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Topics of this talk

. Looking back:

Correlations and equilibration
Initial correlations

. Imaginary time-stepping

. Temperature?

. Levinson.

. Separable Interaction

. Coupled eqgs Nucleons,Pions, Deltas.



Kadanoff-Baym Equations
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The total energy is given by
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The “correlated” kinetic energy is:
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while the correlation energy is
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The uncorrelated kinetic energy is:

f(p,t) s the uncorrelated fermi—distribution

only defined at equilibrium; need temperature to define

T |~



For a local interactionV (r) the selfenergies are :
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In the classical limit G is the distribution function f.
Gis 1-f.
Computer program in

HSK, Kwong, Yousif
Comp Phys Communications123(1999)123



SIGMA is Self-energy.
a,b and c some def. of propagator.
(c) is fully self-consistent.

~ -5 .0 .

This self-energy is conserving.
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* The diagrams included by the complex
self-energies are not included in
perturbative quasi-particle approximations
like Brueckner. They are included in

function calculations by the width
of the spectral functions.



TOTAL ENERGY IS CONSERVED
Kinetic energy converges.
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Effect of correlations on
Distribution-function
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tc and trel

t. is correlation time, i.e. time at which the correlation - energy is constant
assuming an initial uncorrelated system.

t ., isrelaxation time, i.e. time for the system to equilibrate or thermalise
from an initial non - equilibrium state.

| am here going to discuss (show) some results regarding t,
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) weak interaction

0.9: strong
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Correlation time

Independent of interaction strength

Kohler, Morawetz PRC 64 (2001) 024613
Morawetz, Kohler Eur PhysJ A4 (1999) 291



* In the QP-calculations (Boltzmann) the temperature of the
initial state is preserved after the time-iterations are
completed.

* This is in general not the case in the KB-calculations.
* The system is heated when correlations build up.

* The final equilibrium temperature T and chemical
potential y are in this case obtained from:



Note that this implies that X~ /X~ is independent of p
which has to be satisfied computationally.

Note also that this requires a Fourier - transformation from

the computed X2(p,t,t') = Z(p, w) that needs a sufficiently large
t —t' range to be accurate. This formalism has been succesfully applied in some

unpublished work.




Preparing correlated system at
temperature T

Jom 2
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—1/KT -3-)(7% lterations along imaginary time—axis until
convergence
From ~1/kT to —~1/kT



Following work by Pawel Danielewicz a
computer program has been built applying the
iImaginary time-stepping technique to
specifically realize low-temperature systems.
After choosing some upper and lower imaginary

times the temperature of the so obtained
correlated system is calculated by the method
described above. | do not know of any other.




* The imaginary time-stepping technique
was used by Pawel Danielewicz in early
work. In some unpublished work with Nai
Kwong it was used together with the
Temperature —routine for some RPA-
calculations.



Approximations of KB eqgs

* There are several methods of trying to
Improve upon Boltzmann Markovian eq.

* Of interest is the Levinson eq



Levinson equation
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Non-Markovian kinetic equation

Time diagonal part of Kadanoff/Baym equation | evinson equation [Ag = Ef:n + —2;"% — ':j;,;qf = [1;5:2 ]
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- Time evolution of correlation and kinetic energy for nuclear

L]

matter with density and temperature my = ng/60 Ty = 0.5

MeV and ny = n, /20 Ty = 0.1 MeV moving with relative

i@, ol o ‘ velocity of L&/ fm which corresponds to a collision energy of 21
H MeV /n.
2 o Europ. J. Phys. A (1999) 201-305
y Phys. Rev. C 64 (2001) 024613
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The inclusion of memory effects produces the full energy conservation. But, hides several effects:

Off-shell tails in p, Renormalization of scattering rates and wave function, quasiparticle energies
collision delays Ann. Phys. (NY) 204 (01) 135
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* There are all kind of problems with the
Levinson eq. It is just one example of the
“danger” of introducing approximations
iInto the self-consistent KBEs, that are in

themselves very stable. Another example
Is the Boltzmann (transport) eq.

