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Motivation

In nanoscience one aims to understand and control systems at
the nanoscale.

Manipulation of nanosystems requires interactions with a
time-dependent environment

Conduction through a
single Hy molecule

Differantial conductanca (2a2/h)
o
£

R.H.M.Smit et al.
Nature 419,906 (2002)




The importance of dynamics

In future devices based on ‘molecular electronics’ we are not mainly

interested in the steady states:
The operational speed needs to be designed and controlled

The main interest will be in fast switching of the devices!

This involves:

- switching times (AC fields, lasers)
- study of transients
- peak currents rather than time-averaged ones

(stability of the devices)

We need fundamental many-electron nonequilibrium quantum
mechanics for open systems at short time-scales
(nice topic for the theorists with rich physics.....)



The time-dependent quantum transport problem

Consider a molecule (or quantum dot) attached to leads
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Calculate the time evolution of observables of this system when a
bias is applied.



Theoretical challenges

- We are dealing with an open quantum system
- We are dealing with a many-particle system

- We are dealing with a nonequilibrium system
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Our approach

- We use Kadanoff-Baym approach to study the basic physics of time-
dependent processes that play a role in correlated quantum transport

- bistability, phonons, spin transport,
superconducting leads, AC fields,.....etc.

- We use Kadanoff-Baym approach to benchmark and develop new
correlation functionals in density functional theory beyond ALDA.



Time-propagation of the Kadanoff-Baym equations

(N.E. Dahlen, RvL,

This method can deal with: Phys.Rev.Lett. 98, 153004 (2007)

, P.Myohanen, A.Stan, G.Stefanucci, RvL
- inhomogeneous open systems Europhys.Lett. 84, 67001 (2008))
- time-dependent external fields

(both in leads and device regions) P.Myohanen, A.Stan, G.Stefanucci, RvL

. . Phys.Rev. B80, | 15107 (2009),
- electronic interactions

The method is based on the propagation of the equations of motion for the

nonequilibrium Green function, also known as
the Kadanoff-Baym equations. (Kadanoff/Baym 1964, Keldysh 1965)

The main ingredient of the method is the nonequilibrium Green function

G(Xltl ] XQtQ)



Time evolution of a many-body system

The time-dependent Hamiltonian

e\ A\ N

H(t) = h(t) + W
N

Kinetic energy + external potential Two-particle interactions

The goal is calculate the time-dependent expectation values of
observables :
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The time contour (L.V.Keldysh, Sov.Phys.JETP20, 1018 (1965))

“‘“r _*r:'l:'

Tr {U(to — iﬂ, t())

Tr {Telexp(—i [ difl (£)O(1)]
a Tr {(A](to —ZﬂatO)}




Propagators for nonequilibrium systems

We define the Keldysh contour-ordered Green function as :

G(1,2) = —i(Telbu ()P} (2)]) = 0(t1,12)G™ (1,2) + 0(t2, t)G=(1,2)

— il Al
G~(1,2) = —i(u 1)y (2)) Propagation of a “particle” (added electron)

G=(1,2) = Z@L(Z)%@H(l» Propagation of a “hole” (removed electron)

We similarly define the two-particle Green function as :

A

Ga(1,2,3,4) = (=) (To[du(1)dn (2)08 (3)d (4)])




Physical content

The nonequilibrium Green function contains a wealth of detailed
information :

- The expectation value of any one-body operator such as electron
and current densities, the Wigner distribution function and
momentum densities.

- The total energy

- All the electron affinities and ionization energies of the system
(photo-electron spectra)

- The excitation energies of the system (absorption spectra)

- Life-times of excitations



The equations of motion

The equations of motion for the Green function are given by :

(18, — h(1))G(1, 1)) = 5(1,1) — z’/d2w(1, 2)Gy(1,2,2+ 1)

(—idy — h(1))G(1L,1') = 6(1,1') - z’/de(l’, 2)Gy(1, 2,2+ 1)

with boundary conditions

G(Xlt() — iﬁ, 2) = _G(Xlt()a 2)
G(1,xotg) = —G(1,x2tg — i3)



The simplest collision terms correspond to the following structure of the
two-particle Green function:

