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Motivation

In nanoscience one aims to understand and control systems at
the nanoscale. 

Manipulation of nanosystems requires interactions with a
time-dependent environment

Conduction through a
single H2 molecule

R.H.M.Smit et al. 
Nature 419, 906 (2002)



The importance of dynamics 

In future devices based on ‘molecular electronics’ we are not mainly 
interested in the steady states:
The operational speed needs to be designed and controlled

The main interest will be in fast switching of the devices!

This involves:

  - switching times (AC fields, lasers)
  - study of transients
  - peak currents rather than time-averaged ones 
    (stability of the devices) 

We need fundamental many-electron nonequilibrium quantum 
mechanics for open systems at short time-scales
(nice topic for the theorists with rich physics.....)
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FIG. 1: Sketch of the transport setup. The correlated cen-
tral region (C) is coupled to semi-infinite left (L) and right
(R) tight-binding leads via tunneling Hamiltonians HαC and
HCα, α = L, R.

ation and annihilation operators respectively. The one-
body part of the Hamiltonian hij(t) may have an arbi-
trary time-dependence, describing, e.g., a gate voltage or
pumping fields. The two-body part accounts for interac-
tions between the electrons where vijkl are, for example
in the case of a molecule, the standard two-electron inte-
grals of the Coulomb interaction. The lead Hamiltonians
have the form

Ĥα(t) = Uα(t)N̂α +
∑

ij,σ

hα
ij ĉ†iσα ĉjσα, (3)

where the creation and annihilation operators for the
leads are denoted by ĉ† and ĉ. Here N̂α =

∑

i,σ ĉ†iσαĉiσα

is the operator describing the number of particles in lead
α. The one-body part of the Hamiltonian hα

ij describes
metallic leads and can be calculated using a tight-binding
representation, or a real-space grid or any other conve-
nient basis set. We are interested in exposing the leads
to an external electric field which varies on a time-scale
much longer than the typical plasmon time-scale. Then,
the coarse-grained time evolution can be performed as-
suming a perfect instantaneous screening in the leads and
the homogeneous time-dependent field Uα(t) can be in-
terpreted as the sum of the external and the screening
field, i.e., the applied bias. This effectively means that
the leads are treated at a Hartree mean field level. We
finally consider the tunneling Hamiltonian ĤT

ĤT =
∑

ij,σα

Vi,jα[d̂†iσ ĉjσα + ĉ†jσαd̂iσ ] (4)

which describes the coupling of the leads to the interact-
ing central region. This completes the full description
of the Hamiltonian of the system. In the next section
we study the equations of motion for the corresponding
Green’s function.

B. Equation of motion for the Keldysh Green’s
function

We assume the system to be contacted and in equi-
librium at inverse temperature β before time t = t0 and
described by Hamiltonian Ĥ0. For times t > t0 the sys-
tem is driven out of equilibrium by an external bias and
we aim to study the time-evolution of the electron den-
sity, current, etc.. In order to describe the electron dy-
namics in this system we use Keldysh Green’s function
theory (for a review see Ref.60) which allows us to include
many-body effects in a diagrammatic way. The Keldysh
Green’s function is defined as the expectation value of
the contour-ordered product

Grs(z, z′) = −i
Tr

{

T [e−i
R

dz̄Ĥ(z̄)âr(z)â†
s(z

′)]
}

Tr
{

e−βĤ0

}

= −i〈T [âr(z)â†
s(z

′)]〉, (5)

where â and â† are either lead or central region operators
and the indices r and s are collective indices for position
and spin. The variable z is a time contour variable that
specifies the location of the operators on the time con-
tour. The operator T orders the operators along the
Keldysh contour displayed in Fig. 2, consisting of two
real time branches and the imaginary track running from
t0 to t0 − iβ. In the definition of the Green’s function
the trace is taken with respect to the many-body states
of the system.
All time-dependent one-particle properties can be calcu-
lated from G. For instance, the time-dependent density
matrix is given as

nrs(t) = −iGrs(t−, t+), (6)

where the times t± lie on the lower/upper branch of the
contour. The equations of motion for the Green’s func-
tion of the full system can be easily derived from the
definition Eq. (5) and read

i∂zG(z, z′) = δ(z, z′)1 + H(z)G(z, z′)

+

∫

dz̄ ΣMB(z, z̄)G(z̄, z′), (7)

−i∂z′G(z, z′) = δ(z, z′)1 + G(z, z′)H(z′)

+

∫

dz̄ G(z, z̄)ΣMB(z̄, z), (8)

where ΣMB is the many-body self-energy, H(z) is the
matrix representation of the one-body part of the full
Hamiltonian and the integration is performed over the
Keldysh-contour. This equation of motion needs to be
solved with the boundary conditions63,64

G(t0, z
′) = −G(t0 − iβ, z′),

G(z, t0) = −G(z, t0 − iβ),
(9)

which follow directly from the definition of the Green’s
function Eq. (5). Explicitly, the one-body Hamiltonian

The time-dependent quantum transport problem

Consider a molecule (or quantum dot) attached to leads

Problem: 

Calculate the time evolution of observables of this system when a
bias is applied.
  



Theoretical challenges

-  We are dealing with an open quantum system

-  We are dealing with a many-particle system

-  We are dealing with a nonequilibrium system 



 -  We use Kadanoff-Baym approach to study the basic physics of time-  
   dependent processes that play a role in correlated quantum transport

       - bistability, phonons, spin transport,
         superconducting leads, AC fields,.....etc.

-  We use Kadanoff-Baym approach to benchmark and develop new 
   correlation functionals in density functional theory beyond ALDA.

Our approach



Nonequilibrium Eqns.

Robert van Leeuwen

November 12, 2004

1 Basic equations

i∂tΨ(x1, . . . ,xn, t) = Ĥ(t)Ψ(x1, . . . ,xn, t)

n(r, t)

G(x1t1,x2t2)

1

Time-propagation of the Kadanoff-Baym equations

This method can deal with:

- inhomogeneous open systems
- time-dependent external fields
  (both in leads and device regions)
- electronic interactions

The method is based on the propagation of the equations of motion for the 
nonequilibrium Green function,  also known as 
the Kadanoff-Baym equations.  (Kadanoff/Baym 1964, Keldysh 1965)

The main ingredient of the method is the nonequilibrium Green function

(N.E. Dahlen, RvL,
Phys.Rev.Lett. 98, 153004 (2007)

P.Myöhänen, A.Stan, G.Stefanucci, RvL
Europhys.Lett. 84, 67001 (2008))

P.Myöhänen, A.Stan, G.Stefanucci, RvL 
Phys.Rev. B80, 115107 (2009),



Time evolution of a many-body system

The time-dependent Hamiltonian

ELDA/GGA
xc [n] =

∫
d3rf(n,∇n,∇2n)

(i∂t +
1
2
∇2 − vs(rt))φi(rt) = 0

n(rt) =
N∑

i=1

|φi(rt)|2

vs(rt) = v(rt) + vH(rt) + vxc(rt)
Ĥ(t) = ĥ(t) + Ŵ

ĥ(t) =
N∑

i

h(rit)

h(rt) =
1
2
[−i∇+ A(rt)]2 + v(rt)− µ

ρ̂ =
e−βĤ0

Tr e−βĤ0

〈Ô〉 = Tr
{

ρ̂ Ô
}

〈Ô(t)〉 = Tr
{

ρ̂ ÔH(t)
}

ÔH(t) = Û(t0, t) Ô Û(t, t0)
i∂tÛ(t, t′) = Ĥ(t)Û(t, t′)

i∂t′Û(t, t′) = −Û(t, t′)Ĥ(t′)
Û(t, t) = 1

Û(t, t′) = T exp(−i

∫ t

t′
dτĤ(τ))

Û(t0 − iβ, t0) = e−βĤ0

〈Ô(t)〉 =
Tr

{
Û(t0 − iβ, t0)Û(t0, t) Ô Û(t, t0)

}

Tr
{

Û(t0 − iβ, t0)
}

G(1, 2) = −i〈TC [ψ̂H(1)ψ̂†
H(2)]〉 = θ(t1, t2)G>(1, 2) + θ(t2, t1)G<(1, 2)

G>(1, 2) = −i〈ψ̂H(1)ψ̂†
H(2)〉

G<(1, 2) = i〈ψ̂†
H(2)ψ̂H(1)〉

G(x1t0 − iβ, 2) = −G(x1t0, 2)
G(1,x2t0) = −G(1,x2t0 − iβ)

G2(1, 2, 3, 4) = (−i)2〈TC [ψ̂H(1)ψ̂H(2)ψ̂†
H(3)ψ̂†

H(4)]〉

0 = [i∂t1 − h0(1)]G(1, 1′)− δ(1, 1′)−
∫

d2M(1, 2)G(2, 1′)

M(1, 2) = i

∫
d3d4 G(1, 3)w(1+, 4)Γ(32; 4)− iδ(1, 2)

∫
d3 w(1, 3)G(3, 3+)

Γ(12; 3) = δ(1, 2)δ(1, 3) +
∫

d4d5d6d7
δM(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)Γ(67; 3)
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Û(t, t) = 1
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The goal is calculate the time-dependent expectation values of 
observables :  

Kinetic energy + external potential Two-particle interactions

BRIEF ARTICLE

THE AUTHOR

1. formulas

∫

d2Σ(1, 2)G(2, 1′) = −i

∫

d2w(1, 2)G2(1, 2, 2
+, 1′)

(i∂t1 − h(1))G(1, 2) = δ(1, 2) +

∫

d3Σ[G](1, 3)G(3, 2)

n =

∫

dω

2π

ΓL(ω)fL(ω) + ΓR(ω)fR(ω)

(ω − ε0 − nU − Λ(ω))2 + (Γ(ω)/2)2

Vg(t) = Vge
−ωgt

vijkl = vijδilδjk

vij =







vii i = j

vii

2|i−j| i "= j
µ

UL(t) = −UR(t) = U θ(t − t0)

tα = −2

tC = −1

V1,5L = V4,5R = −0.5

vii = 1.5

Im TrW <(t1, t2)

A(ω)/30

A(ω)

µ = 2.26

ρ̂ =
e−βĤ0

Tre−βĤ0

1



The time contour

ELDA/GGA
xc [n] =

∫
d3rf(n,∇n,∇2n)

(i∂t +
1
2
∇2 − vs(rt))φi(rt) = 0

n(rt) =
N∑

i=1

|φi(rt)|2

vs(rt) = v(rt) + vH(rt) + vxc(rt)
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ρ̂ ÔH(t)
}
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(L.V.Keldysh, Sov.Phys.JETP20, 1018 (1965)) 
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of the theory can be generalized to much more general initial conditions, but this is a topic that deserves a more
thorough discussion [3, 9–11]. The total Hamiltonian is written in second-quantization as

Ĥ(t) =
∫

dx ψ̂†(x)h0(r, t)ψ̂(x) +
1
2

∫ ∫
dx1dx2 ψ̂†(x1)ψ̂†(x2)

1
|r1 − r2|

ψ̂(x2)ψ̂(x1), (2)

where we use the notation x = (r,σ) and dx denotes integration over r as well as a summation over the spin indices.
We will now define an action which will be used as a generating functional for our observables. To motivate our
definition we consider the expectation value of an operator Ô for the case that the system is initially in an equilibrium
state before a certain time t0. For t < t0 the expectation value of operator Ô in the Schrödinger picture is then given
by 〈Ô〉 = Tr {ρ̂Ô} where ρ̂ = e−βĤ0/Tr e−βĤ0 is the density matrix and Ĥ0 is the time-independent Hamiltonian
that describes the system before the perturbation is switched on. We further defined β = 1/kBT to be the inverse
temperature, and the trace involves a summation over a complete set of states in the Hilbert space. After we switch
on the field the expectation value becomes

〈Ô(t)〉 = Tr
{

ρ̂ÔH(t)
}

(3)

where ÔH(t) = Û(t0, t)Ô(t)Û(t, t0) is the operator in the Heisenberg picture. The evolution operator Û of the system
is defined as the solution to the equations

i∂tÛ(t, t′) = Ĥ(t)Û(t, t′) i∂t′Û(t, t′) = −Û(t, t′)Ĥ(t′) (4)

with the boundary condition Û(t, t) = 1 . The formal solution of Eq. (4) can be obtained by integration to yield
(for t > t′) Û(t, t′) = T exp (−i

∫ t
t′ dτĤ(τ)). The operator e−βĤ0 can now be regarded as an evolution operator in

imaginary time, i.e. Û(t0 − iβ, t0) = e−βĤ0 , if we define Ĥ(t) to be equal to Ĥ0 on the contour running straight from
t0 to t0 − iβ in the complex time plane. We can therefore rewrite our expression for the expectation value as

〈Ô〉 =
Tr

{
Û(t0 − iβ, t0)Û(t0, t)ÔÛ(t, t0)

}

Tr
{

Û(t0 − iβ, t0)
} (5)

If we read the time arguments of the evolution operators in the numerator of this expression from left to right we may
say that the system evolves from t0 along the real time axis to t after which the operator Ô acts. Then the system
evolves back along the real axis from time t to t0 and finally parallel to the imaginary axis from t0 to t0 − iβ. A
corresponding contour is displayed in Fig. 1. From this observation we see that we can write the expectation value
equivalently as

〈Ô(t)〉 =
Tr

{
TC [exp(−i

∫
C dt̄Ĥ(t̄)Ô(t)]

}

Tr
{

Û(t0 − iβ, t0)
} (6)

where we define the evolution operator on the contour as

Û(t0 − iβ, t0) = TC exp(−i

∫
dtĤ(t)). (7)

and

TC [exp(−i

∫

C
dt̄Ĥ(t̄)Ô(t)] ≡

∞∑

n=0

(−i)n

n!

