢)

Strategy 1: Make ‘educated guess’ to obtain GKBA for mixed Green’s functions!
Go back to Dyson equation for the full contour:

G(z,2') = Go(z, ') + / 4247 G(z,2)Ze(2, 7)Go(7, 2
Y

Use of Langreth rules yields, for the lesser function

G4, 1) A" (1, 10)G (to, t0)G (Lo, t')

+iG (¢, to) [GI‘X(;A] (to, ') — i

For non-interacting systems, only the first term is non-zero, and can be written in GKBA form

G=(t,t') = — [GR(t,t)p(t) — p(t)G(t.1)] using — p(t') = G"(t',t0)p(t0) G (to, t')

11 March 2019



Initial correlations within GKBA:
The right function gl,r)

Strategy 1: Make ‘educated guess’ to obtain GKBA for right Green’s function!
Go back to Dyson equation for the full contour:

G(z,2') = Go(z, ') + / 4247 G(z,2)Ze(2, 7)Go(7, 2

/Y

Use of Langreth rules yields, for the right function

G\(t,7) =iG®(t, t0)G™M (0, 7) |+ [QRXQM} (t,7)

For non-interacting systems, only first term is non-zero. GKBA for initial correlations?

Fails. All simple ways to do so gives problems (lack of stationarity in absense of external fields)

—)

Strategy 2: Rewrite the initial correlations in terms of real times, and then apply usual GKBA

Daniel Karlsson 11 March 2019



The initial correlation term in equilibrium

_ B
Inspiration: In equilibrium for t < t, = 0, from the exact KBE equations, Z'°(t) = —z‘/ A7 2 1(t, 7)G1 (7, 1)
0

G. Stefanucci, R. van Leeuwen, Nonequilibrium

Many-Body Theory of Quantum Systems (2013) D. Karlsson, R. van Leeuwen, E. Perfetto, G. Stefanucci, PRB (2018)
|Ii0<t) -/ (57— DG (- 1) — 5<(t— DG (- t)j |Ii°‘(t) = / T[5> (1LDG(T.0) - 210G (. t)j
— o —20
Proven via Proven via
(1,t2) = e*7G” (—iT, 12) Analytical continuation Gl(1,t2) = e'7GZ (—iT, ts)
F'g<(w) = —¢ A= G>(w) Fluctuation-dissipation theorem < (w, ') = —e PG> gw,t’]
Equilibrium Out of equilibrium

Using "half” of fluctuation-dissipation theorem

Daniel Karlsson 11 March 2019 16
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Initial correlations, explicit expressions

ze() - | 4[5 (DG (E1) - 5<(4,06 (1)

e Adiabatic switchings (or losses) + homogeneous systems: Restart

technique exists. For a review, see: Bonitz, M., Balzer, K.,

Same shape as for adiabatic switching, but more generall  gcpjinzen, N., Rasmussen, M. R., & Joost, J.-P. PSSB (2019)

Valid for closed systems, finite temp etc.

We can apply GKBA, with HF propagators or general propagators! . _
For general propagators, one can prove stationarity condition! IIC(O) = I(t) + I (t)

But, we still have to do time integrations.
Use group property of HF propagators: G (¢, ) = iG"(¢,0)G%(0, )
Hamiltonian constant for t < 0 (equilibrium): QR(O, ) = _jetturt  Allows for analytical calculations

We obtained two numerically efficient cases within GKBA:
Case 1: 2nd Born. Case 2: GW,,, where W, taken from equilibrium calculations.

11 March 2019



I Gpy
Z’lj (t, E) — Z Virpn (t)wmqu (E)Q,fm(t, ag;] (. ag;’(tv t). ] q _ Virpn
mnpqrs Zeij = ;i%;g + éf/_;:\i_‘? _qpm mj

Wimmnj (t) — 2rUz'm/n,j (t) — U?lmjn(t) P Gy M "Gy LG P

Initial correlations for 2nd Born

e Obtain equilibrium density matrix p®d

© e =i ~ir nlt Nn r
e Calculate hyp = hur[p®]. Li(t) = ZZ Cirpn ()

€r T € — €y — €p
. . eq . . npr
e Diagonalize hy to obtain eigenvalues ¢;

The tensor w (Calculated once!) is
W= w (pTIp*pTp T — pip®p™ip).
All time-dependence isolated to tensor v(t)

o(t) = ) () G7(1,0067(t,0)G(0,1).

Explicitly: Z'° = Z'°[p]. No time integration! Scales like (basis size)®, just like original
2nd Born approximation!

Daniel Karlsson
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How to obtain initial p©?

?

