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Introduction Short-time Dynamics

Stong Correlation effects: from ideal gas to crystal

Increasing correlation strength leads to increased particle localization (repulsive
pair interaction).

Adequately reflected by pair distribution function.
Ideal system: g(r) ≡ 1.

Coupling parameter Γ = 〈U〉/〈K〉
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Introduction Short-time Dynamics

Wigner crystallization in few-electron systems

N Electrons in 2D quantum dot: (harmonic spherical confinement potential)

Density increase from left to right: orientational and radial melting

• First principle path integral Monte
Carlo simulations

A. Filinov, MB and Yu.E. Lozovik, Phys.
Rev. Lett. 86, 3851 (2001)

Fluctuations captured by angular pair
distribution function (right fig.)

• Extension to charged bosons:
superfluidity, mesoscopic supersolid

A. Filinov, J. Böning, MB, and Yu.E.

Lozovik, Phys. Rev. B 77, 214527 (2008)
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Introduction Short-time Dynamics

Photoionization processes in atoms. Correlation effects

I Example: Non-sequential double ionization of Helium

I double ionization increased by correlations. 1 electron theories (SAE) fail

I captured by time-dependent electron pair distribution function g(r12, t)

(1) one electron leaves binding po-
tential

(2) field direction changes, electron
accelerated towards the ion

double ionization

(3) “kicks off” second electron

1B. Walker et al., Phys. Rev. Lett. 73, 1227 (1994)
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Introduction Short-time Dynamics

Relevance of pair correlations

Two-particle correlations

I yield information about bound or scattering states:
atoms, molecules, excitons etc.

I yield the static (and dynamic) structure factor

I identify relevant process (e.g. reaction channels)

I are experimentally measurable (coincidence methods), examples:

- high energy collisions, fragmentation
- chemical reaction products
- “Reaction microscope” (COLTRIMS) electron-electron and

electron-ion correlations with fs resolution
- etc.
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Pair correlations NEGF problems

Equations of motion for Keldysh Green function G

I Martin-Schwinger Hierarchy on Keldysh contour

[i∂t + h(1)] G(1, 1′) = δc (1− 1′)± i

Z
C

d2 hint(1− 2) G(12, 1′2+)

& adjoint

I Formal decoupling of hierarchy introducing selfenergy Σ

± i

Z
C

d2 hint(1− 2) G(12, 1′2+) =

Z
C

d2Σ(1, 2) G(2, 1′)

beautiful results for single-particle Green’s function, spectral function etc.

I But: loose easy access to pair correlations, contained in G(12, 12+)
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Pair correlations NEGF problems

Evolution of two-time Green function
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Build up of level population (along diagonal) and
of correlated spectrum (across diagonal, calculation by Karsten Balzer).
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Pair correlations NEGF problems

How to obtain pair distributions from Keldysh Green function G

I Formal decoupling of hierarchy introducing selfenergy Σ

± i

Z
C

d2 hint(1− 2) G(12, 1′2+) =

Z
C

d2Σ(1, 2) G(2, 1′)

I two-time calculation yields G(1, 1′) for given approximation Σ[G ]

I Solution 1: Functional derivative

±G(12, 1′2+) =
δG(1, 1′)

δv(2)
− i〈n̂(2)〉G(1, 1′)

v : fictiteous single particle potential in Ĥ with v → 0 at the end,

or: real potential with scalar factor λ, v → λv : dG(λ)/dλ|λ=1

but: requires large (and dense) number of calculations for different v

I Solution 2: from known Σ[G ] reconstruct G(12, 1′2′)[G ]
dynamically (for each time step)
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Pair correlations 1-time approach

Nonequilibrium BBGKY hierarchy

Nonequilibrium Hierarchy of equations for reduced density operators (BBGKY)1

1-particle density operator F1(t) ∼ 〈a†a〉 ∼ G<(1, 1′)|t1=t′1=t

2-particle density operator F12(t) ∼ 〈a†a†aa〉 ∼ G<(1, 2; 1′, 2′)|t1=t2=t′1=t′2=t

i~
∂

∂t
F1 − [H1, F1] = nTr2[V12, F12], (1)

i~
∂

∂t
F12 − [H12, F12] = nTr3[V13 + V23, F123], (2)

i~
∂

∂t
F123 − [H123, F123] = nTr4[V14 + V24 + V34, F1234], ... (3)

equal time limit of Martin-Schwinger hierarchy,
obtained from difference: MS-hierarchy minus adjoint (→ commutators)

