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Time-Dependent Hartree-Fock
Sensible for degenerate low-energy reacting systems.
Time-dependent Slater determinant

Φ
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{rrr i}Aj=1, t

)
=

1
A!
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∂

∂t
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2m
φj + U({φk})φj

semicentral
22Ne + 16O
Ecm = 95 MeV

Umar & Oberacker
Phys. Rev. C 74
(2006) 024606
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Time-Dependent Hartree-Fock in Practice
Theory predicts a low-` fusion
window developing at higher
energies in reactions.

head-on 16O+22Ne at Ecm = 95 MeV
Umar & Oberacker ’07

Data: NO low-` fusion window!
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High Energies: Boltzmann Equation
∂f
∂t

+
∂ωppp

∂ppp
∂f
∂rrr
−
∂ωppp

∂ppp
∂f
∂ppp

= I{f}

Au+Au at 400 MeV/nucleon
P.D. Nucl Phys A673 (2000) 375

f (rrr ,ppp, t) '
∑

i δ(rrr −rrr i(t)) δ(ppp−pppi(t))

Test particles: ṙrr i =
∂ωppp
∂ppp ṗppi = −∂ωppp

∂rrr
system gasifies symbols - data, histograms - calcs
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Quantum 1-Particle Dynamics

1-Ptcle Green’s Function: i G(1,1′) = 〈Φ|T
{
ψ(1)ψ†(1′)

}
|Φ〉

T - generalized time-ordering operator: allows either order

Dyson Eq: G = G0 + G0 Σ G where

i Σ(1,1′) = 〈Φ|T
{

j(1) j†(1′)
}
|Φ〉irr and

(
i
∂

∂t1
+
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1
2m

)
ψ(1) = j(1)

G−1
0 source

Kadanoff-Baym eqs - Dyson for a specific operator order, such
as −iG<(1,1′) = 〈ψ†(1′)ψ(1)〉,(

i
∂

∂t1
+
∇∇∇2

1
2m

)
G≶(1,1′) =

∫
d1′′Σ+(1,1′′) G≶(1′′,1′)

+

∫
d1′′Σ≶(1,1′′) G−(1′′,1′)

Nonequilibrium in Nuclear Systems Danielewicz, Rios, Barker



Reaction Simulations KB Eqs To Application Tinkering w/Evolution Conclusions

Kadanoff-Baym Equations(
i
∂

∂t1
+
∇∇∇2

1
2m

)
G≶(1,1′) =

∫
d1′′Σ+(1,1′′) G≶(1′′,1′)

+

∫
d1′′Σ≶(1,1′′) G−(1′′,1′)

Variety of physics in different situations, for a variety of Σ

E.g. when Σmf >> Σ≶, as in a highly degenerate system, the
mean-field (TDHF) approximation applies with

−i G(1,1′) ≈
A∑

j=1

φj(1)φ∗j (1′)

If scale(1+1′) >> scale(1−1′) in Green’s functions, quasiparticle
approximation with evolution governed by Boltzmann equation
applies

−i G<(1,1′) ≈
∫

dppp f (ppp,1) ei ppp(xxx1−xxx1′ )−i ωppp(t1−t1′ )

Direct solution of KB??: 4+4=8D calculation! TDHF - 4D (× 1D)
Nonequilibrium in Nuclear Systems Danielewicz, Rios, Barker
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Equilibration in Uniform Matter
Boltzmann GF GF+ini corr 400 MeV/nucleon model of

early reaction dynamics
test of Boltzmann eq

G, Σ diagonal in ppp
8D→ 5D −1D = 4D (like TDHF)

Rate comparison

PD ’84 (Thesis)
Nonequilibrium in Nuclear Systems Danielewicz, Rios, Barker
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Towards Reaction Simulations: Collisions in 1D
Issues to consider for nonuniform matter:

matrix rather than wavefunction dynamics
preparation of initial state
abundance of mtx elements (50)8 = 4× 1013 !