∫
dt̄1 . . . dt̄nTC [Ĥ(t̄1) . . . Ĥ(t̄n)] (8)

Here the integrals in Eqs.(7) and (8) are taken on the contour and TC denotes time-ordering along the contour of
Fig.(1). For instance, time t1 in Fig. 1 is later than time t2 on the contour. With the compact notation 1 = (x1, t1)
we now define the one-particle Green’s function G as

G(1, 2) =
1
i

Tr
{

Û(t0 − iβ, t0)TC

[
ψ̂H(1)ψ̂†

H(2)
]}

Tr
{

Û(t0 − iβ, t0)
}

= −i〈TC [ψ̂H(1)ψ̂†
H(2)]〉, (9)
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ρ̂ ÔH(t)
}
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〈Ô(t)〉 =
Tr

{
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2
∇2 − vs(rt))φi(rt) = 0

n(rt) =
N∑

i=1

|φi(rt)|2

vs(rt) = v(rt) + vH(rt) + vxc(rt)

Ĥ(t) = ĥ(t) + Ŵ

ĥ(t) =
N∑

i

h(rit)

h(rt) =
1
2
[−i∇+ A(rt)]2 + v(rt)− µ

ρ̂ =
e−βĤ0

Tr e−βĤ0

〈Ô〉 = Tr
{

ρ̂ Ô
}

〈Ô(t)〉 = Tr
{

ρ̂ ÔH(t)
}

ÔH(t) = Û(t0, t) Ô Û(t, t0)

i∂tÛ(t, t′) = Ĥ(t)Û(t, t′)

i∂t′Û(t, t′) = −Û(t, t′)Ĥ(t′)

Û(t, t) = 1

Û(t, t′) = T exp(−i

∫ t

t′
dτĤ(τ))

Û(t, t′) = TC exp(−i

∫ t

t′
dτĤ(τ))

Û(t0 − iβ, t0) = e−βĤ0

〈Ô(t)〉 =
Tr

{
Û(t0 − iβ, t0)Û(t0, t) Ô Û(t, t0)

}

Tr
{

Û(t0 − iβ, t0)
}

G(1, 2) = −i〈TC [ψ̂H(1)ψ̂†
H(2)]〉 = θ(t1, t2)G>(1, 2) + θ(t2, t1)G<(1, 2)

G>(1, 2) = −i〈ψ̂H(1)ψ̂†
H(2)〉

G<(1, 2) = i〈ψ̂†
H(2)ψ̂H(1)〉

G(x1t0 − iβ, 2) = −G(x1t0, 2)

G(1,x2t0) = −G(1,x2t0 − iβ)

G2(1, 2, 3, 4) = (−i)2〈TC [ψ̂H(1)ψ̂H(2)ψ̂†
H(3)ψ̂†

H(4)]〉

2

We similarly define the two-particle Green function as :

ELDA/GGA
xc [n] =

∫
d3rf(n,∇n,∇2n)

(i∂t +
1
2
∇2 − vs(rt))φi(rt) = 0

n(rt) =
N∑

i=1

|φi(rt)|2

vs(rt) = v(rt) + vH(rt) + vxc(rt)

Ĥ(t) = ĥ(t) + Ŵ

ĥ(t) =
N∑

i

h(rit)

h(rt) =
1
2
[−i∇+ A(rt)]2 + v(rt)− µ

ρ̂ =
e−βĤ0

Tr e−βĤ0

〈Ô〉 = Tr
{

ρ̂ Ô
}

〈Ô(t)〉 = Tr
{

ρ̂ ÔH(t)
}

ÔH(t) = Û(t0, t) Ô Û(t, t0)

i∂tÛ(t, t′) = Ĥ(t)Û(t, t′)

i∂t′Û(t, t′) = −Û(t, t′)Ĥ(t′)

Û(t, t) = 1

Û(t, t′) = T exp(−i

∫ t

t′
dτĤ(τ))

Û(t, t′) = TC exp(−i

∫ t

t′
dτĤ(τ))

Û(t0 − iβ, t0) = e−βĤ0

〈Ô(t)〉 =
Tr

{
Û(t0 − iβ, t0)Û(t0, t) Ô Û(t, t0)

}

Tr
{

Û(t0 − iβ, t0)
}

G(1, 2) = −i〈TC [ψ̂H(1)ψ̂†
H(2)]〉 = θ(t1, t2)G>(1, 2) + θ(t2, t1)G<(1, 2)

G>(1, 2) = −i〈ψ̂H(1)ψ̂†
H(2)〉

G<(1, 2) = i〈ψ̂†
H(2)ψ̂H(1)〉

G(x1t0 − iβ, 2) = −G(x1t0, 2)

G(1,x2t0) = −G(1,x2t0 − iβ)

G2(1, 2, 3, 4) = (−i)2〈TC [ψ̂H(1)ψ̂H(2)ψ̂†
H(3)ψ̂†

H(4)]〉

2

Propagation of a “particle” (added electron)

Propagation of a “hole” (removed electron)

Propagators for nonequilibrium systems



Physical content

The nonequilibrium Green function contains a wealth of detailed 
information :

- The expectation value of any one-body operator such as electron 
and current  densities, the Wigner distribution function and 
momentum densities.

- The total energy

- All the electron affinities and ionization energies of the system 
(photo-electron spectra)

- The excitation energies of the system (absorption spectra)

- Life-times of excitations



The equations of motion

The equations of motion for the Green function are given by : 

(i∂t1 − h(1))G(1, 1′) = δ(1, 1′)− i

∫
d2 w(1, 2)G2(1, 2, 2+, 1′)

(−i∂t′1
− h(1))G(1, 1′) = δ(1, 1′)− i

∫
d2 w(1′, 2)G2(1, 2, 2+, 1′)

[i∂t1 − h(1)]G(1, 1′) = δ(1, 1′) +
∫

d2M(1, 2)G(2, 1′)

[−i∂t′1
− h(1′)]G(1, 1′) = δ(1, 1′) +

∫
d2G(1, 2)M(2, 1′)

M(1, 2) = i

∫
d3d4 G(1, 3)w(1+, 4)Γ(32; 4)− iδ(1, 2)

∫
d3 w(1, 3)G(3, 3+)

Γ(12; 3) = δ(1, 2)δ(1, 3) +
∫

d4d5d6d7
δM(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)Γ(67; 3)

3

(i∂t1 − h(1))G(1, 1′) = δ(1, 1′)− i

∫
d2 w(1, 2)G2(1, 2, 2+, 1′)

(−i∂t′1
− h(1))G(1, 1′) = δ(1, 1′)− i

∫
d2 w(1′, 2)G2(1, 2, 2+, 1′)

[i∂t1 − h(1)]G(1, 1′) = δ(1, 1′) +
∫

d2M(1, 2)G(2, 1′)

[−i∂t′1
− h(1′)]G(1, 1′) = δ(1, 1′) +

∫
d2G(1, 2)M(2, 1′)

M(1, 2) = i

∫
d3d4 G(1, 3)w(1+, 4)Γ(32; 4)− iδ(1, 2)

∫
d3 w(1, 3)G(3, 3+)

Γ(12; 3) = δ(1, 2)δ(1, 3) +
∫

d4d5d6d7
δM(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)Γ(67; 3)

3

ELDA/GGA
xc [n] =

∫
d3rf(n,∇n,∇2n)

(i∂t +
1
2
∇2 − vs(rt))φi(rt) = 0

n(rt) =
N∑

i=1

|φi(rt)|2

vs(rt) = v(rt) + vH(rt) + vxc(rt)

Ĥ(t) = ĥ(t) + Ŵ

ĥ(t) =
N∑

i

h(rit)

h(rt) =
1
2
[−i∇+ A(rt)]2 + v(rt)− µ

ρ̂ =
e−βĤ0

Tr e−βĤ0

〈Ô〉 = Tr
{

ρ̂ Ô
}

〈Ô(t)〉 = Tr
{

ρ̂ ÔH(t)
}

ÔH(t) = Û(t0, t) Ô Û(t, t0)

i∂tÛ(t, t′) = Ĥ(t)Û(t, t′)

i∂t′Û(t, t′) = −Û(t, t′)Ĥ(t′)

Û(t, t) = 1

Û(t, t′) = T exp(−i

∫ t

t′
dτĤ(τ))

Û(t, t′) = TC exp(−i

∫ t

t′
dτĤ(τ))

Û(t0 − iβ, t0) = e−βĤ0

〈Ô(t)〉 =
Tr

{
Û(t0 − iβ, t0)Û(t0, t) Ô Û(t, t0)

}

Tr
{

Û(t0 − iβ, t0)
}

G(1, 2) = −i〈TC [ψ̂H(1)ψ̂†
H(2)]〉 = θ(t1, t2)G>(1, 2) + θ(t2, t1)G<(1, 2)

G>(1, 2) = −i〈ψ̂H(1)ψ̂†
H(2)〉

G<(1, 2) = i〈ψ̂†
H(2)ψ̂H(1)〉

G(x1t0 − iβ, 2) = −G(x1t0, 2)

G(1,x2t0) = −G(1,x2t0 − iβ)

G2(1, 2, 3, 4) = (−i)2〈TC [ψ̂H(1)ψ̂H(2)ψ̂†
H(3)ψ̂†

H(4)]〉

2

with boundary conditions



The simplest collision terms correspond to the following structure of the 
two-particle Green function: 

G2(1, 2, 2
′, 1′) =

1 2′

1′ 2

= −

+ −

Hartree-Fock
terms

collision terms

We define a self-energy operator as follows

BRIEF ARTICLE

THE AUTHOR

1. formulas

∫
d2 Σ(1, 2)G(2, 1′) = −i

∫
d2 w(1, 2) G2(1, 2, 2+, 1′)

1



The corresponding self-energy diagrams to 2nd order are :

Σ = + +

BRIEF ARTICLE

THE AUTHOR

1. formulas

∫
d2 Σ(1, 2)G(2, 1′) = −i

∫
d2 w(1, 2) G2(1, 2, 2+, 1′)

(i∂t1 − h(1))G(1, 2) = δ(1, 2) +
∫

d3 Σ[G](1, 3)G(3, 2)

1

The equation of motion for the Green function attains the form
(these are essentially the Kadanoff-Baym equations):

A space-time nonlocal potential 
describing the effects of two-particle 
interactions

+



By splitting the equation of motion in components, one obtains the set
of Kadanoff-Baym equations. For example for the lesser component G< :

Collision or electron
correlation terms :
Memory kernels Initial correlations

(i∂t1 − h(1))G(1, 1′) = δ(1, 1′)− i

∫
d2 w(1, 2)G2(1, 2, 2+, 1′)

(−i∂t′1
− h(1))G(1, 1′) = δ(1, 1′)− i

∫
d2 w(1′, 2)G2(1, 2, 2+, 1′)

[i∂t1 − h(1)]G(1, 1′) = δ(1, 1′) +
∫

d2M(1, 2)G(2, 1′)

[−i∂t′1
− h(1′)]G(1, 1′) = δ(1, 1′) +

∫
d2G(1, 2)M(2, 1′)

M(1, 2) = i

∫
d3d4 G(1, 3)w(1+, 4)Γ(32; 4)− iδ(1, 2)

∫
d3 w(1, 3)G(3, 3+)

Γ(12; 3) = δ(1, 2)δ(1, 3) +
∫

d4d5d6d7
δM(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)Γ(67; 3)

M(1, 2) = ΣHF (1, 2) + θ(t1, t2)Σ>(1, 2) + θ(t2, t1)Σ<(1, 2)

(i∂t1 − h(1))G<(1, 2)−
∫

dx3ΣHF (1,x3t1)G<(x3t1, 2)

=
∫ t1

t0

d3[Σ>(1, 3)− Σ<(1, 3)]G<(3, 2)−
∫ t2

t0

Σ<(1, 2)[G>(3, 2)−G<(3, 2)] +
∫ t0−iβ

t0

G<(1, 3)Σ>(3, 2)

M(1, 2) =
δΦ[G]

δG(2, 1)

δG(1, 2) =
∫

d3d4 G(1, 3)G(4, 2)Γ(34; 5)δv(5) =
∫

d5 Λ(12, 5)δv(5)

(i∂t1 − h)G<(1, 2)−ΣHF (t1) · G<(t1, t2)

=
∫ t1

t0

d3[Σ>(1, 3)− Σ<(1, 3)]G<(3, 2)−
∫ t2

t0

Σ<(1, 2)[G>(3, 2)−G<(3, 2)] +
∫ t0−iβ

t0

G<(1, 3)Σ>(3, 2)

3

Σ(2)
ij (t, t′) =

∑

klmnpq

Gkl(t, t
′)Gmn(t, t′)Gpq(t

′, t) viqmk(2vlnpj − vnlpj)

=

∫ t1

t0

d3[Σ>(1, 3) − Σ<(1, 3)]G<(3, 2) −
∫ t2

t0

d2Σ<(1, 3)[G>(3, 2) − G<(3, 2)]

13

Σ(2)
ij (t, t′) =

∑

klmnpq

Gkl(t, t
′)Gmn(t, t′)Gpq(t

′, t) viqmk(2vlnpj − vnlpj)

=

∫ t1

t0

d3[Σ>(1, 3) − Σ<(1, 3)]G<(3, 2) −
∫ t2

t0

d2Σ<(1, 3)[G>(3, 2) − G<(3, 2)]

+

∫ t0−iβ

t0

d3Σ#(1, 3)G$(3, 2)

13

Time-dependent 
external field



The conservation laws

Ĥ(t) = −1
2

∫
dr ψ̂†(x)h(x, t)ψ̂(x)+

1
2

∫
dx dx′ ψ̂†(x)ψ̂†(x)w(r, r′)ψ̂(x′)ψ̂(x)

〈n(1)〉 = −iG(1, 1+)

〈j(1)〉 = −i

[
∇1

2i
− ∇1′

2i
+ A(1)

]
G(1, 1′)1′=1+

∂t1〈n(1)〉+∇1 · 〈j(1)〉 = 0

4

Ĥ(t) = −1
2

∫
dr ψ̂†(x)h(x, t)ψ̂(x)+

1
2

∫
dx dx′ ψ̂†(x)ψ̂†(x)w(r, r′)ψ̂(x′)ψ̂(x)

〈n(1)〉 = −iG(1, 1+)

〈j(1)〉 = −i

[
∇1

2i
− ∇1′

2i
+ A(1)

]
G(1, 1′)1′=1+

∂t1〈n(1)〉+∇1 · 〈j(1)〉 = 0

4

Ĥ(t) = −1
2

∫
dr ψ̂†(x)h(x, t)ψ̂(x)+

1
2

∫
dx dx′ ψ̂†(x)ψ̂†(x)w(r, r′)ψ̂(x′)ψ̂(x)

〈n(1)〉 = −iG(1, 1+)

〈j(1)〉 = −i

[
∇1

2i
− ∇1′

2i
+ A(1)

]
G(1, 1′)1′=1+

∂t1〈n(1)〉+∇1 · 〈j(1)〉 = 0

〈P(t1)〉 =
∫

dx1 〈j(1)〉

∂t1〈P(t1)〉 = −
∫

dx1 [〈n(1)〉E(1) + 〈j(1)〉 ×B(1)]

4

From an approximate Green function we can calculate several observables

These observables are related by conservation laws such as

Ĥ(t) = −1
2

∫
dr ψ̂†(x)h(x, t)ψ̂(x)+

1
2

∫
dx dx′ ψ̂†(x)ψ̂†(x)w(r, r′)ψ̂(x′)ψ̂(x)

〈n(1)〉 = −iG(1, 1+)

〈j(1)〉 = −i

[
∇1

2i
− ∇1′

2i
+ A(1)

]
G(1, 1′)1′=1+

∂t1〈n(1)〉+∇1 · 〈j(1)〉 = 0

〈P(t1)〉 =
∫

dx1 〈j(1)〉

∂t1〈P(t1)〉 = −
∫

dx1 [〈n(1)〉E(1) + 〈j(1)〉 ×B(1)]

4

Ĥ(t) = −1
2

∫
dr ψ̂†(x)h(x, t)ψ̂(x)+

1
2

∫
dx dx′ ψ̂†(x)ψ̂†(x)w(r, r′)ψ̂(x′)ψ̂(x)

〈n(1)〉 = −iG(1, 1+)

〈j(1)〉 = −i

[
∇1

2i
− ∇1′

2i
+ A(1)

]
G(1, 1′)1′=1+

∂t1〈n(1)〉+∇1 · 〈j(1)〉 = 0

〈P(t1)〉 =
∫

dx1 〈j(1)〉

∂t1〈P(t1)〉 = −
∫

dx1 [〈n(1)〉E(1) + 〈j(1)〉 ×B(1)]

4

Will these relations be satisfied if the ingredients are calculated 
from an approximate Green function ?

density

current density

momentum

number conservation

momentum
conservation



The conservation laws

Conservation laws, such as those of energy, momentum, angular 
momentum and particle number, are  automatically obeyed when we 
use so-called Phi-derivable approximations for the self-energy.