Transform second equation introducing pair correlation operator2:
F12 = F1(1)F1(2) + c12

1for details see M. Bonitz Quantum Kinetic Theory
2for notational simplicity omit exchange (Fock) term
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Pair correlations 1-time approach

Evolution of pair correlation operator

i~
∂

∂t
F1 − [H̄1, F1] = nTr2[V12, c12] (4)

i~
∂

∂t
c12 − [H̄12, c12] = [V12, F1F2] + (5)

nTr3
n

[V13, F1c23] + [V23, F2c13] + [V13 + V23, c123]
o

(6)

with mean field hamiltonians and Hartree potential UH :

H̄1 = H1 + UH
1 , UH

1 = nTr2 V12 F2. (7)

H̄12 = H̄1 + H̄2 + V12, (8)

I known many-body approximations can be identified3, e.g.
• TD Hartree-Fock: c12 ≡ 0
• 2nd Born approximation: c123 = 0 and neglect of ladder (V12 in H12) and
polarization diagrams [line (6)]

I numerical solution: coupled system for F1(t) and c12(t)
or: find analytical solution for c12(t) and insert into kinetic equation (4)4

3exists one to one correpondence to NEGF, including selfenergy
4avoided in NEGF by introducing selfenergy
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Pair correlations 1-time approach

Evolution of pair correlation operator in Born approximation

i~
∂

∂t
F1 − [H̄1, F1] = nTr2[V12, c12] (9)

i~
∂

∂t
c12 − [H̄1 + H̄1, c12] = [V12, F1F2] (10)

with initial conditions (arbitrary): F1(t0) = F 0
1 and c12(t0) = c0

Analytical solution for c12:

c12(t) = U0+
12 (tt0) c0 U0−

12 (t0t) + (11)

+
1

i~

Z ∞

t0

dt̄ U0+
12 (tt̄)

n
V̂12F1F2 − F1F2V̂

†
12

o
|t̄ U0−

12 (t̄t) (12)

Free5 propagator (retarded): U0+
12 (tt′) −→ Θ(t − t′) e−

i
~ [Ē0

1 +Ē0
2 ](t−t′)

Initial correlation contribution [(11), decays] and correlation build up term (12)

Kinetic equation (9) contains two collision integrals (r.h.s): standard collision
term involving (12) and additional integral with (11)6.

5can be renormalized and damped, corresponds to gR (1, 1′)gR (2, 2′)
6Bonitz, Kremp, Phys. Lett. 212, 83 (1996)
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Pair correlations 1-time approach

Evolution of pair correlation operator in Born approximation7

Figure: Imc12 for static e-e scattering in a homogeneous bulk semiconductor with c0
12 = 0.

f 0(p) is a Gaussian centered at k = 3a−1
B , n = 3.64× 1017cm−3. Initial momenta of the

particle pair are p1 = p2 = 3~/aB with p1 and p2 being parallel.

7from M. Bonitz, Quantum Kinetic Theory
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Initial correlations in the KB equations

I Martin Schwinger hierarchy defines initial value problem8 for
G(1, 1′), G(1, 2, 1′, 2′) . . . , need initial values at t1 = . . . t′2 = t0

I Early studies: Fujita, Hall, Craig, Tikhodeev, Danielewicz

I Special case of equilibrium initial correlations: solved by using deformed
Keldysh contour (imaginary branch)

I Extension to general case:

I (1, 1′) = ± i

Z
C

d2 V (1− 2) G(12, 1′2+) =

Z
C

d2Σ(1, 2) G(2, 1′)

valid for arbitrary t1, t′1 on C. In particular, for t1, t′1 → t0:

I (t0, t0) = ± i

Z
dr2 w(r1 − r2) G(12, 1′2+)|t0 = lim

t1,t′1→t0

Z
C

d2Σ(1, 2) G(2, 1′)

only time-local selfenergies (such as Hartree-Fock) survive the limit

⇒ structure of G(1, 2, 1′, 2′) requires existence of additional selfenergy ΣIN

8this is masked by the formal closure via the selfenergy
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Nonequilibrium initial correlations in the KB equations9

I (t0, t0) = ± i

Z
dr2 w(r1 − r2) G(12, 1′2+)|t0 = lim

t1,t′1→t0

Z
C

d2Σ(1, 2) G(2, 1′)

= ± i

Z
dr2 w(r1 − r2)

n
GHF (12, 1′2+) + C(12, 1′2′)

o
|t0

with 2-particle Hartree-Fock and correlation Green function (C):