1 2

——
G»(1,2,2,1") = H = — <= Hartree-Fock
— terms

1’ 2

We define a self-energy operator as follows

/dz >(1,2)G(2,1) = —i/d2w(1,2) Ga(1,2,27,1)



The corresponding self-energy diagrams to 2nd order are :

e Bl T

The equation of motion for the Green function attains the form
(these are essentially the Kadanoff-Baym equations):

(10y, — h(1))G(1,2) =6(1,2) + /dS ¥|G(1,3)G(3,2)

A

A space-time nonlocal potential
describing the effects of two-particle
Interactions



By splitting the equation of motion in components, one obtains the set
of Kadanoff-Baym equations. For example for the lesser component G* :

Time-dependent
external field

(i0;, — h(1))G=(1,2) — /dX3ZHF(1,X3t1)G<(X3t1,2)

— /t1 d3[X”(1,3) — £<(1,3)]G<(3,2) — /t2 d2Y<(1,3)[G7(3,2) — G=(3,2)]

to to

”

Collision or electron
correlation terms : \

Memory kernels Initial correlations
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The conservation laws

From an approximate Green function we can calculate several observables

(n(1)) = —iG(1,17) <= density

J(1)) = —i {2—2 DY | A(l)} G(1, 1/)1’=1+<}:' current density

(P(t))) = / dx; (§(1)) <= momentum

These observables are related by conservation laws such as

O, (n(1)) +V1-(j(1)) =0 <= number conservation

O, (P(t1)) = —/dX1 (n(1))E(1) + (1)) xB(1)] <= momentum

conservation

Will these relations be satisfied if the ingredients are calculated
from an approximate Green function !



The conservation laws ( G.Baym, Phys.Rev. 127, 1391 (1962))

Conservation laws, such as those of energy, momentum, angular
momentum and particle number, are automatically obeyed when we
use so-called Phi-derivable approximations for the self-energy.

5O
5G(2,1)

& - Ry L

For Phi-derivable approximations the expectation values are
independent from the way they are calculated

$(1,2) =




f-sum rule and Ward identity

The f-sumrule and the Ward identity are satisfied for the response function
on(l) = —i6G(1,17) = /d2 x(1,2)dv(2)

where

x = P + Puy PGGI‘<>

vertex

see e.g. N.H.Kwong, M.Bonitz, Phys.Rev.Lett. 84, 1768 (2000)



Conserving many-body approximations

Hartree-Fock ? = ? - i\»ﬁ

w s 0. LB




Practical solution of the equations of motion

For practical solution the Green function is expanded into one-particle states

G(1,2) = Z%(Xl)Gij(tlah)v}f(Xz)

tj

G@'j (tl, tz) — —i<TCdi,H(t1)&;,H(t2)>

For the one-particle states we can, for instance, use the solutions
to the Hartree-Fock or Kohn-Sham equations

The Kadanoff-Baym equations become equations for time-dependent
matrices



To evaluate the many-body interactions in the self-energy we calculate

o = [ dx [ dx ()5 (ol = ¥ )n (K ()
The self-energy for second Born is e.g. given by

$2B(¢ ) = 6(¢, ) SHE (1) + @) (¢, ¢)
SO = =iy Gru(t,t7) (v — vjr)

kl
2
Egj)(t,t’) — Z Gl (t,t’)Gmn(t,t')qu(t’,t) Uiqu(%lnpj — Unlpj)
klmnpq

(Nils Erik Dahlen, RvL,
Phys.Rev.Lett. 98, 153004 (2007))



The number of two-electron integrals v_ijkl grows as N*. In a localized
basis we may use distance effects. The simplest is:

Vijkl = 0504 Vij
Vi = [ dx [ axulr =)l ()
The second Born self-energy is then considerably simplified to

2(2)(15 1) = 2Gi; (¢, 1) ng (t,8)Gap(t', 1) VigVas — >~ Gig(t,1)Ggp(t', 1) G (£, ) Vip Vs
prq



GW and the product basis technique

The GW approximation involves the dynamically screened interaction
W =v+vPW P =—iGG
If we consider the time nonlocal part of W
W=W—u

we have to solve the equation

~

qurs (ta t,) — Z Uplispijkl(ta t/)vjqu + Z / dtq Uplispijkl(ta tl)qurk (tla t,)
gkl ijkl