For Phi-derivable approximations the expectation values are 
independent from the way they are calculated 

= −i

∫

C
d3d4Gs(1, 4)Σx(4, 3)Gs(3, 1)

∫

C

d2χs(1, 2)vx(2) = −i

∫

C

d2Gs(1, 2)Gs(2, 1)vx(2)

∫

C

d2Gs(1, 2)Gs(2, 1)vx(2) =

∫

C

d3d4Gs(1, 4)Σx(4, 3)Gs(3, 1)

χAO(t, q1t1) = −i θ(t1−t2)
∑

n

(

〈Ψ0|ÂH(t)|Ψn〉〈Ψn|ÔH(q1t1)|Ψ0〉 − 〈Ψ0|ÔH(q1t1)|Ψn〉〈Ψn|ÂH(t)|Ψ0〉
)

〈Ψ0|ÂH(t)|Ψn〉 = e−iΩn(t−t0)〈Ψ0|Â|Ψn〉

Ωn = En − E0

χAO(t, q1t1) = −i θ(t1 − t2)
∑

n

e−iΩn(t−t′)〈Ψ0|Â|Ψn〉〈Ψn|Ô(q1)|Ψ0〉 + c.c.

θ(τ) = lim
η→0+

−1

2πi

∫ ∞

−∞
dω

e−iωτ

ω + iη

χAO(q1,ω) = lim
η→0+

∑

n

(

〈Ψ0|Â|Ψn〉〈Ψn|Ô(q1)|Ψ0〉

ω − Ωn + iη
−

〈Ψ0|Ô(q1)|Ψn〉〈Ψn|Â|Ψ0〉

ω + Ωn + iη

)

h(r, t) = −
1

2
∇2 + v(r, t) − µ

n(1) =
δÃ

δv(1)
=

Tr
{

Û(t0 − iβ, t0)Û(t0, t1)n̂(r1)Û (t1, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

i∂tΓ1...n = [Ĥ(t),Γ1...n]

Γ[γ]

n(x, t) = γ(xx, t)

Γ[γ,Ψ0]

γ(xx
′, t) = −iG<(xt,x′t)

γ(x1,x2, t)

n(1) =
δÃ

δv(1)
=

Tr

Tr

iÃ[u] = − ln Tr {e−βĤ0} = βΩ

Σ(1, 2) =
δΦ

δG(2, 1)

11

( G.Baym,  Phys.Rev. 127, 1391 (1962))



see e.g. N.H.Kwong, M.Bonitz, Phys.Rev.Lett. 84, 1768 (2000)

= −〈Ψ(T )|δĤ(T )
δn(rt)

|Ψ(T )〉 = −〈Ψ(T )|δV̂ [n](T )
δn(rt)

|Ψ(T )〉

∂T Ψ(T ) = −iĤ(T )Ψ(T )

A0[n] =
∫ T

0
dt〈Ψ[n](t)|V̂ (t)|Ψ[n]〉 =

∫ T

0
dt

∫
drn(rt)v[n](rt)

Ã[v] = i ln〈Ψ0|Û(t0, t0)|Ψ0〉

δv(rt)
δn(r′t′)

=
δ2A0

δn(r′t′)δn(rt)
− i〈Ψ(T )| δ2Ψ(T )

δn(r′t′)δn(rt)
〉

−i〈 Ψ(T )
δn(r′t′)

|δΨ(T )
δn(rt)

〉

δv(rt)
δn(r′t′)

= −i
[
〈 δΨ(T )
δn(r′t′)

|δΨ(T )
δn(rt)

〉 − 〈δΨ(T )
δn(rt)

| δΨ(T )
δn(r′t′)

〉
]

= 2 Im 〈 δΨ(T )
δn(r′t′)

|δΨ(T )
δn(rt)

〉

δv(rt)
δn(r′t′)

=
δv(rt)
δn(r′t′)

− δv(r′t′)
δn(rt)

G−1
0 (1, 2) = (i∂t1 − h(1))δ(1, 2)

0 = i
δA

δG
=

δΦ
δG

+ G−1 − G−1
0

G−1
0 G = 1 + ΣG

iA[G] = Φ[G] − tr
{
ln(−G−1) + (G−1

0 G − 1)
}

Σ

δΣ

iA[vs] = Φ[Gs] − tr
{
ln(−G−1

s ) + (G−1
0 Gs − 1)

}

0 = iδA = tr
{

Σ[Gs] − G−1
s + G−1)

δGs

δvs
δvs

}

(i∂t1 − h(1))G(1, 2) = δ(1, 2) +
∫

d3 Σ(1, 3)G(3, 2)

A[vs] = A[Gs[vs]]

iA[vs] =

δA

δvs
= 0

3

f-sum rule and Ward identity

vertex

1 equations

vijkl ≈ δjkδilVij

Vij =

∫

dx

∫

dx′v(r − r′)|ϕi(x)|2|ϕj(x
′)|2

W̃ = W − v

W = v + vPW

W̃ = vPv + vPW̃

P = −iGG

χ = P + Pvχ

P = GGΓ =

W̃pqrs(t, t
′) =

∑

ijkl

vplisPijkl(t, t
′)vjqrk +

∑

ijkl

∫

dt1dt2 vplisPijkl(t1, t2)W̃jqrk(t2, t
′)

W̃Q1Q2
(t, t′) =

∑

Q3Q4

vQ1Q3
PQ3Q4

(t, t′)vQ4Q2
+

∑

Q3Q4

∫

dt1dt2 vQ1Q3
PQ3Q4

(t1, t2)W̃Q4Q2
(t2, t

′)

fQ(r) = φi(r)φ
∗
j (r)

Q = (ij)
∑

q1q2

U †
qq1

〈fq1
|fq2

〉Uq2q′ = σqδqq′
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The f-sumrule and the Ward identity are satisfied for the response function

where
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Conserving many-body approximations



Practical solution of the equations of motion

Ĥ(t) = −1
2

∫
dr ψ̂†(x)h(x, t)ψ̂(x)+

1
2

∫
dx dx′ ψ̂†(x)ψ̂†(x)w(r, r′)ψ̂(x′)ψ̂(x)

〈n(1)〉 = −iG(1, 1+)

〈j(1)〉 = −i

[
∇1

2i
− ∇1′

2i
+ A(1)

]
G(1, 1′)1′=1+

∂t1〈n(1)〉+∇1 · 〈j(1)〉 = 0

〈P(t1)〉 =
∫

dx1 〈j(1)〉

∂t1〈P(t1)〉 = −
∫

dx1 [〈n(1)〉E(1) + 〈j(1)〉 ×B(1)]

G(1, 2) =
∑

ij

ϕi(x1)Gij(t1, t2)ϕ∗
j (x2)

Gij(t1, t2) = −i〈TC âi,H(t1)â†
j,H(t2)〉
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∑
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4

For practical solution the Green function is expanded into one-particle states

For the one-particle states we can, for instance, use the solutions 
to the Hartree-Fock or Kohn-Sham equations

The Kadanoff-Baym equations become equations for time-dependent
matrices



θ(τ) = lim
η→0+

−1

2πi

∫ ∞

−∞
dω

e−iωτ

ω + iη

χAO(q1,ω) = lim
η→0+

∑

n

(

〈Ψ0|Â|Ψn〉〈Ψn|Ô(q1)|Ψ0〉
ω − Ωn + iη

−
〈Ψ0|Ô(q1)|Ψn〉〈Ψn|Â|Ψ0〉

ω + Ωn + iη

)

h(r, t) = −
1

2
∇2 + v(r, t) − µ

n(1) =
δÃ

δv(1)
=

Tr
{

Û(t0 − iβ, t0)Û(t0, t1)n̂(r1)Û (t1, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

χs(1, 2) =
δn(1)

δvs(2)

χ(1, 2) =
δn(1)

δv(2)

χ(1, 2) = χs(1, 2) +

∫

d3d4χs(1, 2)[w(1, 2) + fxc(3, 4)]χ(4, 2)

0 = ∇vxc(1) +

∫

d2n(2)∇2
δvxc(2)

δn(1)
∫

dr′ fxc(r, r
′;ω)∇′n(r′) = ∇vxc(r)

∇n(r)

∫

dr′ fxc(r, r
′;ω) = ∇vxc(r)

∫

dr′ fxc(r, r
′;ω) = fxc(k = 0,ω)

∫

d2Gs(1, 2)G(2, 1)vxc(2) =

∫

d2d3Gs(1, 2)Σxc(2, 3)G(3, 1)

vALDA
xc (rt) =

dεxc

dn
(n(rt))

fALDA
xc (rt, r′t′) =

d2εxc

dn2
(n0(r))δ(r − r′)δ(t − t′)

vijkl =

∫

dx

∫

dx′ ϕ∗
i (x)ϕ∗

j (x
′)v(r − r′)ϕk(x′)ϕl(x)
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Gkl(t, t
′)Gmn(t, t′)Gpq(t

′, t) viqmk(2vlnpj − vnlpj)

12

To evaluate the many-body interactions in the self-energy we calculate

The self-energy for second Born is e.g. given by

(Nils Erik Dahlen, RvL,
Phys.Rev.Lett. 98, 153004 (2007))



The number of two-electron integrals v_ijkl grows as N4 . In a localized
basis we may use distance effects. The simplest is:

1 equations

vijkl ≈ δjkδilVij

Vij =

∫

dx

∫

dx′v(r − r′)|ϕi(x)|2|ϕj(x
′)|2

fGK
xc (r, r′,ω) = fhom

xc (n0(r),q = 0,ω) δ(r − r′)

i∂tΨ(r1σ1, . . . , rNσN , t) = Ĥ(t)Ψ(r1σ1, . . . , rNσN , t)

Ĥ(t) = T̂ + V̂ (t) + Ŵ

Ψ(t = 0) = Ψ0

|µ ± U − ε0
i |

Φx(x1 . . .xN−1) = ψ̂(x)Ψ0 ≡
√

NΨ0(x1 . . .xN−1,x)

〈Φx|Φx〉 = n0(x)

ΣM

Σ#

Σ$

Φx =
∑

i

fi(x)ΨN−1
i

fi(x) = 〈ΨN−1
i |ψ̂(x)|Ψ0〉

Φx(t) = ψ̂H(xt)Ψ0 =
∑

i

fi(x) e−i(EN−1
i −EN

0 )t ΨN−1
i

G<(xt,x′t′) = i〈Φx
′(t′)|Φx(t)〉 = i

∑

i

fi(x)f∗
i (x′) e−i(EN−1

i −EN
0 )(t−t′)

Av[n] =

∫ T

0
dt〈Ψ[n](t)|i∂t − Ĥv(t)|Ψ[n](t)〉

As,0[n] =

∫ T

0
dt〈Φ[n](t)|i∂t − T̂ |Φ[n](t)〉

Ĥs(t) = T̂ + V̂s(t)

vs(rt) =
δA0,s

δn(rt)
− i〈Φ(T )|

δΦ(T )

δn(rt)
〉 =

δAv =

∫ T

0
dt〈δΨ[n](t)|i∂t − Ĥv(t)|Ψ[n](t)〉

1
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The second Born self-energy is then considerably simplified to
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GW and the product basis technique

1 equations

vijkl ≈ δjkδilVij

Vij =

∫

dx

∫

dx′v(r − r′)|ϕi(x)|2|ϕj(x
′)|2

W̃ = W − v
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The GW approximation involves the dynamically screened interaction

If we consider the time nonlocal part of W
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We can reduce the size of the basis considerable by taking only by using
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(A.Stan,N.E.Dahlen, RvL J.Chem.Phys. 130,114105 (2009))
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The Kadanoff-Baym equations (Nils Erik Dahlen, RvL,
Phys.Rev.Lett. 98, 153004 (2007))

Splitting the equation of 
motion into components 
on different parts of the
Keldysh contour
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!

"

Time propagation of the Kadanoff-Baym equations

Solve equilibrium case 
on the imaginary axis

Carry out time-stepping in the double-time 
plane ( possibly with external field applied)

(Nils Erik Dahlen, RvL,
Phys.Rev.Lett. 98, 153004 (2007),
A.Stan, N.E.Dahlen, RvL, 
J.Chem.Phys.130, 224101 (2009))



The way we solve the equations of motion requires the storage of the 
matrix elements GKL (t,t’) for time-points t and t’, which grows 
quadratically with the number of basis functions and with the number
of time points.

I would be a great advantage to improve the scaling of the time-
propagation scheme:

T2                              T ln T -scaling   ?

See:  M.Zwolak, 
“Numerical ansatz for solving integro-differential equations with
increasingly smooth memory kernels¨

Computational Science and Discovery 1, 015002 (2008)
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n(2)(ḡ(1, 2)− 1)
|r1 − r2| +

1
2

∫
d2d3

n(2)n(3)
|r2 − r3|
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FIG. 1: Sketch of the transport setup. The correlated central
region (C) is coupled to left and right tight-binding leads via
tunneling Hamiltonians HαC and HCα, α = L, R.

equations51–54 for open and interacting systems. The KB
equations are equations of motion for the nonequilibrium
Green’s function from which basic properties of the sys-
tem can be calculated. It is the purpose of this paper
to give a detailed account of the theoretical derivation
and to extend the numerical analysis to quantum wires
connected to two-dimensional leads. For practical cal-
culations we have implemented the full self-consistent
HF, 2B and GW conserving approximations. Our results
reduce to those of steady-state MBPT implementations
in the long time limit. Having full access to the tran-
sient dynamics we are able, however, to extract novel
informations like the switching- and charging-times, the
time-dependent renormalization of the electronic levels,
the role of initial correlations, the time-dependent dipole
moments etc. Furthermore, the non-locality in time of
the 2B and GW self-energies allows us to highlight non
trivial memory effects occuring before the development
of the steady-state. We also wish to emphasize that our
approach is not limited to DC biases. Arbitrary driving
fields like AC biases, voltage pulses, pumping fields, etc.
can be dealt with at the same computational cost.

The paper is organized as follows. All derivations and
formulas are confined in Section II. We present the class
of many-body systems that can be studied within our
KB formulation in Section II A and derive the equations
of motion for the nonequilibrium Green’s function in the
device region in Section II B (see also Appendix A). The
equations of motion are then used to prove the continuity
equation for all conserving approximations, Section II C,
and to extend the Meir-Wingreen formula to the time do-
main for initially correlated systems, Section II D. Using
an inbedding technique in Section II E we derive the main
equations to calculate the time-dependent density in the
leads. In Section . . . .

