
My  experimental airplane.
200hp  200mph



Some applications of 
Kadanoff-Baym eqs.

KIEL March 2010

H.S. Kohler



Topics of this talk
1. Looking back:

Correlations and equilibration
2  Initial correlations
3. Imaginary time-stepping
4. Temperature?
5. Levinson.
6. Separable Interaction
7. Coupled eqs Nucleons,Pions, Deltas.



Kadanoff-Baym Equations

( ) ( )

( )

.for   similar  and

  ),,(),,(),,(

),,(,,(),,(,,

for   equationsimilar a  with

,,,
2

2

2

_

2

__

1

_

2

__

1

_

1

_

211

2

2112,1

22

1

2

0

1

0

I

ttpGttpGttptd

ttpGttpttptdttpI

t

ttpIttpG
m
p

t
i

t

t

t

t

∫ ∑

∫ ∑∑

⎥⎦
⎤

⎢⎣
⎡ −−

⎥⎦
⎤

⎢⎣
⎡ −=

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

<
>

<>
<
>

<
>

<
>

h

h

h
h



The total energy is given by
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The “correlated” kinetic energy is:
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only defined at equilibrium; need temperature to define

The uncorrelated kinetic energy is:
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SIGMA is Self-energy.
a,b and c some def. of propagator.

(c) is fully self-consistent.

Σ + +

+( a )( a )

+( c )( c )
Σ

+( b )( b ) +

Fully self-consistent propagator

This self-energy is conserving.



• The diagrams included by the complex 
self-energies are not included in 
perturbative quasi-particle approximations 
like Brueckner. They are included in 
Green’s function calculations by the width
of the spectral functions.



TOTAL ENERGY IS CONSERVED 
kinetic energy converges.

Temperature increases



Effect of correlations on 
Distribution-function

Zero temperature

Uncorrelated

Correlated
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Correlation times
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Correlation energy at densities  from left to 
right
2,1,0.5,.25, and 0.125 times normal.

densitylow  ←



ninteractio weak ⇓

Correlation energy at strengths
2.,1.,.5,.25, and 0.125 normal

strong



Correlation  time
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Temperature
* In the QP-calculations (Boltzmann) the temperature of the 

initial state is preserved after the time-iterations are 
completed.

* This is in general not the case in the KB-calculations.

* The system is heated when correlations build up.

* The final equilibrium temperature T  and chemical 
potential μ are in this case obtained from:
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Preparing correlated system at  
temperature T

XXX

XXX Iterations along imaginary time-axis until 
convergence

From ~1/kT to -~1/kT

kT/1

kT/1−



Following work by Pawel Danielewicz a 
computer program has been built applying the 
imaginary time-stepping technique to 
specifically realize low-temperature systems.
After choosing some upper and lower imaginary 
times the temperature of the so obtained 
correlated system is calculated by the method 
described above. I do not know of any other.



• The imaginary time-stepping technique 
was used by Pawel Danielewicz in early 
work. In some unpublished work with Nai
Kwong it was used together with the 
Temperature –routine for some RPA-
calculations.



Approximations of KB eqs

• There are several methods of trying to 
improve upon Boltzmann Markovian eq.

• Of interest is the Levinson eq



Levinson equation

Baym)-(Kadanoff consistent-Self

Levinson

(1997)320 258 (NY)  Phys.Ann. Schlanges, andKraeft Bonitz,Kremp,

(2001) 024613 C64,  Rev. Phys. Morawetz,andHSK 
(1999)  A4,291 J.  Phys Eur. HSK,and Morawetz





Finite Duration Approximation

time [ fm/c ]

0 4 8 12 16 20 24 28 32 36 40

E
ne

rg
y 

[ M
eV

 / 
A

 ]

50

51

52

53

54

55

56

Boltzmann

Finite duration

K/B

)(
1)(cos

4
1 )0(

0

)( tF
E

ttE

E tcorr Δ

−
−Δ

= h

integral. collision of expansiongradient order  zero means )0(F



• There are all kind of problems with the 
Levinson eq. It is just one example of the 
“danger” of introducing approximations 
into the self-consistent KBEs, that are in 
themselves very stable. Another example 
is the Boltzmann (transport) eq.

• One initially puzzling problem with 
Levinson was the following:



From above:

It has been shown* that in the long-time limit
Levinson gives:
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This looks much like the second order Born, which 
is no surprise but on closer inspection there is a 
discrepancy in the factor!!! (It should be ¼.)
Actually we have:
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EQP-approximation

This gives me a chance to bring in the EQP 
(Extended Quasi Particle) approximation which 
like Levinson is a weak interaction limit.
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• Some other points.



Separable interaction

One technical advantage with local potentials
Is that the FFT routines can be applied throughout.
In nuclear (and other) problems one mostly deals 
with non-local interactions. The nucleon-
nucleon interaction (in particular  the 
singlet-S) is well represented by a separable (non-local)
potential. The FFT can then not be used for
all convolutions. A computer-program was 
developed for this case. The run-time was (only) about a
factor of 2 longer. One advantage over FFT is that the 
‘tails’ of the functions can be shorter.
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The modern low-momentum renormalized  
nuclear (N-N) interactions (e.g. Vlowk) are 
designed so that second order Born would be 
adequate. The separable interaction would then 
be useful.

Another application would be for the unitary limit 
with scattering phase-shifts           . From inverse 
scattering one  finds an analytic expression
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Coupled equations

One problem that has intrigued me is the 
following: Take nucleons, pions and 
include also deltas and let them interact 
via some coupling constants and define 
self-energies by:



Vertex and coupled propagators

vertexNπ

propagator-N

propagator-π

!included! also  Deltas

N N



SUMMARY and CONCLUSIONS
• The two-time Greens functions with conserving self-energies 

provide a valuable tool for studying the physics of many-body 
systems.

• It has several advantages over the energy-dependent formalism.

• With modern  low-momentum separable nuclear interactions it 
would suffice to use second (or low order) self-energies at low 
density.

• Future developments should however include going beyond 
second order Born.

• Coupled KB-equations are an important application for several 
studies.

END
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