START W/MF:(
i
∂

∂t1
+
∇∇∇2

1
2m
− Σmf

(
−iG<(1,1)

))
(−i)G<(1,1′) = 0

G<(x1 t1 x1′ t1′)
FFT↔ G<(p1 t1 p1′ t1′)

G<(t1+∆t , t1′) = e−i∆t(K +Σ) G<(t1, t1′)

=
(

e−i∆t Σ/2 e−i∆t K e−i∆t Σ/2 +O
(

(∆t)3
))

G<(t1, t1′)

So far, just altering mtx-element phase; full unitarity
Nonequilibrium in Nuclear Systems Danielewicz, Rios, Barker



Reaction Simulations KB Eqs To Application Tinkering w/Evolution Conclusions

Towards Reaction Simulations: Collisions in 1D
Issues to consider for nonuniform matter:

matrix rather than wavefunction dynamics
preparation of initial state
abundance of mtx elements (50)8 = 4× 1013 !

START W/MF:(
i
∂

∂t1
+
∇∇∇2

1
2m
− Σmf

(
−iG<(1,1)

))
(−i)G<(1,1′) = 0

G<(x1 t1 x1′ t1′)
FFT↔ G<(p1 t1 p1′ t1′)

G<(t1+∆t , t1′) = e−i∆t(K +Σ) G<(t1, t1′)

=
(

e−i∆t Σ/2 e−i∆t K e−i∆t Σ/2 +O
(

(∆t)3
))

G<(t1, t1′)

So far, just altering mtx-element phase; full unitarity
Nonequilibrium in Nuclear Systems Danielewicz, Rios, Barker



Reaction Simulations KB Eqs To Application Tinkering w/Evolution Conclusions

Initial State Through Adiabatic Evolution
Optimally, the same code for reaction dynamics and initial-state
preparation. Adiabatic switching, from harmonic oscillator to
self-consistent mean-field solution:

H(t) = HHO f (t) +Hmf(t) (1− f (t))

f →

{
1 , t → −∞
0 , t → +∞

E.g.

f (t) =
1

1 + exp t−t0
w

Nonequilibrium in Nuclear Systems Danielewicz, Rios, Barker
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Adiabatic Switching of Interaction

Width of density distribution Density

from HO to self-consistent solution
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Dependence on Transition Function

paradox: slower
change yields
inferior results
than smoother
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Collisions at Ecm/A = 0.1 MeV
Boost: G(x , x ′, t = 0)→ eipx G(x , x ′, t = 0) e−ipx ′

Without Coulomb force, fusion takes place at the low energy.
Density n(x , t) and real part of density matrix G<(x , x ′, t)

X

density n(x) = G<(x , x) (diagonal), G<(x , x ′) =
∑

α nα ϕα(x)ϕ∗α(x ′)
Nonequilibrium in Nuclear Systems Danielewicz, Rios, Barker
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Collisions at Ecm/A = 4 MeV
Break-up

Density n(x , t) and real part of density matrix G<(x , x ′, t)

X

density n(x) = G<(x , x) (diagonal), G<(x , x ′) =
∑

α nα ϕα(x)ϕ∗α(x ′)
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Collisions at Ecm/A = 25 MeV
Multifragmentation

Density n(x , t) and real part of density matrix G<(x , x ′, t)

X

Density is identical with the diagonal: n(x , t) = G<(x , x , t).

Nonequilibrium in Nuclear Systems Danielewicz, Rios, Barker
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Re & Im of G< at Ecm/A = 0.1 MeV

Re
symmetric

Im
antisymmetric
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Cuts of G<(x1, x2, t), across the Diagonal
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Origin of Far-Off Terms in G<(x , x ′, t)

G<(x , x ′, t) =
∑
α

nα ϕα(x , t)ϕ∗α(x ′, t)

Nonequilibrium in Nuclear Systems Danielewicz, Rios, Barker
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Suppressing the Off-Diagonal Elements
Following far off-diagonal elements of the density matrix
G<(x , x ′, t) or of generalized density matrix G<(x , t , x ′, t ′)
impossible in 3D. How important are those elements? They
account for a phase relation between separating fragments.