II. THEORY

A. The model Hamiltonian

We consider a class of quantum correlated open sys-
tems (which we call central regions) coupled to noninter-
acting reservoirs (which we call leads), see Fig.(1). The

Hamiltonian has the general form

Ĥ(t) = ĤC(t) +
∑

α

Ĥα(t) + ĤT − µN̂ (1)

where ĤC, Ĥα, ĤT are the central region, the lead α
and the tunneling Hamiltonians respectively and N̂ is the
particle number operator coupled to chemical potential µ.
We assume that there is no direct coupling between the
leads. The correlated central region has a Hamiltonian
of the form

ĤC(t) =
∑

ij,σ

hij(t)d̂
†
iσ d̂jσ +

1

2

∑

ijkl
σσ′

vijkl d̂
†
iσd̂†jσ′ d̂kσ′ d̂lσ (2)

where i, j label a complete set of one-particle states in the
central region, σ, σ′ are spin-indices and d̂†, d̂ are the cre-
ation and annihilation operators respectively. The one-
body part of the Hamiltonian hij(t) may have an arbi-
trary time-dependence, describing, e.g., a gate voltage or
pumping fields. The two-body part accounts for interac-
tions between the electrons where vijkl are, for example
in the case of a molecule, the standard two-electron inte-
grals of the Coulomb interaction. The lead Hamiltonians
have the form

Ĥα(t) = Uα(t)N̂α +
∑

ij,σ

hα
ij ĉ†iσαĉjσα (3)

where the creation and annihilation operators for the
leads are denoted by ĉ† and ĉ. Here N̂α =

∑

i,σ ĉ†iσαĉiσα

is the operator describing the number of particles in lead
α. The one-body part of the Hamiltonian hα

ij describes
metallic leads and can be calculated using a tight-binding
representation, or a real-space grid or any other conve-
nient basis set. We are interested in exposising the leads
to an external electric field which varies on a time-scale
much longer than the typical plasmon time-scale. Then,
the coarse-grained time evolution can be performed as-
suming a perfect instantaneous screening in the leads and
the homogeneous time-dependent field Uα(t) can be in-
terpreted as the sum of the external and the screening
field, i.e., the applied bias. This effectively means that
the leads are treated at a Hartree mean field level. We
finally consider the tunneling Hamiltonian ĤT

ĤT =
∑

ij,σα

Vi,jα[d̂†iσ ĉjσα + ĉ†jσαd̂iσ ] (4)

which describes the coupling of the leads to the interact-
ing central region.

B. Equation of motion for the Keldysh Green
function

We assume the system to be contacted and in equilib-
rium at inverse temperature β before time t = t0 and de-
scribed by Hamiltonian Ĥ0. For times t > t0 the system
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FIG. 1: Sketch of the transport setup. The correlated cen-
tral region (C) is coupled to semi-infinite left (L) and right
(R) tight-binding leads via tunneling Hamiltonians HαC and
HCα, α = L, R.

ation and annihilation operators respectively. The one-
body part of the Hamiltonian hij(t) may have an arbi-
trary time-dependence, describing, e.g., a gate voltage or
pumping fields. The two-body part accounts for interac-
tions between the electrons where vijkl are, for example
in the case of a molecule, the standard two-electron inte-
grals of the Coulomb interaction. The lead Hamiltonians
have the form

Ĥα(t) = Uα(t)N̂α +
∑

ij,σ

hα
ij ĉ†iσα ĉjσα, (3)

where the creation and annihilation operators for the
leads are denoted by ĉ† and ĉ. Here N̂α =

∑

i,σ ĉ†iσαĉiσα

is the operator describing the number of particles in lead
α. The one-body part of the Hamiltonian hα

ij describes
metallic leads and can be calculated using a tight-binding
representation, or a real-space grid or any other conve-
nient basis set. We are interested in exposing the leads
to an external electric field which varies on a time-scale
much longer than the typical plasmon time-scale. Then,
the coarse-grained time evolution can be performed as-
suming a perfect instantaneous screening in the leads and
the homogeneous time-dependent field Uα(t) can be in-
terpreted as the sum of the external and the screening
field, i.e., the applied bias. This effectively means that
the leads are treated at a Hartree mean field level. We
finally consider the tunneling Hamiltonian ĤT

ĤT =
∑

ij,σα

Vi,jα[d̂†iσ ĉjσα + ĉ†jσαd̂iσ ] (4)

which describes the coupling of the leads to the interact-
ing central region. This completes the full description
of the Hamiltonian of the system. In the next section
we study the equations of motion for the corresponding
Green’s function.

B. Equation of motion for the Keldysh Green’s
function

We assume the system to be contacted and in equi-
librium at inverse temperature β before time t = t0 and
described by Hamiltonian Ĥ0. For times t > t0 the sys-
tem is driven out of equilibrium by an external bias and
we aim to study the time-evolution of the electron den-
sity, current, etc.. In order to describe the electron dy-
namics in this system we use Keldysh Green’s function
theory (for a review see Ref.60) which allows us to include
many-body effects in a diagrammatic way. The Keldysh
Green’s function is defined as the expectation value of
the contour-ordered product

Grs(z, z′) = −i
Tr

{

T [e−i
R

dz̄Ĥ(z̄)âr(z)â†
s(z

′)]
}

Tr
{

e−βĤ0

}

= −i〈T [âr(z)â†
s(z

′)]〉, (5)

where â and â† are either lead or central region operators
and the indices r and s are collective indices for position
and spin. The variable z is a time contour variable that
specifies the location of the operators on the time con-
tour. The operator T orders the operators along the
Keldysh contour displayed in Fig. 2, consisting of two
real time branches and the imaginary track running from
t0 to t0 − iβ. In the definition of the Green’s function
the trace is taken with respect to the many-body states
of the system.
All time-dependent one-particle properties can be calcu-
lated from G. For instance, the time-dependent density
matrix is given as

nrs(t) = −iGrs(t−, t+), (6)

where the times t± lie on the lower/upper branch of the
contour. The equations of motion for the Green’s func-
tion of the full system can be easily derived from the
definition Eq. (5) and read

i∂zG(z, z′) = δ(z, z′)1 + H(z)G(z, z′)

+

∫

dz̄ ΣMB(z, z̄)G(z̄, z′), (7)

−i∂z′G(z, z′) = δ(z, z′)1 + G(z, z′)H(z′)

+

∫

dz̄ G(z, z̄)ΣMB(z̄, z), (8)

where ΣMB is the many-body self-energy, H(z) is the
matrix representation of the one-body part of the full
Hamiltonian and the integration is performed over the
Keldysh-contour. This equation of motion needs to be
solved with the boundary conditions63,64

G(t0, z
′) = −G(t0 − iβ, z′),

G(z, t0) = −G(z, t0 − iβ),
(9)

which follow directly from the definition of the Green’s
function Eq. (5). Explicitly, the one-body Hamiltonian
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where ΣMB is the many-body self-energy, H(z) is the
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Hamiltonian and the integration is performed over the
Keldysh-contour. This equation of motion needs to be
solved with the boundary conditions [cite KMS here]

G(t0, z
′) = −G(t0 − iβ, z′)

G(z, t0) = −G(z, t0 − iβ).
(9)

which follow directly from the definition of the Green
function Eq.(5). Explicitly, the one-body Hamiltonian
H for the case of two leads, Left (L) and Right (R), is

H =
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0 HRC HRR



 (10)

where the different block matrices describe the projec-
tions of the one-body part H of the Hamiltonian onto
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different subregions. They are explicitly given as

(Hαα)iσ,jσ′ (z) =
[

hα
ij + δij(Uα(z) − µ)

]

δσσ′ , (11)

(HCC)iσ,jσ′ (z) = [hij(z) − δijµ] δσσ′ , (12)

(HCα)iσ,jσ′ =
(

H
†
αC

)

jσ′,iσ,
= Vi,jαδσσ′ . (13)

As for the systems that we consider the leads remain in
thermal equilibrium we focus on the dynamical processes
occuring in the central region. These are described by the
Green function GCC projected to the central region. We
therefore want to extract from the block matrix structure
for the Green function
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FIG. 1: Sketch of the transport setup. The correlated cen-
tral region (C) is coupled to semi-infinite left (L) and right
(R) tight-binding leads via tunneling Hamiltonians HαC and
HCα, α = L, R.

ation and annihilation operators respectively. The one-
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ij,σ

hα
ij ĉ†iσα ĉjσα, (3)

where the creation and annihilation operators for the
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∑

i,σ ĉ†iσαĉiσα

is the operator describing the number of particles in lead
α. The one-body part of the Hamiltonian hα

ij describes
metallic leads and can be calculated using a tight-binding
representation, or a real-space grid or any other conve-
nient basis set. We are interested in exposing the leads
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which describes the coupling of the leads to the interact-
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of the Hamiltonian of the system. In the next section
we study the equations of motion for the corresponding
Green’s function.

B. Equation of motion for the Keldysh Green’s
function
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described by Hamiltonian Ĥ0. For times t > t0 the sys-
tem is driven out of equilibrium by an external bias and
we aim to study the time-evolution of the electron den-
sity, current, etc.. In order to describe the electron dy-
namics in this system we use Keldysh Green’s function
theory (for a review see Ref.60) which allows us to include
many-body effects in a diagrammatic way. The Keldysh
Green’s function is defined as the expectation value of
the contour-ordered product

Grs(z, z′) = −i
Tr

{

T [e−i
R

dz̄Ĥ(z̄)âr(z)â†
s(z

′)]
}

Tr
{

e−βĤ0

}

= −i〈T [âr(z)â†
s(z

′)]〉, (5)

where â and â† are either lead or central region operators
and the indices r and s are collective indices for position
and spin. The variable z is a time contour variable that
specifies the location of the operators on the time con-
tour. The operator T orders the operators along the
Keldysh contour displayed in Fig. 2, consisting of two
real time branches and the imaginary track running from
t0 to t0 − iβ. In the definition of the Green’s function
the trace is taken with respect to the many-body states
of the system.
All time-dependent one-particle properties can be calcu-
lated from G. For instance, the time-dependent density
matrix is given as

nrs(t) = −iGrs(t−, t+), (6)

where the times t± lie on the lower/upper branch of the
contour. The equations of motion for the Green’s func-
tion of the full system can be easily derived from the
definition Eq. (5) and read

i∂zG(z, z′) = δ(z, z′)1 + H(z)G(z, z′)

+

∫

dz̄ ΣMB(z, z̄)G(z̄, z′), (7)

−i∂z′G(z, z′) = δ(z, z′)1 + G(z, z′)H(z′)

+

∫

dz̄ G(z, z̄)ΣMB(z̄, z), (8)

where ΣMB is the many-body self-energy, H(z) is the
matrix representation of the one-body part of the full
Hamiltonian and the integration is performed over the
Keldysh-contour. This equation of motion needs to be
solved with the boundary conditions63,64

G(t0, z
′) = −G(t0 − iβ, z′),

G(z, t0) = −G(z, t0 − iβ),
(9)

which follow directly from the definition of the Green’s
function Eq. (5). Explicitly, the one-body Hamiltonian
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s(z

′)]〉 (5)
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Eq.(7) has nonvanishing entries only for indices in the
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s(z

′)]〉 (5)
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extract from the block matrix structure for the Green’s
function

G =
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 (14)

an equation for GCC. The many-body self-energy in Eq.
(7) has nonvanishing entries only for indices in region C.
This is an immediate consequence of the fact that the di-
agrammatic expansion of the self-energy starts and ends
with and interaction line which in our case is confined in
the central region (see last term of Eq. (2)). This also
implies that ΣMB[GCC] is a functional of GCC only. From
these considerations it follows that in the one-particle ba-
sis the matrix structure of ΣMB is given as

ΣMB =





0 0 0
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 . (15)

The projection of the equation of motion (7) onto regions
CC and αC yields

{

i∂z1− HCC(z)
}

GCC(z, z′) = δ(z, z′)1 +

∑

α
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∫

dz̄ ΣMB
CC (z, z̄)GCC(z̄, z′)

(16)

for the central region and
{

i∂z1− Hαα(z)
}

GαC(z, z′) = HαCGCC(z, z′) (17)

for the projection on αC. The latter equation can be
solved for GαC, taking into account the boundary condi-
tions of Eq. (9), to yield

GαC(z, z′) =

∫

dz̄ gαα(z, z̄)HαCGCC(z̄, z′), (18)

where the integral is along the Keldysh contour. Here we
defined gαα as the solution of

{

i∂z1 − Hαα(z)
}

gαα(z, z′) = δ(z, z′)1, (19)

with boundary conditions Eq. (9). The function gαα
is the Green’s function of the isolated and biased α-
lead. We wish to stress that a Green’s function gαα
with boundary conditions Eq. (9) automatically ensures
the correct boundary conditions for the GαC(z, z′) in Eq.
(18). Any other boundary conditions would not only lead
to an unphysical transient behavior but also to differ-
ent steady state results.4 This is the case for, e.g., ini-
tially uncontacted Hamiltonians in which the equilibrium
chemical potential of the leads is replaced by the electro-
chemical potential, i.e., the sum of the chemical potential
and the bias.

Taking into account Eq. (18) the first term on the
righthand side of Eq. (16) becomes

∑
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where we have introduced the embedding self-energy
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∑
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HCα gαα(z, z′)HαC,

(21)
which accounts for the tunneling of electrons from the
central region to the leads and vice versa. The embed-
ding self-energies Σem,α are independent of the electronic
interactions and hence of GCC, and are therefore com-
pletely known once the lead Hamiltonians Ĥα of Eq. (3)
are specified. Inserting (20) back to (16) then gives the
equation of motion

{

i∂z1 − HCC(z)
}

GCC(z, z′)

= δ(z, z′)1 +

∫

dz̄
[

ΣMB
CC + Σem

]

(z, z̄)GCC(z̄, z′).

(22)
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chemical potential of the leads is replaced by the electro-
chemical potential, i.e., the sum of the chemical potential
and the bias.