This equation is of the form

W@ (61) = > 00,05 Posqa(t:1)0guga + ) / dt1 00,5 PR3 (t, 1) W@, (t1, )
Q3Q4 Q3Q4

in terms of the nonorthogonal basis

fo(r) = ¢i(r)¢j(r) Q = (ij)

We can reduce the size of the basis considerable by taking only by using
a new orthogonal basis

1
r ——E:Lq’q g \I

Z qq1 fQ1‘fQQ 42q' = OqOqq’

q14g2

and discarding all basis functions for which g, < ¢

(A.Stan,N.E.Dahlen, RvL |.Chem.Phys. 130, 114105 (2009))



The Kadanoff-Baym equations

(Nils Erik Dahlen, RvL,
Phys.Rev.Lett. 98, 153004 (2007))

1G> (1
100G (t; it

) = h

with the initial conditions

G<(0,0)
G(t,iT)

= 1GM(07)
= iGM(—iT)

( ,
) = h(t)Gl(t;ir ,
—i0,GIir.t) = GIr k() + IT(ir, 1)

)+ I5(t;t")  (+adjoint)
)+ I'(t;ir)
G~(0,0) = iGM(0T)
G (it,t) = iGM (iT)

Splitting the equation of
motion into components
on different parts of the
Keldysh contour

The collision integrals are

IS(tt) — / PSR OGEEY) + SE(HGAEL)]

1 164
+—,/ d7 ¥\(t,i7)G (i7, 1)
0

7

It 7)) = / @SR DGV, i)

0
—3
+ / dr ¥ (t,i7)GM (i(F — ')
0

and [I1(it,t)]' = Il(t,iT).




Time propagation of the Kadanoff-Baym equations

Solve equilibrium case ::> Carry out time-stepping in the double-time
on the imaginary axis plane ( possibly with external field applied)
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The way we solve the equations of motion requires the storage of the
matrix elements GgL (t,t") for time-points t and t’, which grows
quadratically with the number of basis functions and with the number
of time points.

| would be a great advantage to improve the scaling of the time-
propagation scheme:

T2 —=—=> TInT -scaling ?

See: M.Zwolak,
“Numerical ansatz for solving integro-differential equations with
increasingly smooth memory kernels”

Computational Science and Discovery |,015002 (2008)



The hydrogen molecule in a laser field | Equilibrium (no field applied)

v(rt) = E(t)z
E(t) = 0(t — to)Eo

’

20
15

7

On the time diagonal :

ni(t) = (al y(Oan(t)) =Im G5 (t,t) ImGS . (th,t2)

Og0g

0.5

Im ngo'g (tla tZ) Nonequilibrium (field applied) Im G;U,O'u (tla t2)



The quantum conduction problem

Region C
Left electrode SEt Right electrode
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Model Hamiltonian
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The embedding

The one-body part of the Hamiltonian is projected onto different

regions
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The Green function and the self-energy attain the form

G Gue Gir 0 0
G=|6cL Y9cc Yrc
' OrL 9cr YRR 0

SV = 0 Egg[gcc]
0

with equations of motion for the complete system

10.G(z, 2")

—10,,G(z, 2")

0(z,2")1 +H(2)G(z, 2"
/dz >MB(2,2)G(z,2)
5(2,2)1 + G(z, 2/ H(2)
/dz G(z,2)2MP(z, 2)




The projection on region CC gives

{i@zl — ch(z)}gcc(z, ) =6(z2,2")1 +

Z HCO‘QO‘C(Z7 Z/) T /dZ 21(\3/[(]5%(27 Z)gCC(Zv Z,)
(84
while the projection on region aC gives

{Zaz]- — Haa(z)}gaC (Z, Z/) — HanCC (Z7 Z/)



This can be solved to give

GacC (Z7 Z/) — / dZ 8aa (Za 2) H.cGcc (27 Z/)

where the biased but uncontacted lead Green function
satisfies

{i(?zl — Haa(z)}gaa(z, 2y =6(z2,2)1



The equation of motion

The equation of motion projected on the central region has the form

{ié’zl — Hcc(z)}gcc(z, z')

=6(z,2')1 + /dz {21(\%3’ + Eem} (2,2)Gce(Z,2)

where on top of the a many-body self-energy we also have
an effective embedding self-energy

Sem(2,2) =Y Bema(2,2") =) Hoa 8aal(2z, 2 )Hac



Numerical aspects:
- Embedding self-energy independent of Gcc

- Now even the time-dependent Hartree-Fock equations involve
memory due to embedding.