One initially puzzling problem with
Levinson was the following:




From above:
E o (1) = E(1) — K (1)

It has been shown™ that in the long-time limit
Levinson gives:
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This looks much like the second order Born, which
IS no surprise but on closer inspection there is a
discrepancy in the factor!!! (It should be 7%4.)

Actually we have.:
E=K, +E
while

(Levinson)

corr

E=K, +%Ecorr (Born)

and
K , * K,
suggesting that

1
Kp — Kf _EEcorr



EQP-approximation

This gives me a chance to bring in the EQP
(Extended Quasi Particle) approximation which
like Levinson is a weak interaction limit.
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This leads to a relation between the correlated and
uncorrelated distributions

do P
27 (0 — w,)*

[2*(p,w)(1— f(p))
+27(p,@) f(p) ]

p(p) = f(p)-if

from which the relation between the two Kinetic
energies suggested above is obtained.



Aot UITIIL ULLWOLLL all 1HCUIULS 1OT S Casl, 11 IO Situiation very well withh the Levinson energies at all densities and

TABLE I. Correlation energies as a function of the demnsity of nuclear matter. At normal density the
temperature dependence is also shown. All results are here with ¥,=453.0 MeV. The cnergies £, are (the
negative of) the equilibrium correlation energies. The Born cnergy ESS_ (Born) is calculated with three
different distribution functions as discussed in the text.

P T EQ. (KB)  EZ, (Lev) ES,. (Born) 1. (KB) 2’;‘
(fm~3)  (MeV) (MeV) (MeV) (MeV) (fm/c) /o)
KB Lewv. Init.

0.380 [0 53.63 65.16 2.0 1.5
0.183 0 35.95 49.67 49.69  43.97 2.4 2.4
0.181 10 36.03 48.60 50.52  48.54  49.16

0.182 20 35.04 46.74 4665 5284

0.182 40 34.31 42.14 42.09 5052

0.182 60 31.59 37.22 38.00  37.20  44.65

0.095 0 23.55 31.33 31.76  28.83 34 3.8
0.047 [4] 14.40 17.84 18.24 18.26 17.47 52 6.2
0.023 (¢] 8.42 9.80 9.96 9.96 9.96 8.5 9.7

ﬂ .024613-9 7 ﬂ N
KB Lev Born

Numerical example




 Some other points.



Separable interaction

One technical advantage with local potentials

Is that the FFT routines can be applied throughout.

In nuclear (and other) problems one mostly deals

with non-local interactions. The nucleon-

nucleon interaction (in particular the

singlet-S) is well represented by a separable (non-local)

potential. The FFT can then not be used for

all convolutions. A computer-program was

developed for this case. The run-time was (only) about a
factor of 2 longer. One advantage over FFT is that the
‘tails’ of the functions can be shorter.




The modern low-momentum renormalized
nuclear (N-N) interactions (e.g. Vlowk) are
designed so that second order Born would be
adequate. The separable interaction would then
be useful.

Another application would be for the unitary limit
with scattering phase-shifts 7/2 . From inverse
scattering one finds an analytic expression

Ar
v2(K) =
JAZ K2




Coupled equations

One problem that has intrigued me is the
following: Take nucleons, pions and
iInclude also deltas and let them interact
via some coupling constants and define
self-energies by:



Vertex and coupled propagators

7N vertex
|

N - propagator

7.y - m-propagator




SUMMARY and CONCLUSIONS

The two-time Greens functions with conserving self-energies
provide a valuable tool for studying the physics of many-body
systems.

It has several advantages over the energy-dependent formalism.

With modern low-momentum separable nuclear interactions it
would suffice to use second (or low order) self-energies at low
density.

Future developments should however include going beyond
second order Born.

Coupled KB-equations are an important application for several
studies.
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