GHF (12, 1′2′) = G(1, 1′)G(2, 2′)± G(1, 2′)G(2, 1′)

C(12, 1′2′)|t0 = c12(t0), 1-time pair correlation operator

• requires structure of selfenergy Σ(1, 1′) = ΣHF + Σcor + ΣIN

with ΣHF , ΣIN ∼ δC (t1 − t′1), Σcor does not contribute to I (t0, t0)

• Initial correlation selfenergy yields additional collision term:

I IN(t0, t0) = ± i

Z
dr2 w(r1 − r2) c12(t0) = lim

t1,t′1→t0

Z
C

d2ΣIN(1, 2) G(2, 1′)

• Explicit results for ΣIN in Born and T-matrix approximation available

9Semkat, Kremp, Bonitz, Phys. Rev. E 59, 1557 (1999), J. Math. Phys. 41, 7458 (2000)
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Initial correlations

Example: 2nd Born approximation

I spatially homogeneous system, momentum representation

I for t = t′ = t0 : gR/A = 1

I initial correlation c evolves in time with free two-particle propagators

I same results as in 1-time approach (p. 15), except for full propagators

I examples for nonequilibrium initial correlations:
- rapid quench (cooling)
- rapid change of interaction potential10

- rapid photoionization of atoms (switch of spin statistics)11

I unusual short-time relaxation possible: correlation induced cooling

10Gericke, Murillo, Semkat, Bonitz, Kremp, J. Phys. A: Math. Gen. 36, 6087 (2003)
11Gericke, Murillo, Bonitz, Semkat, J. Phys. A: Math. Gen. 36, 6095 (2003)
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Initial correlations

Effect of initial correlations on energy relaxation

Dense hydrogen plasma, T = 10, 000K , n = 1021cm−3, k = 0.6/aB

Solution of KB equations conserves total energy H(t) = T (t) + U(t) = H(0)

Initial state uncorrelated
(zero correlation energy U)

Correlations build up → increase of |U|
→ Increase of kinetic energy T .

1.5
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time t ≈ τcor ∼ ω−1
pl

Uncorrelated vs. over-correlated initial
state
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Preparing system in over-correlated
initial state leads to cooling.

Semkat, Kremp, Bonitz, Phys. Rev. E 59, 1557 (1999)
Bonitz/Semkat, Introduction to Computational Methods for Many Body Systems,

Rinton Press, Princeton 2006Michael Bonitz (CAU Kiel) Dynamics of pair correlations 20 / 34
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Initial correlations

Physically relevant initial correlations c0
12

Consistency: Only those c0
12 are relevant which can be produced by a dynamical

evolution12, e.g. by two-time solution from an earlier uncorrelated state at t−:

Example: Homogeneous system, collision terms in KBE at (t0, t0):

12Semkat, Bonitz, Kremp, Contrib. Plasma Phys. 43, 321 (2003)
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Semigroup property

If two-particle propagators possess semigroup property13

gR
12(t, t0) = gR

12(t, t1)g
R
12(t1, t0), t0 ≤ t1 ≤ t, (13)

the time evolution can be continued in simple fashion, see below.

Yet this may be possible only in special cases. Otherwise there exists a more
general semi-group property derived by Velicky et al., J. Phys. Conf. Ser. 35,
1-16 (2006) 14

13Semkat, Bonitz, Kremp, Contrib. Plasma Phys. 43, 321 (2003)
14we thank Pawel Danielewicz for pointing this out to us
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Initial correlations

Semigroup property: Efficient continuation of calculations

Advantage: (possibly substantial) reduction of 2-time simulation length,

Information from previous evolution (g , Σ) condensed in two lines OA, OC15

15or even only DO, OF , if finite memory depth τcor
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Propagation of initial (previous) correlations

Precomputed correlation c propgates for t, t′ ≥ t0 via additional collision integral
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Dynamics of pair correlations with NEGF

• Pair distribution hab of multi-component system:

hab(r1, r2, r1, r
′
2, t) = i2gab,<(1, 2, 1′, 2′)|t1=t2=t′1=t′2=t

• Follows from two-particle Green function gab on Keldysh contour
gab obeys Bethe-Salpeter equation16:

gab(12, 1′2′) = ga(1, 1′)gb(2, 2′)± δabg
a(1, 2′)gb(2, 1′) +

i

Z
C

d 1̄d 2̄d 1̃d 2̃ ga(1, 1̄)gb(2, 2̄)K ab(1̄2̄, 1̃2̃) gab(1̃2̃, 1′2′)