- When interactions in the leads need to be taken into account
the central region may become big.



Calculating the current

The total current flowing out of reservoir (X is given by :

AN, (t
T (t) = dt( ) ORI [GS, (1 1) Hac!

This gives after some manipulations:

t
Lo (t) — _QRGTIC/ dt’ {GEC’(tv t/)ZeAm,a(t/a t) + GBC (t7 t/)zgm,a(ta t/)
0

—ip
—2ReTr¢ / dt’ {ch(t,t’)zgm,a(t’,t)}
0)

Memory of initial correlations

Long time limit leads under some assumptions to Meir-Wingreen formula



The spectral function

The spectral function for a nonequilibrium system is defined as

A(t,t) = TrA(t,t) Aii(t,t) = (Dol{asm (), al ()} o)

Y

In equilibrium the spectral function only depends on the

difference of the time coordinates and can be Fourier transformed
to give

Asi(w) = (W al [ wo) Po(w + B — BN
k

+ )TN a o) P (w — B + Ep )
k

It shows peaks at electron addition and removal energies



In the nonequilibrium case it is convenient to Fourier transform
with respect to the relative times:

wwt

dw t t

which can be calculated from the Green function as

“dt t L
A(T,w) = —ImTr¢ - e’ G —GSc(T+ 5 1 — 5)

In the long time limit the spectral function becomes independent
of T when a steady state is being reached

lim A(T,w) = A(w)

T'— o0



Density in the leads

If we define the inbedding self-energy as

Zin,a(za Z/) — HanCC (Za Z,)HCa

Then the densities in the leads can be calculated from the equation

gOéOé(t—vt—l—) — gaa(t—vt—l-)_l_
b [ dedge(t.2) (2, D) gua Bt



Results: 4 atom chain connected to 9-row two-dimensional leads

L H\ c Hcr R

CY o (0
Q0000000 00000000
O0O0O00O0O0O O0O0O000O0O
O0O00O00OO0O O0O000O00OO0O
O0CO0O0O0O0O0O O0O0O00O0O00O
GIGICICICICICION X X X 1 GI0I0I0IOICIOI0.
O0O0O00O0O0O O0O0O000O0O
O0O0O0O0O0O0O O0O0O0O00OO0O
OIOIGICICIOI®I® O0O0O0O0O0O0O
OO0O000000 OO0 O0000O

HCC
H,, \_J \_J Hpr



L Hic Her R
e
00000000 0000000
: 00000000 00000000
Interaction 00000000 00000000
00000000 00000000
00000000 000000000000
00000000 00000000
s " (5 (5 00000000 00000000
. - — . () - - 00000000 00000000
Q]kl 1] 2l ]k7 00000000 00000000
HCC
H ) ) H
H H
v o o Z : ] vi’i : 1 ° 5
(X}

Vi ' '
- - 1
2|i—7]| 7 J

Time_dependent bias M ..................................................................

Ur(t) = —Ur(t) = U 6(t — o) lT

Hoppings:
pping o _ o lT




The Green function

For the highest occupied molecular orbital the Green function
matrix element has the following structure (imaginary part displayed)

30 0O

géC,HH(tla tQ)



The transient currents
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Steady state regime

The spectral functions

|.2 (dashed line)

U=

0.8 (solid line)

U=




Time-dependent buildup of the |-V curves

Hartree-Fock
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Bias dependence of the spectral functions

HF
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The time-dependent dipole moment

0.04

U=1.2

0.02 |

d(t)

-0.02 |

004!