Taking into account Eq. (18) the first term on the
righthand side of Eq. (16) becomes
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dz̄ Σem(z, z̄)GCC(z̄, z′), (20)

where we have introduced the embedding self-energy
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which accounts for the tunneling of electrons from the
central region to the leads and vice versa. The embed-
ding self-energies Σem,α are independent of the electronic
interactions and hence of GCC, and are therefore com-
pletely known once the lead Hamiltonians Ĥα of Eq. (3)
are specified. Inserting (20) back to (16) then gives the
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The projection on region CC gives

while the projection on region aC gives
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H for the case of two leads, Left (L) and Right (R) con-
nected to a central region (C), is

H =





HLL HLC 0
HCL HCC HCR
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 (10)

where the different block matrices describe the projec-
tions of the one-body part H of the Hamiltonian onto
different subregions. They are explicitly given as
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)
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= Vi,jαδσσ′ . (13)

We focus on the dynamical processes occuring in the cen-
tral region. These are described by the Green’s func-
tion GCC projected onto region C. We therefore want to
extract from the block matrix structure for the Green’s
function

G =





GLL GLC GLR

GCL GCC GCR

GRL GRC GRR



 (14)

an equation for GCC. The many-body self-energy in Eq.
(7) has nonvanishing entries only for indices in region C.
This is an immediate consequence of the fact that the di-
agrammatic expansion of the self-energy starts and ends
with and interaction line which in our case is confined in
the central region (see last term of Eq. (2)). This also
implies that ΣMB[GCC] is a functional of GCC only. From
these considerations it follows that in the one-particle ba-
sis the matrix structure of ΣMB is given as

ΣMB =
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 . (15)

The projection of the equation of motion (7) onto regions
CC and αC yields
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∫

dz̄ ΣMB
CC (z, z̄)GCC(z̄, z′)

(16)
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for the projection on αC. The latter equation can be
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∫

dz̄ gαα(z, z̄)HαCGCC(z̄, z′), (18)

where the integral is along the Keldysh contour. Here we
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with boundary conditions Eq. (9). The function gαα
is the Green’s function of the isolated and biased α-
lead. We wish to stress that a Green’s function gαα
with boundary conditions Eq. (9) automatically ensures
the correct boundary conditions for the GαC(z, z′) in Eq.
(18). Any other boundary conditions would not only lead
to an unphysical transient behavior but also to differ-
ent steady state results.4 This is the case for, e.g., ini-
tially uncontacted Hamiltonians in which the equilibrium
chemical potential of the leads is replaced by the electro-
chemical potential, i.e., the sum of the chemical potential
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with boundary conditions Eq. (9). The function gαα
is the Green’s function of the isolated and biased α-
lead. We wish to stress that a Green’s function gαα
with boundary conditions Eq. (9) automatically ensures
the correct boundary conditions for the GαC(z, z′) in Eq.
(18). Any other boundary conditions would not only lead
to an unphysical transient behavior but also to differ-
ent steady state results.4 This is the case for, e.g., ini-
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chemical potential of the leads is replaced by the electro-
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which accounts for the tunneling of electrons from the
central region to the leads and vice versa. The embed-
ding self-energies Σem,α are independent of the electronic
interactions and hence of GCC, and are therefore com-
pletely known once the lead Hamiltonians Ĥα of Eq. (3)
are specified. Inserting (20) back to (16) then gives the
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where the biased but uncontacted lead Green function 
satisfies
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which accounts for the tunneling of electrons from the
central region to the leads and vice versa. The embed-
ding self-energies Σem,α are independent of the electronic
interactions and hence of GCC, and are therefore com-
pletely known once the lead Hamiltonians Ĥα of Eq.(3)
are specified. Inserting (20) back to (16) then gives the
equation of motion
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i∂z1− HCC(z)
}

GCC(z, z′)

= δ(z, z′)1 +

∫

dz̄
[

ΣMB
CC + Σem

]

(z, z̄)GCC(z̄, z′).

(22)

An adjoint equation can similarly be derived from Eq.(8).
Equation (22) is an exact equation for the Green func-
tion GCC, for the class of Hamiltonians of Eq.(1), pro-
vided that an exact expression for ΣMB

CC [GCC] as a func-
tional of GCC is inserted. In practical implementations
Eq.(22) is converted to a set of coupled real-time equa-
tions, known as the Kadanoff-Baym equations (see Ap-
pendix). These equations are solved by means of time-
propagation techniques31. For the case of unperturbed
systems the contributions of the integral in Eq.(22) com-
ing from the real-time branches of the contour cancel and
the integral needs only to be taken on the imaginary ver-
tical track. The equation for the Green function then
becomes equivalent to the one of the equilibrium finite-
temperature formalism. In a time-dependent situation
the vertical track therefore accounts for initial correla-
tions due to both many-body interactions, incorporated

FIG. 3: Diagrammatic representation of the many-body ap-
proximations for ΣMB

CC .

in ΣMB
CC , and contacts with the leads, incorporated in

Σem. In our implementation (see Appendix) we always
solve the contacted and correlated equation first on the
the imaginary track, before we propagate the Green func-
tion in time in the presence of an external field. However,
to study initial correlations we are free to set the em-
bedding and many-body self-energy to zero before time-
propagation, which is equivalent to neglect the vertical
track of the contour. This would correspond to start-
ing with an equilibrium configuration that describes an
initially uncontacted and noninteracting central region.
This class of initial configurations is commonly used in
quantum transport calculations, where both the interac-
tions and the couplings are considered to be switched on
in the distant past. The assumption is then made that
the system thermalizes before the bias is switched on.
Even when this assumption is fulfilled there are practical
difficulties to study transient phenomena, as one has to
propagate the system until it has thermalized before a
bias can be switched on.
To solve the equation of motion Eq.(22) we need to
find an approximation for the many-body self-energy
ΣMB[GCC] as a functional of the Green function GCC.
This approximation can be constructed using diagram-
matic techniques based on Wick’s theorem familiar
from equilibrium theory23 which can be straightfor-
wardly be extended to the case of contour-ordered Green
functions.53 In our case the perturbative expansion is in
powers of the two-body interaction and the unperturbed
system consists of the noninteracting, but contacted and
biased system.

C. Charge conservation

The approximations for ΣMB
CC [GCC] that we use in this

work involve the Hartree-Fock, second Born and GW ap-
proximation, which are discussed in detail in Refs.() and
are displayed pictorially in Fig.(3). These are all exam-
ples of so-called conserving approximations for the self-
energy, that guarantee satisfaction of fundamental con-
servation laws such as charge conservation. As shown by
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The equation of motion projected on the central region has the form

where on top of the a many-body self-energy we also have
an effective embedding self-energy

The equation of motion



Numerical aspects:

- Embedding self-energy independent of GCC

- Now even the time-dependent Hartree-Fock equations involve
  memory due to embedding.

- When interactions in the leads need to be taken into account
 the central region may become big.



(i∂t1−hC(t1))GCC (t1, t2) = δ(t1, t2)+

∫
C

dt3(Σ[GCC ](t1, t3)+Σem(t1, t3))GCC(t3, t2)

Σem(t1, t2) =
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HCα gαα(t1, t2)HαC

Iα(t) =
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The total current flowing out of reservoir       is given by :
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This gives after some manipulations:

Calculating the current

Memory of initial correlations

Long time limit leads under some assumptions to Meir-Wingreen formula
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∑
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∑
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1
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∑
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The spectral function for a nonequilibrium system is defined as

In equilibrium the spectral function only depends on the
difference of the time coordinates and can be Fourier transformed 
to give

It shows peaks at electron addition and removal energies



8

frequency of which corresponds to the removal energy of
an electron from the HOMO level, leading to a distinct
peak in the spectral function (see Section III B below).

The imaginary part of G
!
CC,HH(t, τ) within the HF ap-

proximation is displayed in Fig. 5 for real times between
t = 0 and t = 30 and imaginary times from τ = 0 to
τ = 5. This mixed-time Green’s function accounts for
initial correlations as well as initial embedding effects
(within the HF approximation only the latter). At t = 0
we have the ground-state Matsubara Green’s function

and as the real time t increases all elements of G
!
CC(t, τ)

approach zero independently of the value of τ . This be-
havior indicates that initial effects die out in the long-
time limit and that the decay rate is directly related to
the time for reaching a steady state. A very similar be-
havior is found within the 2B and GW approximation
but with a stronger damping of the oscillations.

B. Time-dependent current

The time-dependent current at the right interface be-
tween the chain and the two-dimensional lead is shown
in Fig. 6 for the HF, 2B and GW approximations for
two different values of the applied bias U = 0.8 (weak)
and 1.2 (strong). The first remarkable feature is that
the 2B and GW results are in excellent agreement at
all times both in the weak and strong bias regime while
the HF current deviates from the correlated results al-
ready after few time units. This result indicates that
a chain of 4 atoms is already long enough for screening
effects to play a crucial role. The 2B and GW approxi-
mations have in common the first three diagrams of the
perturbative expansion of the many-body self-energy il-
lustrated in Fig. 3. We thus conclude that the first order
exchange diagram (Fock) with an interaction screened

FIG. 4: The imaginary part of the lesser Green’s function
G<

CC,HH(t1, t2) of the central region in molecular orbital basis
corresponding to the HOMO level of the central chain. Bias
voltage U = 1.2, HF approximation.

FIG. 5: The imaginary part of the mixed Green’s function
G

!
CC,HH(t, τ ) of the central region in molecular orbital basis.

Bias voltage U = 1.2, HF approximation.
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FIG. 6: Transient currents flowing into the right lead for the
HF, 2B and GW approximations with the applied bias U =
0.8 (three lowest curves) and U = 1.2.

by an electron-hole propagator with a single polarization
bubble (with fully dressed Green’s functions) contains
the essential physics of the problem. We also wish to em-
phasize that the 2B approximation includes the so called
second-order exchange diagram which is also quadratic
in the interaction. This diagram is less relevant due to
the restricted phase-space that two electrons in the chain
have to scatter and exchange.

We then turn our attention to the spectral function
which is defined as

A(T, ω) = −ImTrC

∫

dt

2π
eiωt[G>

CC−G<
CC](T +

t

2
, T −

t

2
).

(40)
For values of T after the transients have died out the
spectral function becomes independent of T . For such
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Aii(ω) =
∑
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k |âi|Ψ0〉|
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1

In the nonequilibrium case it is convenient to Fourier transform
with respect to the relative times:

2 THE AUTHOR

A(T,ω) =

∫

dω

2π
A(T +

t

2
, T −

t

2
) eiωt

which can be calculated from the Green function as

In the long time limit the spectral function becomes independent 
of  T when a steady state is being reached
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A(ω) = −
1

2πi
[GR

CC(ω) − G
A
CC(ω)], (35)

and where fα is the Fermi distribution for lead α with
electrochemical potential µ + Uα. This expression has
been used recently to perform steady state transport cal-
culations at GW level.37,40,41 The present formalism al-
lows for an extension of this work to the time-dependent
regime.

E. Electron density in the leads

In our investigations we are not only interested in cal-
culating the density in the central region, but are also
interested in studying the densities in the leads. In the
following we will therefore derive an equation from which
these lead densities can be calculated. If we on the right-
hand side of Eq. (26) insert the adjoint of Eq. (18) we
obtain the expression

i∂zGαα(z, z′) = δ(z, z′)1 + Hαα(z)Gαα(z, z′)

+

∫

dz̄Σin,α(z, z̄)gαα(z̄, z′), (36)

where we defined the inbedding self-energy as

Σin,α(z, z′) = HαCGCC(z, z′)HCα. (37)

If we solve Eq. (36) in terms of gαα and take the time
arguments at t± we obtain

Gαα(t−, t+) = gαα(t−, t+) +

+

∫

dz̄d¯̄zgαα(t−, z̄)Σin,α(z̄, ¯̄z)gαα(¯̄z, t+).

(38)

We see from Eq. (6) that with this equation we can ob-
tain the spin occupation of orbital i in lead α by taking
r = s = iσα. The integral in Eq. (38) is taken along
the Keldysh contour. In practice we solve the Kadanoff-
Baym equations for GCC first. After this we construct
the inbedding self-energy Σin and calculate the lead den-
sity from Eq. (38) converted into real time, using the
conversion table of Ref. 67.

III. NUMERICAL RESULTS

In this Section we specialize to central regions con-
sisting of quantum chains modelled using a tight-binding
parametrization. We studied the case for which the chain
extends from site 1 to site 4 and is coupled to a left and
right two-dimensional reservoirs with 9 transverse chan-
nels in the left and right leads, as illustrated in Fig. 1.
The parameters for the system are chosen as follows. The
longitudinal and transverse nearest neighbor hoppings in
the leads are set to T λ

α = T τ
α = −2.0, α = L, R, whereas

the on-site energy aα is set equal to the chemical poten-
tial, i.e., aα = µ. The leads are therefore half-filled. Pre-
cise definitions of these parameters can be found in Ap-
pendix B. The endsites of the central chain are coupled
only to the terminal sites of the central row in both leads
and the hopping parameters are V1,5L = V4,5R = −0.5
(see Appendix B for the labeling). The central chain has
on-site energies hii = 0 and hoppings hij = −1.0 between
neighboring sites i and j. The electron-electron interac-
tion in the central region has the form vijkl = vij δilδjk

with

vij =

{

vii i = j
vii

2|i−j| i "= j
(39)

and interaction strength vii = 1.5. For these parameters
the equilibrium Hartree-Fock levels of the isolated chain
lie at ε1 = 0.39, ε2 = 1.32, ε3 = 3.19, ε4 = 4.46. In all our
simulations the chemical potential is fixed between the
highest occupied molecular orbital (HOMO) ε2 and the
lowest unoccupied molecular orbital (LUMO) ε3 levels at
µ = 2.26 and the inverse temperature β is set to β =
90 which corresponds to the zero temperature limit (i.e.
results do not change anymore for higher values of β). In
this work we will consider the case of a suddenly applied
constant bias at an initial time t0, i.e. we take Uα(t) =
Uα for t > t0 and Uα(t) = 0 for t ≤ t0. Additionally, the
bias voltage is applied symmetrically to the leads, i.e.,
UL = −UR = U , and the total potential drop is 2U .

A. Keldysh Green’s functions in the double-time
plane

All physical quantities calculated in our work have
been extracted from the different components of the
Keldysh Green’s function. Due to their importance we
decided to present the behavior of the lesser Green’s func-
tion G< as well as of the right Green’s function G# in the
double-time plane for the Hartree-Fock approximation.
The Green’s functions corresponding to the 2B and GW
are qualitatively similar but show more strongly damped
oscillations. In Fig. 4 we display the imaginary part
of G<

CC,HH(t, t′) in the basis of the initial Hartree-Fock
molecular orbitals, for an applied bias U = 1.2. This ma-
trix element corresponds to the HOMO level of the molec-
ular chain. The value of the Green’s function on the time
diagonal, i.e., nH(t) = Im[G<

CC,HH(t, t)] gives the level
occupation number per spin. We see that nH(t) decays
from a value of 1.0 at the initial time to a value of 0.5 at
time t = 30. An analysis of the LUMO level occupation
nL(t) shows that almost all the charge is transferred to
this level. The discharging of the HOMO level and the
charging of the LUMO level is also clearly observable in
the dipole moment as it causes a density oscillation in the
system (see Section III C). When we move away from the
time-diagonal we consider the time-propagation of holes
in the HOMO level. We observe a damped oscillation the
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and where fα is the Fermi distribution for lead α with
electrochemical potential µ + Uα. This expression has
been used recently to perform steady state transport cal-
culations at GW level.37,40,41 The present formalism al-
lows for an extension of this work to the time-dependent
regime.