Naaiq time steps

N¢ time steps

) The adiabatic switching technique
) Works well, speeds up calculations compared to usual GKBA
) Not always possible (finite temperature, phase transitions etc.)

)l Use equation of motion for p at t=0
—i [RS4,, p?9) = 72°(0) + H.c..

_J Supplement with reasonable occupations.
eq,(i+1
pnn( ) = fn

For example, from Matsubara calculation. Can be solved iteratively.

) Other methods of obtaining p,
see Hopjan, M. & Verdozzi, C. Eur. Phys. J. Spec. Top. (2019).

11 March 2019

Transients, time-

= dependent phenomena
H !
§ Adiabatic E Interesting
.% ::gltg: I region
E Time =
Hubbard Dimer, 2nd Born
—— o S—— | ;‘
_ 08— 7
k] i
g 0.6 0@ Eigvall, Matsubara -
: 0@ Eigval2, Matsubara i
E 0k B Eigvall, GKBA adia| |
7 ' B Eigval2, GKBA adia |
g
02 7
| = : | ' | | | | | 1
1.5 2 2.5 3 33 4
U
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Flowchart of GKBA calculation with
adiabatic switch-on

Start with uncorrelated p, Initial state p®4

Adiabatic switch-on

Construct GR/4(¢, t")

Using GKBA: Calculate

Knowledge of p(t) Coll. Int. I(t)

t>t+ At
Propagate to p(t + At)




Flowchart of GKBA calculation with
initial correlations

Initial state p©4 Construct w

Construct GR/A(t,t") Construct 7(t)

Using GKBA: Calculate Calculate Init. Corr. I’ (t)

Knowledge of p(t) Coll. Int. I(t)

t—>t+ At

Propagate to p(t + At) Calculate total ITOT(t) = I(t) + I"“(t)

Initial correlations developed in the CHEERS code
E. Perfetto & G. Stefanucci, J. Phys.: Condens. Matter (2018)

11 March 2019



Specific goals

v" Obtain expression for initial correlations independent on adiabatic switching

v" Expressions valid without assuming losses, or homogenous systems
v" Basis-independent expressions
v" Separate the time propagation from the obtaining of the initial state

v Efficient implementation in existing GKBA codes

Daniel Karlsson 11 March 2019 22




LUMO

‘QM T, T, Ty
e / ! e\
HOMO

Initial correlations without external fields

Procedure: Generate p,, with

adiabatic switching with time Short time behavior Long time behavior
T;c. Then restart calculation 0,055-— Adiabatic evolution T =100 E
from t > 0 with I°[p, peq]. S 0.0529
g - IIC _g 0.05288
.% T i ﬂ | | —=0.05286
o 0.053 I —
- T. = 1000 =
% Ic 50.0529
* Neglecting I introduces large error ~ . 30.05288
* Procedure is stable, even if p., not 0.051 Long|er SW'ﬁChmg t||me : 0.05286
perfectly generated 10050 0 S0 100 g g0 900 950 1000

* Procedure numerically efficient: I*¢ and time fime
I' = 0 has same cost Density at LUMO without external fields

Daniel Karlsson 11 March 2019 23




Initial correlations with external fields

Density at LUMO

current
between
LUMO-

Acceptor

real part of
density matrix
between
HOMO-LUMO

205
£ 04

)
v

o 03

% 0.2
= 0.1

4
-

0

0.02
0.01

0

-0.01

real part of p

o
o o Py
[

=)

=
=

o < o

I

Short time behavior

— Adiabatic evolution

T Iic
o Iic:O
| |

Long time behavior

LUMO

=05
- HOMO

0.45

04

ﬂ

0.05

-0.05

L —— e S L

MMH

/|

U

/|

-2
0.
0
0.
=02

=

[0 20 30 40 50
time

9

60 970 930 990

time

1000

™
N
™

o egt

~

Heyi(t)

QA T, T« Ty

l e WY s WY s 1

=105, (el er0 + He)

Also off-diagonal parts of density
matrix reproduced

Initial correlations important at
long times. Opposite behavior as
found in homogeneous systems,
where one can expect a decay in

the initial correlations

Semkat, D., Kremp, D., & Bonitz, M
PRE 59, 1557 (1999)



Conclusions

v" Obtain expression for initial correlations independent on adiabatic switching

v" Expressions valid without assuming losses, or homogenous systems
v" Basis-independent expressions
v" Separate the time propagation from the obtaining of the initial state

v Efficient implementation in existing GKBA codes

D. Karlsson, R. van Leeuwen, E. Perfetto, G. Stefanucci,
The generalized Kadanoff-Baym ansatz with initial correlations. PRB (2018)
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