Formal closure of second equation of MS hierarchy with interaction kernel K ab

• Goal: compute hab from pre-computed single-particle Green function

• Problem: find K ab for a given selfenergy Σ

• below: use Σ in Hartree-Fock plus 2nd Born approximation

16e.g. Bornath, Kremp, Schlanges, Phys. Rev. E (1999)
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Two-particle kernel K ab in Born approximation

1. Screened ladder approximation: K ab(1̄2̄, 1̃2̃) → V ab(1̄2̄)δ(t̄1 − t̃1)δ(t̄2 − t̃2)

2. Neglect dynamical screening: V ab(1̄2̄) → V ab(r̄12)δ(t̄1 − t̄2),
where r12 = |r1 − r2|

gab(12, 1′2′) = ga(1, 1′)gb(2, 2′)± δabg
a(1, 2′)gb(2, 1′)

+i

Z
C

dt̄ ga(1, 1̄)gb(2, 2̄)V ab(r̄12) gab(1̄2̄, 1′2′), t̄1 = t̄2 = t̄

3. First iteration of integral equation (Born approximation):

gab(12, 1′2′) = ga(1, 1′)gb(2, 2′)± δabg
a(1, 2′)gb(2, 1′)

+ i

Z
C

dt̄ ga(1, 1̄)gb(2, 2̄)V ab(r̄12)

×
n

ga(1̄, 1′)gb(2̄, 2′)± δabg
a(1̄, 2′)gb(2̄, 1′)

o
,

with t̄1 = t̄2 = t̄.

4. need gab< with four equal time arguments to compute pair distribution
function. Note: gab has Keldysh matrix with 34 components!
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Dynamics of pair correlations in Born approximation

Single time two-particle Green function on Keldysh contour simpler:

gab(r1r2; r
′
1r
′
2; t) = gab,HF (r1r2; r

′
1r
′
2; t)

+ i

Z
C

dt̄ G ab
0 (r1r2; r̄1 r̄2, tt̄)Σ

ab
0 (̄r1 r̄2; r

′
1r
′
2; t̄t)

with defintion of ideal two-particle functions

G ab
0 (r1r2; r

′
1r
′
2; tt

′) = ga(r1t; r
′
1t
′)gb(r2t; r

′
2t
′)

Σab
0 (r1r2; r

′
1r
′
2; tt

′) = V ab(r12)
˘
G ab

0 (r1r2; r
′
1r
′
2; tt

′)± δabG
ab
0 (r1r2; r

′
2r
′
1; tt

′)
¯

Integral has same structure as collision integral in KBE

in case of equilibrium pair correlations: two contributions (beyond HF):

gab<
cor ∼ G ab,<

0 ◦ Σab,A
0 + G ab,R

0 ◦ Σab,<
0

gab<
IC ∼ G

ab,e
0 ? Σ

ab,d
0
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Result for pair correlations in Born approximation

1

i2
hab(r1r2; r

′
1r
′
2; t) =

n
gabHF + gab<

cor + gab<
IC

o
(r1r2; r

′
1r
′
2; t)

i2gabHF (r1r2; r
′
1r
′
2; t) = ρa(r1, t)ρ

b(r2, t)± δabρa(r1r2, t)ρ
b(r2r1, t)

gab<
cor (r1r2; r

′
1r
′
2; t) = i

tZ
0

dt̄

Z
d3 r̄1d

3 r̄2V
ab(r̄12)


ga,>(r1t; r̄1 t̄)g

b,>(r2t; r̄2 t̄)×

ˆ
ga,< (̄r1 t̄, r

′
1, t)g

b,< (̄r2 t̄, r
′
2; t)± δabg

a,< (̄r1 t̄, r
′
2, t)g

b,< (̄r2 t̄, r
′
1; t)

˜
− (>↔<)

ff
analogous result for gab<

IC
17, agrees with one-time theory (p. 15)

• Extract information on distance dependence:

Diagonal matrix elements: r1 = r′1, r2 = r′2
center of mass and relative coordinates: R = r1+r2

2
, r = r1 − r2

Result: local pair distribution hab(r, R; t)

17M. Bonitz, K. Balzer and L. Rosenthal, to be published
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Equilibrium pair correlations in e-h bilayers18

I Spatially separated electrons and
holes, (Ne = Nh), masses m∗

e(h)

I zero thickness layers with distance
d∗, harmonic in plane
confinement

I coupling strength given by
parameter λ

• Dimensionless Hamiltonian:

„
r → r

r0
, r0 =

q
~

m∗e Ω
, λ = r0

aB
∼
q

m∗e
Ω

«

Ĥe =

NeX
i=1

1

2

“
−∆i,e + r2i,e

”
+ λ

NeX
i<j=2

1p
(ri,e − rj,e)2

Ĥh =

NhX
i=1

1

2

 
−

m∗
e

m∗
h

∆i,h +
m∗

h

m∗
e

r2i,h

!
+ λ

NhX
i<j=2

1q
(ri,h − rj,h)2

Ĥe−h = −λ

NeX
i=1

NhX
j=1

1q
(ri,e − rj,h)2 + d∗2

18Lasse Rosenthal, Diploma thesis, Kiel University 2009
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One-particle densities for weak and strong coupling

x [r0]x [r0]

y [r0]y [r0]

ρ(r)ρ(r)

−3.0−3.0
−3.0−3.0

3.0

3.0

3.0

3.0

0.50.5

x [r0]x [r0]

y [r0]y [r0]

ρ(r)ρ(r)

−4.0
−4.0

−4.0
−4.0

4.0

4.0

4.0

4.0

0.80.8

Figure: One-particle density for Ne(h) = 12 electrons and holes for λ = 2.0 (left figure) and
λ = 15.0 (right figure)
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Equilibrium radial distribution functions

Calculation of the equilibrium pair correlation function in Hartree-Fock
approximation:

I local pair distribution function:

hab
HF (R, r) = ga

HF (r1, r1)g
b
HF (r2, r2)− δab ga

HF (r1, r2)g
b
HF (r2, r1)|r1=R+ r

2
,r2=R− r

2

I global pair distribution function:

hab
HF (r) =

Z
dR hab

HF (R, r)

I radial pair distribution function:

hab
HF (r)

coordinate−−−−−−−−→
transformation

hab
HF (r , ϕ)

hab
HF (r) =

Z
dϕ r hab

HF (r , ϕ)

Michael Bonitz (CAU Kiel) Dynamics of pair correlations 31 / 34



Dynamics of pair
correlations

Michael Bonitz

Introduction

Short-time
Dynamics

Pair correlations

NEGF problems

1-time approach

Initial correlations

Correlation dynamics

Equilibrium PDF

Conclusions

Equilibrium PDF

Results for radial pair distributions in e-h bilayers

λ

ρe(h)(r) heh(r)

hee(r)2.0 6.0 10.0 26.04.0

h
e
e
(r

)
h

e
h
(r

)

λ = 2.0

λ = 2.0

λ = 10.0

λ = 10.0

λ = 26.0

λ = 26.0

r [r0]
000

0.0

0.0

0.1

0.1

0.2

0.2

0.3

0.3

222 444 666 888

• global pair distribution
function for Ne(h) = 7
(upper figure)

• radial pair distribution
function for Ne(h) = 7
(left figure)

→ different regimes of
localisation
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Nonequilibrium pair correlations: computational aspects

1

i2
hab(r1r2; r

′
1r
′
2; t) =

n
gabHF + gab<

cor + gab<
IC

o
(r1r2; r

′
1r
′
2; t)

gab<
cor (r1r2; r

′
1r
′
2; t) = i

tZ
0

dt̄

Z
d3 r̄1d

3 r̄2V
ab(r̄12)

(
ga,>(r1t; r̄1 t̄)g

b,>(r2t; r̄2 t̄)×

ˆ
ga,< (̄r1 t̄, r

′
1, t)g

b,< (̄r2 t̄, r
′
2; t)± δabg

a,< (̄r1 t̄, r
′
2, t)g

b,< (̄r2 t̄, r
′
1; t)

˜
− (>↔<)

)

• Structure very similar to collision integral (obviously):

± i

Z
C

d2 V (1− 2) G(12, 1′2+) =

Z
C

d2Σ(1, 2) G(2, 1′)

⇒ advantageous to compute on the fly, with the collision integral

• besides spatial correlations also correlations of various orbitals of interest:
such as hab

kk,ll
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Conclusion & Outlook

1. Pair correlations are key quantities for many-particle effects

2. Simple access in single-time theory (density operators): initial correlation
term (decays) plus correlation build up

3. NEGF: nonequilibrium initial correlations give rise to additional selfenergy
and collision integral

4. If pair propgators possess semi-group property: efficient restart of
calculations possible, using nonequilibrium initial correlations

5. Explicit result for time-dependent pair correlations in Born approximation
derived. Can be straightforwardly computed on the fly

6. Equilibrium pair correlations: first numerical results presented for strongly
correlated electron-hole bilayer
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