E. Electron density in the leads

In our investigations we are not only interested in cal-
culating the density in the central region, but are also
interested in studying the densities in the leads. In the
following we will therefore derive an equation from which
these lead densities can be calculated. If we on the right-
hand side of Eq. (26) insert the adjoint of Eq. (18) we
obtain the expression

i∂zGαα(z, z′) = δ(z, z′)1 + Hαα(z)Gαα(z, z′)

+

∫

dz̄Σin,α(z, z̄)gαα(z̄, z′), (36)

where we defined the inbedding self-energy as

Σin,α(z, z′) = HαCGCC(z, z′)HCα. (37)

If we solve Eq. (36) in terms of gαα and take the time
arguments at t± we obtain

Gαα(t−, t+) = gαα(t−, t+) +

+

∫

dz̄d¯̄zgαα(t−, z̄)Σin,α(z̄, ¯̄z)gαα(¯̄z, t+).

(38)

We see from Eq. (6) that with this equation we can ob-
tain the spin occupation of orbital i in lead α by taking
r = s = iσα. The integral in Eq. (38) is taken along
the Keldysh contour. In practice we solve the Kadanoff-
Baym equations for GCC first. After this we construct
the inbedding self-energy Σin and calculate the lead den-
sity from Eq. (38) converted into real time, using the
conversion table of Ref. 67.

III. NUMERICAL RESULTS

In this Section we specialize to central regions con-
sisting of quantum chains modelled using a tight-binding
parametrization. We studied the case for which the chain
extends from site 1 to site 4 and is coupled to a left and
right two-dimensional reservoirs with 9 transverse chan-
nels in the left and right leads, as illustrated in Fig. 1.
The parameters for the system are chosen as follows. The
longitudinal and transverse nearest neighbor hoppings in
the leads are set to T λ

α = T τ
α = −2.0, α = L, R, whereas

the on-site energy aα is set equal to the chemical poten-
tial, i.e., aα = µ. The leads are therefore half-filled. Pre-
cise definitions of these parameters can be found in Ap-
pendix B. The endsites of the central chain are coupled
only to the terminal sites of the central row in both leads
and the hopping parameters are V1,5L = V4,5R = −0.5
(see Appendix B for the labeling). The central chain has
on-site energies hii = 0 and hoppings hij = −1.0 between
neighboring sites i and j. The electron-electron interac-
tion in the central region has the form vijkl = vij δilδjk

with

vij =

{

vii i = j
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2|i−j| i "= j
(39)

and interaction strength vii = 1.5. For these parameters
the equilibrium Hartree-Fock levels of the isolated chain
lie at ε1 = 0.39, ε2 = 1.32, ε3 = 3.19, ε4 = 4.46. In all our
simulations the chemical potential is fixed between the
highest occupied molecular orbital (HOMO) ε2 and the
lowest unoccupied molecular orbital (LUMO) ε3 levels at
µ = 2.26 and the inverse temperature β is set to β =
90 which corresponds to the zero temperature limit (i.e.
results do not change anymore for higher values of β). In
this work we will consider the case of a suddenly applied
constant bias at an initial time t0, i.e. we take Uα(t) =
Uα for t > t0 and Uα(t) = 0 for t ≤ t0. Additionally, the
bias voltage is applied symmetrically to the leads, i.e.,
UL = −UR = U , and the total potential drop is 2U .

A. Keldysh Green’s functions in the double-time
plane

All physical quantities calculated in our work have
been extracted from the different components of the
Keldysh Green’s function. Due to their importance we
decided to present the behavior of the lesser Green’s func-
tion G< as well as of the right Green’s function G# in the
double-time plane for the Hartree-Fock approximation.
The Green’s functions corresponding to the 2B and GW
are qualitatively similar but show more strongly damped
oscillations. In Fig. 4 we display the imaginary part
of G<

CC,HH(t, t′) in the basis of the initial Hartree-Fock
molecular orbitals, for an applied bias U = 1.2. This ma-
trix element corresponds to the HOMO level of the molec-
ular chain. The value of the Green’s function on the time
diagonal, i.e., nH(t) = Im[G<

CC,HH(t, t)] gives the level
occupation number per spin. We see that nH(t) decays
from a value of 1.0 at the initial time to a value of 0.5 at
time t = 30. An analysis of the LUMO level occupation
nL(t) shows that almost all the charge is transferred to
this level. The discharging of the HOMO level and the
charging of the LUMO level is also clearly observable in
the dipole moment as it causes a density oscillation in the
system (see Section III C). When we move away from the
time-diagonal we consider the time-propagation of holes
in the HOMO level. We observe a damped oscillation the

Density in the leads

If we define the inbedding self-energy as 

Then the densities in the leads can be calculated from the equation
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FIG. 1: Sketch of the transport setup. The correlated cen-
tral region (C) is coupled to semi-infinite left (L) and right
(R) tight-binding leads via tunneling Hamiltonians HαC and
HCα, α = L, R.

ation and annihilation operators respectively. The one-
body part of the Hamiltonian hij(t) may have an arbi-
trary time-dependence, describing, e.g., a gate voltage or
pumping fields. The two-body part accounts for interac-
tions between the electrons where vijkl are, for example
in the case of a molecule, the standard two-electron inte-
grals of the Coulomb interaction. The lead Hamiltonians
have the form

Ĥα(t) = Uα(t)N̂α +
∑

ij,σ

hα
ij ĉ†iσα ĉjσα, (3)

where the creation and annihilation operators for the
leads are denoted by ĉ† and ĉ. Here N̂α =

∑

i,σ ĉ†iσαĉiσα

is the operator describing the number of particles in lead
α. The one-body part of the Hamiltonian hα

ij describes
metallic leads and can be calculated using a tight-binding
representation, or a real-space grid or any other conve-
nient basis set. We are interested in exposing the leads
to an external electric field which varies on a time-scale
much longer than the typical plasmon time-scale. Then,
the coarse-grained time evolution can be performed as-
suming a perfect instantaneous screening in the leads and
the homogeneous time-dependent field Uα(t) can be in-
terpreted as the sum of the external and the screening
field, i.e., the applied bias. This effectively means that
the leads are treated at a Hartree mean field level. We
finally consider the tunneling Hamiltonian ĤT

ĤT =
∑

ij,σα

Vi,jα[d̂†iσ ĉjσα + ĉ†jσαd̂iσ ] (4)

which describes the coupling of the leads to the interact-
ing central region. This completes the full description
of the Hamiltonian of the system. In the next section
we study the equations of motion for the corresponding
Green’s function.

B. Equation of motion for the Keldysh Green’s
function

We assume the system to be contacted and in equi-
librium at inverse temperature β before time t = t0 and
described by Hamiltonian Ĥ0. For times t > t0 the sys-
tem is driven out of equilibrium by an external bias and
we aim to study the time-evolution of the electron den-
sity, current, etc.. In order to describe the electron dy-
namics in this system we use Keldysh Green’s function
theory (for a review see Ref.60) which allows us to include
many-body effects in a diagrammatic way. The Keldysh
Green’s function is defined as the expectation value of
the contour-ordered product

Grs(z, z′) = −i
Tr

{

T [e−i
R

dz̄Ĥ(z̄)âr(z)â†
s(z

′)]
}

Tr
{

e−βĤ0

}

= −i〈T [âr(z)â†
s(z

′)]〉, (5)

where â and â† are either lead or central region operators
and the indices r and s are collective indices for position
and spin. The variable z is a time contour variable that
specifies the location of the operators on the time con-
tour. The operator T orders the operators along the
Keldysh contour displayed in Fig. 2, consisting of two
real time branches and the imaginary track running from
t0 to t0 − iβ. In the definition of the Green’s function
the trace is taken with respect to the many-body states
of the system.
All time-dependent one-particle properties can be calcu-
lated from G. For instance, the time-dependent density
matrix is given as

nrs(t) = −iGrs(t−, t+), (6)

where the times t± lie on the lower/upper branch of the
contour. The equations of motion for the Green’s func-
tion of the full system can be easily derived from the
definition Eq. (5) and read

i∂zG(z, z′) = δ(z, z′)1 + H(z)G(z, z′)

+

∫

dz̄ ΣMB(z, z̄)G(z̄, z′), (7)

−i∂z′G(z, z′) = δ(z, z′)1 + G(z, z′)H(z′)

+

∫

dz̄ G(z, z̄)ΣMB(z̄, z), (8)

where ΣMB is the many-body self-energy, H(z) is the
matrix representation of the one-body part of the full
Hamiltonian and the integration is performed over the
Keldysh-contour. This equation of motion needs to be
solved with the boundary conditions63,64

G(t0, z
′) = −G(t0 − iβ, z′),

G(z, t0) = −G(z, t0 − iβ),
(9)

which follow directly from the definition of the Green’s
function Eq. (5). Explicitly, the one-body Hamiltonian
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FIG. 1: Sketch of the transport setup. The correlated cen-
tral region (C) is coupled to semi-infinite left (L) and right
(R) tight-binding leads via tunneling Hamiltonians HαC and
HCα, α = L, R.
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body part of the Hamiltonian hij(t) may have an arbi-
trary time-dependence, describing, e.g., a gate voltage or
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∑
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the homogeneous time-dependent field Uα(t) can be in-
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of the Hamiltonian of the system. In the next section
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tour. The operator T orders the operators along the
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frequency of which corresponds to the removal energy of
an electron from the HOMO level, leading to a distinct
peak in the spectral function (see Section III B below).

The imaginary part of G
!
CC,HH(t, τ) within the HF ap-

proximation is displayed in Fig. 5 for real times between
t = 0 and t = 30 and imaginary times from τ = 0 to
τ = 5. This mixed-time Green’s function accounts for
initial correlations as well as initial embedding effects
(within the HF approximation only the latter). At t = 0
we have the ground-state Matsubara Green’s function

and as the real time t increases all elements of G
!
CC(t, τ)

approach zero independently of the value of τ . This be-
havior indicates that initial effects die out in the long-
time limit and that the decay rate is directly related to
the time for reaching a steady state. A very similar be-
havior is found within the 2B and GW approximation
but with a stronger damping of the oscillations.

B. Time-dependent current

The time-dependent current at the right interface be-
tween the chain and the two-dimensional lead is shown
in Fig. 6 for the HF, 2B and GW approximations for
two different values of the applied bias U = 0.8 (weak)
and 1.2 (strong). The first remarkable feature is that
the 2B and GW results are in excellent agreement at
all times both in the weak and strong bias regime while
the HF current deviates from the correlated results al-
ready after few time units. This result indicates that
a chain of 4 atoms is already long enough for screening
effects to play a crucial role. The 2B and GW approxi-
mations have in common the first three diagrams of the
perturbative expansion of the many-body self-energy il-
lustrated in Fig. 3. We thus conclude that the first order
exchange diagram (Fock) with an interaction screened

FIG. 4: The imaginary part of the lesser Green’s function
G<

CC,HH(t1, t2) of the central region in molecular orbital basis
corresponding to the HOMO level of the central chain. Bias
voltage U = 1.2, HF approximation.

FIG. 5: The imaginary part of the mixed Green’s function
G

!
CC,HH(t, τ ) of the central region in molecular orbital basis.

Bias voltage U = 1.2, HF approximation.
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FIG. 6: Transient currents flowing into the right lead for the
HF, 2B and GW approximations with the applied bias U =
0.8 (three lowest curves) and U = 1.2.

by an electron-hole propagator with a single polarization
bubble (with fully dressed Green’s functions) contains
the essential physics of the problem. We also wish to em-
phasize that the 2B approximation includes the so called
second-order exchange diagram which is also quadratic
in the interaction. This diagram is less relevant due to
the restricted phase-space that two electrons in the chain
have to scatter and exchange.

We then turn our attention to the spectral function
which is defined as

A(T, ω) = −ImTrC

∫

dt

2π
eiωt[G>

CC−G<
CC](T +

t

2
, T −

t

2
).

(40)
For values of T after the transients have died out the
spectral function becomes independent of T . For such
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The Green function

For the highest occupied molecular orbital the Green function 
matrix element has the following structure (imaginary part displayed)
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The transient currents
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times we denote the spectral function by A(ω) and it
is easy to show that A(ω) = TrC[A(ω)] where A(ω) is
defined in Eq. (35). This function displays peaks that
correspond to removal energies (below the chemical po-
tential) and electron addition energies (above the chem-
ical potential). The spectral functions of our system are
displayed in Fig. 7. At weak bias the HOMO-LUMO
gap in the HF approximation is fairly the same as the
equilibrium gap whereas the 2B and GW gaps collapse
causing both the HOMO and the LUMO to move in the
bias window. As a consequence the steady-state HF cur-
rent is notably smaller than the 2B and GW currents.
This effect has been previously observed by Thygesen41

and is confirmed by our time-dependent simulations.

A new scenario does, however, emerge in the strong
bias regime. The HF HOMO and LUMO levels move
into the bias window and lift the steady-state current
above the corresponding 2B and GW values. This can
be explained by observing that the peaks of the HF spec-
tral function A(ω) are very sharp compared to the rather
broadened structures in the 2B and GW approximations,
see Fig. 7. In the correlated case the HOMO and LUMO
levels can be exploited only partially by the electrons to
scatter from left to right and we thus observe a suppres-
sion of the current with respect to the HF case. From
a mathematical point of view the steady-state current is
roughly proportional to the integral of A(ω) over the bias
window which is larger in the HF approximation.

The time-evolution of the spectral function A(T, ω) as
a function of T is illustrated in Fig. 8 for the case of
the HF and the 2B approximation. For these results, the
ground state system was propagated without bias up to
T = 40 after which a bias was suddenly turned on. The
HF peaks remain rather sharp during the entire evolution
and the HOMO-LUMO levels come nearer to each other
at a constant speed. On the contrary, the broadening of
the 2B peaks remains small during the initial transient
regime (up to T = 70) to then increase dramatically. This
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FIG. 7: Spectral functions A(ω) for HF (uppermost plot), 2B
(middle plot) and GW (bottom plot) approximation with the
applied bias U = 0.8 (solid line) and U = 1.2 (dashed line).

FIG. 8: Real-time evolution of the spectral function A(T, ω)
for the HF (left panel) and the 2B approximation (right panel)
for an applied bias of U = 1.2. On the horizontal axis the time
T and the vertical axis the frequency ω.

FIG. 9: Transient right current IR(U, t) as a function of ap-
plied bias voltage and time in the HF (left panel) and 2B
(right panel) approximations.

behavior indicates that there is a critical charging time
after which an enhanced renormalization of quasiparticle
states takes place causing a substantial reshaping of the
equilibrium spectral function.

The time-dependent current at the right interface as a
function of applied voltage and time is shown in Fig. 9
for the HF and 2B approximation. The figures nicely il-
lustrate how steady state results are obtained from time-
dependent calculations: after the transients have died
out we see the formation of the characteristic I-V curves
familiar from steady state transport calculations. In the
HF approximation one clearly observes the typical stair-
case structure with steps that correspond to an applied
voltage that includes one more resonance in the bias win-
dow. These steps appear at bias voltages U = 0.9 and
U = 1.8. This result is corroborated by the left panel
of Fig. 10 in which we display the bias-dependent spec-
tral function for the HF approximation. Here we see a
sudden shift in the spectral peaks at these voltages. The
HF results thus bear a close resemblance to the standard
non-interacting results, the main difference being that
the HF position of the levels gets renormalized by the
applied bias.