Evolution using imaginary superoperator suppressing large |x − x ′|

G<(x , x ′, t+∆t) ∼ e−i(ε(x)+iW (x ,x ′))∆t G<(x , x ′, t) e+i(ε(x)−iW (x ,x ′))∆t

Nonequilibrium in Nuclear Systems Danielewicz, Rios, Barker
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Evolution with Erased Elements at Ecm/A = 0.1 MeV
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Evolution with Erased Elements at Ecm/A = 0.1 MeV

Different cuts across the diagonal

Nonequilibrium in Nuclear Systems Danielewicz, Rios, Barker
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Evolution with Erased Elements at Ecm/A = 0.1 MeV
Energy and System Size for Different Suppressions
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Evolution with Erased Elements at Ecm/A = 25 MeV

Real Part of Density Matrix G(x , x ′, t)
for Different Suppressions at t = 80 fm/c

Nonequilibrium in Nuclear Systems Danielewicz, Rios, Barker
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Evolution with Erased Elements at Ecm/A = 25 MeV
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Evolution with Erased Elements at Ecm/A = 25 MeV

Different cuts across the diagonal
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Evolution with Erased Elements at Ecm/A = 25 MeV
Energy and System Size for Different Suppressions
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Wigner-Function Evolution
Wigner function: f (p, x) =

∫
dy e−ipy G<

(
x +

y
2
, x − y

2

)
quantum analog of phase-space occupation
in semiclassical limit satisfies Vlasov eq
alternate definition f (p, x) ≡ G<(p, x) =

∑
α nα ϕα(p)ϕ∗α(x)

Ecm/A = 25 MeV (multifragmentation)

XNonequilibrium in Nuclear Systems Danielewicz, Rios, Barker
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Cutting Elements↔ Averaging Momenta

Wigner function f (p, x) =

∫
dy e−ipy G<

(
x +

y
2
, x − y

2

)
Wigner f. from G< with far-off elements cut-off by e−y2/2σ2

:

f (p, x) =

∫
dy e−ipy e−y2/2σ2

G<
(

x +
y
2
, x − y

2

)
=

∫
dq e−(p−q)2 σ2/2

∫
dy e−iqy G<

(
x +

y
2
, x − y

2

)
≡
∫

dq e−(p−q)2 σ2/2 f (q, x)

Suppressing of far-off matrix elements in the density matrix G<

is equivalent to averaging out details in the Wigner function!

Nonequilibrium in Nuclear Systems Danielewicz, Rios, Barker
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Wigner-Function Comparison (Ecm/A = 25 MeV)
Top: Wigner f from G< with elements cut off (late stage)
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Bottom: Wigner function from Gaussian averaging
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Forward and Backward in Time!
Red: systems evolved forward in time, with elements at
|x − x ′| > 10 fm suppressed. After reaction completion, evolved
back to t = 0, still with the far-off elements suppressed.
Black: actual initial state
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Far off-diagonal elements are important for coming back to the
initial state! Without the elements, remote past reminds remote
future.
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Forward and Backward in Time!
System Size

Dotted: complete evolution,
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Solid: forward when only
|x − x ′| < 10 fm retained

Dashed: backward when
only |x − x ′| < 10 fm
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Conclusions
Low-energy approach to central nuclear reactions: TDHF
High energy: kinetic Both Deficient
Kadanoff-Baym equations attractive as generalizing either
of the existing approaches.
Findings so far: It should be possible to switch on the
self-consistent interactions adiabatically.
Even for the coherent mean-field evolution, forward in time,
only a limited range (. ~/pF ) of the Green’s function matrix
elements matters.
Discarding far-off spatial elements corresponds to an
averaging over a short scale in momenta.
The far-off elements important for temporal reversibility.

Currently: correlations in 1D. Next: mean-field in 3D
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