60



Q0000000
O0000000O
= = O0000000O
o S Q0000000
05 2 00000000 @
3 S o OCO0O000000O
oL ™ Q0000000
T N OCO0OO000000O
m&m o O000000O0
sS o
C T
O o X

-

'

T T T
1 1 1
0.495 0.496 0.497 0.498 0.499 0.5

o

7N

N

(7))

-

O

i)

©

K]

(7))

o | .
o |
o

9

N
|
d (@]
C

(g -
(Vg ol |
Q|-
Nt

(7))

- 2
O | 3
d o
N

(4o o
o | &
i) o
C

e <
O 9 A
c |
()

(o

() N -
Q| ¢
m o
= | s




The density pattern can be understood from study of the density
response function of the 2D tight binding lattice

_ dk  flex) — f(ek+q)
xla,w) = / (2m)? W — €k + €ktq + N

dk f(€ex)(ex — €x+q)
2/

2m)% (W +11)* = (€k = €ktq)”

ex = 2T (cosk, + cos k)

x(d=aQ,w=0) with Q= (m,m)

is discontinuousat ¢ = 1 leading to a cross-shaped
density pattern



Model Hamiltonian

+Uﬁ ~—— \

We use a correlated tight-binding Hamiltonian for the central
region (2 sites) and an uncorrelated one for the leads

E :hm CioCio T E :U’LJ CisCioiCio’ Cio

1,],0 1joo’
Ho(t) =Y (tija + 0ijUa(t))éhnoCiao U, (1)
17,0
couphng Z Hco + HaC — Y Y V}k o ngcozka
a=L,R a=L,R jk,o

(see also: Kristian Thygesen, PRL100, 166804 (2008))
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Memory and initial correlations

P.Myohanen, A.Stan, G.Stefanucci, RvL
Europhys.Lett. 84, 67001 (2008)
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initial
correlations

memory of
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Memory and initial correlations

a) 0.04

b) 0.4

0.3

V=0.5




TDDFT : The challenge of a correlation functional with memory

The time-dependent xc-potential that gives the same density as
that of the Kadanoff-Baym scheme, is given by (Sham-Schluter
equation)

/dzlgs(z,z’)g(z’,z)vxc(z’) = /dz’dz" G:(2,2)X[G](7,2")G (2", 2)

This is not a closed equation unless we, for instance, make the
substitution G — G

If this is done at Hartree-Fock level then we obtain the x-only TDOEP
equations. The performance of this approach is likely to be close to

TDHF

What if the substitution is done at 2B or GWV level?
Topic of future investigation......




Open problems

- Time-dependent quantum transport:
Phonons (vibrons) + electronic interactions
Two different time scales play a role, how to do this numerically?

- Finite systems:
How to deal (at T=0 ) with degenerate initial states
e.g. the ground state multiplet of the carbon atom ?

- Quantum transport:
How do deal with lead interactions, avoiding reflections?
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Conclusions

General conclusions

- An approach to the nonequilibrium quantum conduction problem
is developed which is based on the solution of the Kadanoff-Baym
equations for the nonequilibrium Green functions

- The scheme has build in conservations laws and effects of
electron correlations can be explored by diagrammatic methods

- Macroscopic leads can be incorporated by means of embedding
self-energies that are added on top of the self-energy terms that

describe the electronic interactions

- Lead densities can be calculated from an inbedding self-energy



Conclusions for the 4 atom chain attached to 2D leads:

- Correlation effects beyond Hartree-Fock have a large influence on dynamics in
quantum transport:

a) At moderate bias the HOMO-LUMO gap closes while in HF
it remains fairly constant
b) The HOMO and LUMO resonances are rather sharp during the
transient time and suddenly broaden when approaching the
steady state. In HF they remain sharp.
c) In the correlated case the transients are more damped and die out earlier
d) Correlations beyond HF wash out features in |-V curves.

- For a 4-atom chain with long range interactions, screening effects are
already considerable. The GW and 2B approximations for this case
give very similar results

- All the oscillations in the TD dipole moment can be understood
in terms of the level structure of the system.
Transient spectroscopy?



Challenges:
- Electron correlations + phonons:
A problem of two time-scales

- Lead interactions (lead plasmons?)



Comparison with exact solution TD Schrodinger equation
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