We now turn our attention to the 2B approximation
in the right panel of Fig.9. We notice a clear step at
bias voltage of U = 0.7 but the broadening of the level
peaks due to quasiparticle collisions completely smears
out the second step and the current increases smoothly

The spectral functions

U=0.8 (solid line)               U=1.2 (dashed line)

Steady state regime
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into the bias window and lift the steady-state current
above the corresponding 2B and GW values. This can
be explained by observing that the peaks of the HF spec-
tral function A(ω) are very sharp compared to the rather
broadened structures in the 2B and GW approximations,
see Fig. 7. In the correlated case the HOMO and LUMO
levels can be exploited only partially by the electrons to
scatter from left to right and we thus observe a suppres-
sion of the current with respect to the HF case. From
a mathematical point of view the steady-state current is
roughly proportional to the integral of A(ω) over the bias
window which is larger in the HF approximation.

The time-evolution of the spectral function A(T, ω) as
a function of T is illustrated in Fig. 8 for the case of
the HF and the 2B approximation. For these results, the
ground state system was propagated without bias up to
T = 40 after which a bias was suddenly turned on. The
HF peaks remain rather sharp during the entire evolution
and the HOMO-LUMO levels come nearer to each other
at a constant speed. On the contrary, the broadening of
the 2B peaks remains small during the initial transient
regime (up to T = 70) to then increase dramatically. This
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FIG. 7: Spectral functions A(ω) for HF (uppermost plot), 2B
(middle plot) and GW (bottom plot) approximation with the
applied bias U = 0.8 (solid line) and U = 1.2 (dashed line).

FIG. 8: Real-time evolution of the spectral function A(T, ω)
for the HF (left panel) and the 2B approximation (right panel)
for an applied bias of U = 1.2. On the horizontal axis the time
T and the vertical axis the frequency ω.

FIG. 9: Transient right current IR(U, t) as a function of ap-
plied bias voltage and time in the HF (left panel) and 2B
(right panel) approximations.

behavior indicates that there is a critical charging time
after which an enhanced renormalization of quasiparticle
states takes place causing a substantial reshaping of the
equilibrium spectral function.

The time-dependent current at the right interface as a
function of applied voltage and time is shown in Fig. 9
for the HF and 2B approximation. The figures nicely il-
lustrate how steady state results are obtained from time-
dependent calculations: after the transients have died
out we see the formation of the characteristic I-V curves
familiar from steady state transport calculations. In the
HF approximation one clearly observes the typical stair-
case structure with steps that correspond to an applied
voltage that includes one more resonance in the bias win-
dow. These steps appear at bias voltages U = 0.9 and
U = 1.8. This result is corroborated by the left panel
of Fig. 10 in which we display the bias-dependent spec-
tral function for the HF approximation. Here we see a
sudden shift in the spectral peaks at these voltages. The
HF results thus bear a close resemblance to the standard
non-interacting results, the main difference being that
the HF position of the levels gets renormalized by the
applied bias.

We now turn our attention to the 2B approximation
in the right panel of Fig.9. We notice a clear step at
bias voltage of U = 0.7 but the broadening of the level
peaks due to quasiparticle collisions completely smears
out the second step and the current increases smoothly
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FIG. 10: Spectral function A(ω) for the HF (left panel) and
2B (right panel) approximation, as a function of the bias volt-
age. For the 2B approximation the spectral functions for bias
voltages until U = 0.6 were divided by a factor 30 (blue lines
in the figure)

as a function of the applied voltage. This is again cor-
roborated in the right panel of Fig.10 where we observe
a sudden broadening of the spectral function at a bias of
U = 0.7. To make this effect clearly visible in the figure
we divided the spectral functions for biases up to U = 0.6
by a factor of 30. We further notice that for the 2B ap-
proximation there is a faster gap closing as a function of
the bias voltage as compared to the HF approximation.
Very similar results are obtained within the GW approx-
imation. We can therefore conclude that electronic cor-
relations beyond Hartree-Fock level have a major impact
on both transient and steady-state currents.

C. Time-dependent dipole moment

To study how the charge redistribute along the chain
after a bias voltage is switched on we calculated the time-
dependent dipole moment

d(t) =
4

∑

i=1

xini(t) (41)

where the xi are the coordinates of the sites of the chain
(with a lattice spacing of one) with origin between sites
2 and 3. As observed in Section III A the chain remains
fairly charge neutral during the entire time evolution.
However, a charge rearrangement occurs as can be seen
from Fig. 11. At U = 1.2 both the HOMO and the
LUMO are inside the bias window, the lowest level re-
mains below and the highest level above. Electrons in
the initially populated HOMO then move to the empty
LUMO and get only partially reflected back. This gener-
ates damped oscillations with the HOMO-LUMO gap as
the main frequency, a non-vanishing steady value for the
LUMO population and a partially filled HOMO. Due to
the different (odd/even) approximate spatial symmetry
of the HOMO/LUMO levels a net dipole moment devel-
ops.

As we pointed out in a recent Letter,54 the oscilla-
tions in the transient current reflect the electronic tran-

sitions between the ground state levels of the central re-
gion and the electrochemical potentials of the left and
right leads. However, the oscillations are visible in all ob-
servable quantities through the oscillations of the Green’s
function discussed in Section III A. Detailed information
on the electronic level structure of the chain can be ex-
tracted from the Fourier transform of d(t), see inset in
Fig. 11. One clearly recognize the presence of sharp
peaks superimposed to a broad continuum. The peaks
occur at energies corresponding to electronic transitions
from lead states at the left/right electrochemical poten-
tial to chain eigenstates or to intrachain transitions. We
will denote a transition energy between leads L and R
and chain eigenstate i by ∆εLi and ∆εiR. Similarly we
will denote a transition energy between states in the cen-
tral region as ∆εij . In the inset of Fig. 11 the main peak
structures are labeled from the highest to the lowest tran-
sition energies with letters (a) to (e) and we will use these
labels to denote the various transitions discussed below.
The possible transition energies can be determined form
the position of the peaks in the spectral functions and
the lead levels. As expected the dominant peak occurs
at the intrachain transition energy ∆ε23 ≈ 1.5 (c). This
roughly corresponds to the average of the equilibrium and
nonequilibrium gaps and, therefore, must be traced back
to charge fluctuations between the HOMO and LUMO.
The other observable transition energies are ∆εL2 ≈ 2.0
(b), ∆εL3 ≈ 0.5 (e) and ∆εL4 ≈ 1.0 (d) from the left
lead and ∆ε1R ≈ 0.65 (e), ∆ε2R ≈ 0.4 (e), ∆ε3R ≈ 2.0
(b) and ∆ε4R ≈ 3.4 (a) from the right lead. Some of
the peaks with transition energies close to each other
(∆εL2 & ∆ε3R (b) and ∆εL3 & ∆ε1R & ∆ε2R(e)) are
merged together and broadened. The broadening is not
only due to embedding and many-body effects but also
to the dynamical renormalization of the position of the
energy levels. Further information can be extracted from
the peak intensities. The peak of the ∆εL4 (d) transition
is very strong due to the sharpness of that particular res-

-0.04

-0.02

 0

 0.02

 0.04

 0  10  20  30  40  50  60

d
(t

)

t

HF
2B

GW

 0
 0  1  2  3  4

d
(!

)

e)

d)

c)

b)

a)

FIG. 11: Dipole moment of the central region as a function of
time for bias U = 1.2. The inset shows the Fourier transform
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FIG. 10: Spectral function A(ω) for the HF (left panel) and
2B (right panel) approximation, as a function of the bias volt-
age. For the 2B approximation the spectral functions for bias
voltages until U = 0.6 were divided by a factor 30 (blue lines
in the figure)

as a function of the applied voltage. This is again cor-
roborated in the right panel of Fig.10 where we observe
a sudden broadening of the spectral function at a bias of
U = 0.7. To make this effect clearly visible in the figure
we divided the spectral functions for biases up to U = 0.6
by a factor of 30. We further notice that for the 2B ap-
proximation there is a faster gap closing as a function of
the bias voltage as compared to the HF approximation.
Very similar results are obtained within the GW approx-
imation. We can therefore conclude that electronic cor-
relations beyond Hartree-Fock level have a major impact
on both transient and steady-state currents.

C. Time-dependent dipole moment

To study how the charge redistribute along the chain
after a bias voltage is switched on we calculated the time-
dependent dipole moment

d(t) =
4

∑

i=1

xini(t) (41)

where the xi are the coordinates of the sites of the chain
(with a lattice spacing of one) with origin between sites
2 and 3. As observed in Section III A the chain remains
fairly charge neutral during the entire time evolution.
However, a charge rearrangement occurs as can be seen
from Fig. 11. At U = 1.2 both the HOMO and the
LUMO are inside the bias window, the lowest level re-
mains below and the highest level above. Electrons in
the initially populated HOMO then move to the empty
LUMO and get only partially reflected back. This gener-
ates damped oscillations with the HOMO-LUMO gap as
the main frequency, a non-vanishing steady value for the
LUMO population and a partially filled HOMO. Due to
the different (odd/even) approximate spatial symmetry
of the HOMO/LUMO levels a net dipole moment devel-
ops.

As we pointed out in a recent Letter,54 the oscilla-
tions in the transient current reflect the electronic tran-

sitions between the ground state levels of the central re-
gion and the electrochemical potentials of the left and
right leads. However, the oscillations are visible in all ob-
servable quantities through the oscillations of the Green’s
function discussed in Section III A. Detailed information
on the electronic level structure of the chain can be ex-
tracted from the Fourier transform of d(t), see inset in
Fig. 11. One clearly recognize the presence of sharp
peaks superimposed to a broad continuum. The peaks
occur at energies corresponding to electronic transitions
from lead states at the left/right electrochemical poten-
tial to chain eigenstates or to intrachain transitions. We
will denote a transition energy between leads L and R
and chain eigenstate i by ∆εLi and ∆εiR. Similarly we
will denote a transition energy between states in the cen-
tral region as ∆εij . In the inset of Fig. 11 the main peak
structures are labeled from the highest to the lowest tran-
sition energies with letters (a) to (e) and we will use these
labels to denote the various transitions discussed below.
The possible transition energies can be determined form
the position of the peaks in the spectral functions and
the lead levels. As expected the dominant peak occurs
at the intrachain transition energy ∆ε23 ≈ 1.5 (c). This
roughly corresponds to the average of the equilibrium and
nonequilibrium gaps and, therefore, must be traced back
to charge fluctuations between the HOMO and LUMO.
The other observable transition energies are ∆εL2 ≈ 2.0
(b), ∆εL3 ≈ 0.5 (e) and ∆εL4 ≈ 1.0 (d) from the left
lead and ∆ε1R ≈ 0.65 (e), ∆ε2R ≈ 0.4 (e), ∆ε3R ≈ 2.0
(b) and ∆ε4R ≈ 3.4 (a) from the right lead. Some of
the peaks with transition energies close to each other
(∆εL2 & ∆ε3R (b) and ∆εL3 & ∆ε1R & ∆ε2R(e)) are
merged together and broadened. The broadening is not
only due to embedding and many-body effects but also
to the dynamical renormalization of the position of the
energy levels. Further information can be extracted from
the peak intensities. The peak of the ∆εL4 (d) transition
is very strong due to the sharpness of that particular res-
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librium density [Top-left panel] is essentially the same
as its equilibrium bulk value at 0.5. After the switch-
ing of the bias a density corrugation with the shape of
a diamond starts to propagate deep into the lead. The
largest deviation from the bulk density value occurs at
the corners of the diamond and is about 2% at the junc-
tion while it reduces to about 1% after 10 layers. We also
verified that the discrepancy is about 3 times larger for
leads with only three transverse channels. We conclude
that the change in the lead density goes like the inverse
of the cross section. Our results suggests that for a mean
field description of 2D leads with 9 transverse channels
it is enough to include few atomic layers for an accurate
self-consistent time-dependent calculations of the Hartree
potential.

IV. CONCLUSIONS

We proposed a time-dependent many-body approach
based on the real-time propagation of the KB equa-
tions to tackle quantum transport problems of corre-
lated electrons. We proved the continuity equation
for any Φ-derivable self-energy, a fundamental prop-

!
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FIG. 13: Snapshots of the density in left lead for HF approx-
imation after the bias U = 1.2 switch-on. On the horizontal
axes the transverse dimension of the lead (9 rows wide, with
the site connected to the chain in the center) and 10 layers
deep. Upper panel left: Initial density, Upper panel right:
density at time t = 1.7, Lower left panel: density at time
t = 3.6, Lower right panel: density at time t = 10. The upper
colorbar refers to the initial density in the upper left panel.
The lower colorbar refers to the remaining pictures.

erty in non-equilibrium conditions, and generalize the
Meir-Wingreen formula to account for initial correlations
and initial embedding effects. This requires an exten-
sion of the Keldysh contour with the thermal segment
(t0, t0 − iβ) and the consideration of mixed-time Green’s
functions having one real and one imaginary time argu-
ment. The Keldysh Green’s function in the device region
GCC is typically used to calculate currents and densities
in the device. In this work we also developed an exact
inbedding scheme to extract from GCC the TD density in
the leads.

The theoretical framework and the implementation
scheme were tested for one-dimensional wires connected
to two-dimensional leads using different approximations
for the many-body self-energy. We found that already for
4-sites wires screening effects play a crucial role. The 2B
and GW approximations are in excellent agreement at
all times for moderate interaction strength (of the same
order of magnitude of the hopping integrals) while the
HF approximation tends to deviate from the GW and
2B results after very short times. These differences were
related to the sharp peaks of the HF spectral function as
compared to the rather broad structures observed in 2B
and GW. Our numerical results indicate that the largest
part of the correlation effects are well described by the
first bubble diagram of the self-energy, common to both
the 2B and GW approximation. The screened interac-
tion was explicitely calculated in the GW approxima-
tion showing that the screening reduces the interaction
strenght by a factor of 2 and that retardation effects are
absent after a time-scale much shorter than the typical
transient time-scale. The electron dynamics obtained us-
ing a correlated self-energy differ from the HF dynam-
ics in many respects: 1) At moderate bias the HOMO-
LUMO gap closes while in the HF approximation it re-
mains fairly constant; 2) The HOMO and LUMO reso-
nances are rather sharp during the transient time to then
suddenly broaden when approaching the steady state.
This indicates the occurrence of an enhanced renormal-
ization of quasiparticle states. The HF widths instead
remain unaltered. 3) The transient time in the corre-
lated case is much shorter than in HF, see Fig. 11.

The transient behavior of time-dependent quantities
like the current and dipole moment exhibit oscillations
of characteristic frequencies that reflect the underlying
level-structure of the system. Calculating the ultrafast
response of the device to an external driving field thus
constitutes an alternative method to gain insight into
the quasi-particle positions and life-times out of equilib-
rium. We performed a discrete Fourier analysis of the TD
dipole-moment in the transient regime and related the
characteristic frequencies to transitions either between
different levels of the wire or between the levels of the
wire and the electrochemical potential of the leads. The
hight of the peaks in the Fourier transform can be inter-
preted as the amount of density which oscillate between
the levels of a given transition. In all approximations
we found that the density mainly sloshes between the

Time-dependent lead densities and Friedel oscillations
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Ĥ
0 .

F
or

tim
es

t
>

t0
th

e
sys-

tem
is

d
riven

ou
t

of
equ

ilib
riu

m
b
y

an
extern

al
b
ias

an
d

w
e

aim
to

stu
d
y

th
e

tim
e-evolu

tion
of

th
e

electron
d
en

-
sity,

cu
rren

t,
etc..

In
ord

er
to

d
escrib

e
th

e
electron

d
y-

n
am

ics
in

th
is

system
w

e
u
se

K
eld

ysh
G

reen
’s

fu
n
ction

th
eory

(for
a

review
see

R
ef.60)

w
h
ich

allow
s
u
s
to

in
clu

d
e

m
an

y-b
od

y
eff

ects
in

a
d
iagram

m
atic

w
ay.

T
h
e

K
eld

ysh
G

reen
’s

fu
n
ction

is
d
efi

n
ed

as
th

e
exp

ectation
valu

e
of

th
e

con
tou

r-ord
ered

p
rod

u
ct

G
r
s (z,z

′)
=

−
i T

r
{

T
[e

−
i

R

d
z̄
Ĥ

(z̄
)â
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onance, see Fig. 7, and its initial low population. On
the contrary, the transition ∆εL1 from the left lead to
the highly populated level ε1 is extremely weak due to
the Pauli blockade and not visible. Correlation effects
beyond Hartree-Fock theory causes a fast damping of all
sofar discussed transitions. Only the transitions ∆εL4 (d)
and ∆ε23 (c) are visible in the Fourier spectrum of the
2B and GW approximation.

D. Time dependent screened interaction W

In Fig. 12 we show the trace of the lesser component of
the time-dependent screened interaction of the GW ap-
proximation in the double-time plane. This interaction
is defined as W = v + v P W where P is the full polar-
ization bubble35 (with dressed Green’s functions) of the
connected and correlated system, and gives information
on the strength and efficiency of the dynamical screening
of the repulsive interactions. The good agreement be-
tween the 2B and GW approximations implies that the
dominant contribution to the screening comes from the
first bubble diagram, that is W< ≈ vP<v. From Fig. 12
we see that the trace of the imaginary part of W<(t, t) is
about 3. Considering that the trace of the instantaneous
bare interaction v is 6 we conclude that the screening di-
agrams reduce the magnitude of the repulsion by a factor
of 2. Another interesting feature of the screened inter-
action is that it decays rather fast when the separation
of the time arguments increases. From Fig. 12 we see
that after a time t ≈ 7 the retarded interaction is neg-
ligibly small. It is worth noting that such a time scale
is much smaller than the typical time scales to reach a
steady state, see Fig. 6.

FIG. 12: Imaginary part of the trace of the screened interac-
tion W <(t1, t2) in the GW approximation.

E. Time-dependent Friedel oscillations in the leads

We implemented the method described in Section II E
and based on the inbedding technique to investigate the
electron dynamics in the leads. This study is of spe-
cial importance since it challenges one of the main as-
sumption in quantum transport calculations, i.e., that
the leads remain in thermal equilibrium during the en-
tire evolution.

In Fig. 13 we show the evolution of the density in the
two-dimensional 9-row wide leads (see Fig. 1) after the
sudden switch-on of a bias voltage. We display snapshots
of the lead densities at times t = 0, 1.7, 3.6 and 10 where
up to 10 layers deep into the leads (where to improve the
visibility we interpolated the density between the sites).
Since the atomic wire is connected to the central site it
acts as an impurity and we see density oscillations in
the leads following diamond-like pattern. These present
Friedel oscillations that propagate along preferred direc-
tions.

The preferred directions in the density pattern can be
understood from linear response theory. Given a square
lattice with nearest neighbor hopping T = T λ = T τ the
retarded density response function in Fourier space reads

χ(q, ω) =

∫

dk

(2π)2
f(εk) − f(εk+q)

ω − εk + εk+q + iη

= 2

∫

dk

(2π)2
f(εk)(εk − εk+q)

(ω + iη)2 − (εk − εk+q)2
, (42)

where εk = 2T (coskx + cos ky) is the energy dispersion
and the integral is done over the first Brillouin zone and
f is the Fermi distribution function. At half filling the
Fermi energy is zero and the Fermi surface is a square
with vertices in (0,±π) and (±π, 0). The dominant con-
tribution to the integral comes from the values of k close
to such vertices where the density of states has van Hove
singularities. The response function χ(q = αQ, ω = 0),
with Q = (π, π) the nesting vector, is discontinuous for
α = 1. Indeed, for every occupied k there exists an α < 1
such that εk+q = εk < 0 and the integrand diverges at
zero frequency. On the other hand for α > 1 the vector
k + q corresponds to an unoccupied state with energy
εk+q > 0 and due to the presence of the Fermi function
the integrand of Eq.(42) is well behaved even for ω = 0.
The discontinuity at Q = (π, π) is analogous to the dis-
continuity at 2kF in the electron gas and leads to the
Friedel oscillations with diamond symmetry observed in
Fig. 13. By adding reciprocal lattice vectors we find that
there are four equivalent directions for these Friedel os-
cillations given by the vectors Q = ±(π,±π). Each of
these vectors gives in real space rise to a density change
of the form δn(r) ∼ eiQ·r. Therefore a single impurity in
a 2D lattice induces a cross-shaped density pattern. Due
to the fact that in our case the lattice ends at the central
chain, we only observe two arms of this cross.

The results of Fig. 13 also allows for testing the as-
sumption of thermal equilibrium in the leads. The equi-
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The density pattern can be understood from study of the density
response function of the 2D tight binding lattice
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Model Hamiltonian
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1 equations

Ĥ(t) = ĤC(t) +
∑

α=L,R

Ĥα(t) +
∑

α=L,R

HCα + ĤαC

ĤC(t) =
∑

i,j

hij(t) ĉ†i ĉj +
∑

ijkl

vijkl ĉ
†
i ĉ

†
j ĉk ĉl

ĤC(t) =
∑

i,j,σ

hij(t) ĉ†iσ ĉjσ +
∑

ijσσ′

vij ĉ†iσ ĉ†jσ′ ĉjσ′ ĉiσ

Ĥα(t) =
∑

k

(εkα + Ukα(t))ĉ†kαĉkα

Ĥα(t) =
∑

i,j

(tij,α + Uij,α(t))ĉ†iαĉjα

Ĥoff =
∑

α=L,R

HCα + ĤαC =
∑

α=L,R

∑

j,k

Vjk,α(ĉ†j ĉαk + ĉ†αk ĉj)

Ĥcoupling =
∑

α=L,R

HCα + ĤαC =
∑

α=L,R

∑

jk,σ

Vjk,α(ĉ†jσ ĉαkσ + ĉ†αkσ ĉjσ)

GCC,ij(t1, t2) = −i〈TC ĉi(t1)ĉ†j(t2)〉

GCα,ij(t1, t2) = −i〈TC ĉi(t1)ĉ†jα(t2)〉

GαC,ij(t1, t2) = −i〈TC ĉiα(t1)ĉ†j(t2)〉

Gαα,ij(t1, t2) = −i〈TC ĉαi(t1)ĉ†jα(t2)〉

(i∂t1 − Ĥα(t))gαα(t1, t2) = δ(t1, t2)

1

Talk equations

May 15, 2008

1 equations

Ĥ(t) = ĤC(t) +
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Ĥoff =
∑

α=L,R

HCα + ĤαC =
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Ĥcoupling =
∑

α=L,R

HCα + ĤαC =
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Gαα,ij(t1, t2) = −i〈TC ĉαi(t1)ĉ†jα(t2)〉
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We use a correlated tight-binding Hamiltonian for the central 
region (2 sites) and an uncorrelated one for the leads

+U
-U

t > 0

t1 = T +
t

2

t2 = T − t

2

A(T,ω) = Im
∫

dt (G> −G<)(T +
t

2
, T − t

2
)eiωt

Uα(t) = θ(t) Uα

5

(see also: Kristian Thygesen, PRL100, 166804 (2008))



Memory and initial correlations 

1 equations

Φx(x1 . . .xN−1) = ψ̂(x)Ψ0 ≡
√

NΨ0(x1 . . .xN−1,x)

〈Φx|Φx〉 = n0(x)

ΣM

Σ"

Φx =
∑

i

fi(x) ΨN−1
i

fi(x) = 〈ΨN−1
i |ψ̂(x)|Ψ0〉

Φx(t) = ψ̂H(xt)Ψ0 =
∑

i

fi(x) e−i(EN−1
i −EN

0 )t ΨN−1
i

G<(xt,x′t′) = i〈Φx′(t′)|Φx(t)〉 = i
∑

i

fi(x)f∗
i (x′) e−i(EN−1

i −EN
0 )(t−t′)

Av[n] =
∫ T

0
dt〈Ψ[n](t)|i∂t − Ĥv(t)|Ψ[n](t)〉

As,0[n] =
∫ T

0
dt〈Φ[n](t)|i∂t − T̂ |Φ[n](t)〉

Ĥs(t) = T̂ + V̂s(t)

vs(rt) =
δA0,s

δn(rt)
− i〈Φ(T )|δΦ(T )

δn(rt)
〉 =

δAv =
∫ T

0
dt〈δΨ[n](t)|i∂t − Ĥv(t)|Ψ[n](t)〉
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∫ T

0
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δAv =
∫ T

0
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+i〈Ψ(T )|δΨ(T )〉 − i〈Ψ(0)|δΨ(0)〉

δΨ(0) = 0
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δAv − i〈Ψ(T )|δΨ(T )〉 = 0
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dt〈δΨ[n](t)|i∂t − Ĥv(t)|Ψ[n](t)〉+ c.c.

+i〈Ψ(T )|δΨ(T )〉 − i〈Ψ(0)|δΨ(0)〉

δΨ(0) = 0

δΨ(T ) &= 0

δAv − i〈Ψ(T )|δΨ(T )〉

δAv − i〈Ψ(T )|δΨ(T )〉 = 0

1

initial 
correlations

memory of
initial 
correlations

1 equations

Φx(x1 . . .xN−1) = ψ̂(x)Ψ0 ≡
√

NΨ0(x1 . . .xN−1,x)

〈Φx|Φx〉 = n0(x)

ΣM

Σ"

Σ#

Φx =
∑

i

fi(x) ΨN−1
i

fi(x) = 〈ΨN−1
i |ψ̂(x)|Ψ0〉

Φx(t) = ψ̂H(xt)Ψ0 =
∑

i

fi(x) e−i(EN−1
i −EN

0 )t ΨN−1
i

G<(xt,x′t′) = i〈Φx′(t′)|Φx(t)〉 = i
∑

i

fi(x)f∗
i (x′) e−i(EN−1

i −EN
0 )(t−t′)

Av[n] =
∫ T

0
dt〈Ψ[n](t)|i∂t − Ĥv(t)|Ψ[n](t)〉
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δAv =
∫ T

0
dt〈δΨ[n](t)|i∂t − Ĥv(t)|Ψ[n](t)〉+ c.c.
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P.Myöhänen, A.Stan, G.Stefanucci, RvL   
Europhys.Lett. 84, 67001 (2008)
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TDDFT :  The challenge of a correlation functional with memory

The time-dependent xc-potential that gives the same density as 
that of the Kadanoff-Baym scheme, is given by (Sham-Schlüter 
equation)

This is not a closed equation unless we, for instance, make the
substitution  
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and We then obtain the following set of equations

i∂tG
≶(t, t′) = HCC(t)G≶(t, t′) +

[

Σ
R
· G≶

]

(t, t′)

+
[

Σ
≶
· G

A
]

(t, t′) +
[

Σ
" " G

#
]

(t, t′),

(1)

−i∂t′G
≶(t, t′) = G

≶(t, t′)HCC(t′) +
[

G
R
· Σ

≶
]

(t, t′)

+
[

G≶
·Σ

A
]

(t, t′) +
[

G" " Σ
#
]

(t, t′),

(2)

i∂tG
"(t, τ) = HCC(t)G"(t, τ) +

[

Σ
R
· G"

]

(t, τ)

+
[

Σ
" " GM

]

(t, τ), (3)

−i∂tG
#(τ, t) = G

#(τ, t)HCC(t) +
[

G
#
· Σ

A
]

(τ, t)

+
[

GM " Σ
#
]

(τ, t), (4)

−∂τG
M (τ − τ ′) = 1δ(τ − τ ′) + HCCG

M (τ − τ ′)

+ i
[

Σ
M " GM

]

(τ − τ ′), (5)

which are commonly known as the Kadanoff-Baym equations.

∫

dz′ Gs(z, z′)G(z′, z)vxc(z
′) =

∫

dz′dz′′ Gs(z, z′)Σ[G](z′, z′′)G(z′′, z) (6)

∫

dz′ Gs,CC(z, z′)GCC(z′, z)vxc,CC(z′) =

∫

dz′dz′′ Gs,CC(z, z′)(ΣMB
CC [GCC] + Σem)(z′, z′′)GCC(z′′, z) (7)
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G → Gs

If this is done at Hartree-Fock level then we obtain the x-only TDOEP
equations. The performance of this approach is likely to be close to
TDHF.

What if the substitution is done at 2B or GW level?
Topic of future investigation......



Open problems

- Time-dependent quantum transport:
  Phonons (vibrons) + electronic interactions
  Two different time scales play a role, how to do this numerically?

- Finite systems:
  How to deal (at T=0 ) with degenerate initial states
  e.g. the ground state multiplet of the carbon atom ?
  
- Quantum transport:
  How do deal with lead interactions, avoiding reflections?
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Conclusions

- An approach to the nonequilibrium quantum conduction problem
  is developed which is based on the solution of the Kadanoff-Baym
  equations for the nonequilibrium Green functions

- The scheme has build in conservations laws and effects of  
  electron correlations can be explored by diagrammatic methods

- Macroscopic leads can be incorporated by means of embedding 
  self-energies that are added on top of the self-energy terms that
  describe the electronic interactions

- Lead densities can be calculated from an inbedding self-energy

General conclusions



- Correlation effects beyond Hartree-Fock have a large influence on dynamics in 
  quantum transport:

    a) At moderate bias the HOMO-LUMO gap closes while in HF
       it remains fairly constant
    b) The HOMO and LUMO resonances are rather sharp during the
        transient time and suddenly broaden when approaching the
        steady state. In HF they remain sharp.
    c) In the correlated case the transients are more damped and die out earlier
    d) Correlations beyond HF wash out features in I-V curves.

- For a 4-atom chain with long range interactions, screening effects are
  already considerable. The GW and 2B approximations for this case 
  give very similar results

- All the oscillations in the TD dipole moment can be understood
  in terms of the level structure of the system.  
  Transient spectroscopy?

Conclusions for the 4 atom chain attached to 2D leads:



Challenges:

- Electron correlations + phonons:

  A problem of two time-scales

- Lead interactions (lead plasmons?)

- 
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