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Introduction

Solution of the 2-time Kadanoff-Baym equations

Spatially homogeneous systems J
(*] nuclear matter, Danielewicz, Kohler, Bozek, Greiner etc.
@ correlated electron gas, Kwong, Bonitz
@ dense plasmas, Bonitz, Semkat, Kremp
@ electron-hole plasma/semiconductors
Schéfer, Binder, Kwong, Banyai, Gartner, Jahnke, Haug, Jauho p
1
Spatially inhomogeneous (localized) systems J
. 1
@ few/multi-electron atoms and small molecules
2
@ few-electron quantum dots
@ lattice models®

IN.E. Dahlen et al, PRL 98, 153004 (2007), A. Stan et al, EPL 76, 298 (2006)
2K. Balzer et al, PRB 79, 245306 (2009) and J. Phys. A 42, 214020 (2009)
3M. Puig von Friesen et al, PRL 103, 176404 (2009); P. Mydhinen et al, EPL 84, 67001 (2008)
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NEGF approach to inhomogeneous systems

Consider Ne~ Hamiltonian [in a.u.]:

Kadanoff-Baym equations, 1 = (z,t,0)

{iat - (—%vi + V(x,t)) } G(1,1") =6c(1 —1") + /ch Y[G,U)(1,2) G(2,1")

-+ adjoint equation t < t’

Spin-polarized /restricted ansatz E=L DT ...
(spin degeneracy € € {1,2}) E=2: 10 (1)) ... J

G(1,1') — G(at,2't') S[G, U](1,1') — Se[G, U(at, 2't)
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Numerical representation of G(zt, 2't")

treatment of times ¢, t’

@ times ¢, ' vary on full Keldysh contour C — 2D (complex) grid

treatment of coordinates z, x’

@ 2D grid: intuitive but inefficient (huge grid required)

@ basis expansion: works but problematic for spatially extended hamiltonians
(extremely large basis set required)

+ alternative

combine grid and basis methods
Jr
use quadrature rule based integrations

4

finite-element discrete variable representation® (FE-DVR)

lwith respect to the TDSE e.g. T.N. Rescigno, and C.W. McCurdy PRA 62, 032706 (2000), B.l. Schneider,
L.A. Collins, and S.X. Hu, PRE 73, 036708 (2006)
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Finite-element DVR

@ 2? ! 't ghet 7 i. partition [O,CE()] into ne FEs ¢
2
////,/ // T9 ¥
-7 /
- 2 ny = neng — 1
o w Ty Ty Ty T,
| ii. V FEs there exist points z},
FEi I FEi+1

Iy
— element I

i and weigths w¢, of the generalized
} bridge

Gauss-Lobatto quadrature

= construct a local DVR basis x%, ()

T —xy,

i 1
@ == 1 o=

Glat,a't) =33 xin(@) Xin (@) Gam (6, 1), 2,2’ € [0,0]

1K. Balzer, S. Bauch and M. Bonitz, Phys. Rev. A 81, 022510 (2010)
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KBE in FE-DVR representation®

KBEs transform into EoM for matrix Gﬁ,,ﬁ(t, t') Einstein notation!

{iat - (T:,zm + v;fm(t))} W) = ot — t)

+/dt§:5 |G UN(E, D) G2/ (E,E)
C

+ adjoint equation t < t’

FE-DVR matrix elements:

- computed by the generalized
Vi (t) o< 858y is diagonal P yiee J

Gauss-Lobatto quadrature rule

szm is block-diagonal

Self-energy Eﬁ,mm [G, U](t,t) involves matrix elements of U(|x — z'|)

Uliziois = / / da’ X8, () X2, () Uz — o)) X2, (2) X4, (o)

= 811120554 OmymaOmgmy Uit '3, (high degree of diagonality)

1K. Balzer, S. Bauch and M. Bonitz, Phys. Rev. A 81, 022510 (2010)
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Self-energy functionals

Self-energy in FE-DVR representation (£ € {1,2})

Eg _ (t,t/) _ 5c(t—t )EHF K74 ( )+ECorr Jii! (t,t/)

&,mm/ &,mm/’

Hartree-Fock (HF) contribution®: O(ny) ~O(n?) J

SR () { i€ 3 G (65 T8, — G (06) U}

i1my

Correlations in second Born (2ndB) approximation®:

IS (RO S {gGmm, (t,1) itz (8,1) — Gz, (1,8) G278, t’)} x

i1my igma

O(n%) X Gzél’ml (t,7 t) Uj?i?nz Uvaninl
= 0(n)

1K. Balzer, S. Bauch and M. Bonitz, Phys. Rev. A 81, 022510 (2010)
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Code parallelization

Why develop a parallel code?

Extensive runtime: r.h.s of KBE: collision integrals 1<, self-energies $.2

together with many/small time steps, huge memory requirements
v

Typical resources needed for 2-time solution
G(zt,2't') — G (t,t') € C
RAM (double precision): O(16n,%n;?) bytes

Example:

Two-time plane P(¢1,t2): 50 a.u. with resolution 6t = 0.01 a.u. = n, = 5000
Minimum FE-DVR basis: n, = 50

16 50250002 Bytes = 1 x 10*2 bytes = 1 tera byte

Memory requirements (>1 TB) are beyond typical

shared memory setups!
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Distributed memory concept

ts
, =3 (a) @ partition two-time plane P(t1,t2), Fig. (a), in blocks
which are associated with different MPI processes
T a< ® MPly,e = 2:
o Figs. (b) — (d) = chess board-like pattern
Z G> o MPIsize > 2:
g generalized " multi-color” chess board-like pattern
001 0 1 0 1 t
MP,o
to to
Miank = 3 (b)

0 1 2

=6

Maank - MPLe = 6
Maank * MPTgize

0 1 1 b o 1

1 0 1 0
MPTank

0 1 0 0 1 0
MPTank MPILnk
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Distributed memory concept

— drawback
. @ total NEGF G ., (t1,2) is kept in RAM twice
Hg G<
)
=
p G>
£
0 1 0 1 0 1 ty

MPT, 0k
to to

Mrank = 3 (b)

0 1 2

=6

Maank - MPLe = 6
Maank * MPTgize

0 1

0 1 0
MPTank
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memory concept

— drawback
. @ total NEGF G ., (t1,2) is kept in RAM twice
\I§ G<
=
=
H G~ @ minimum MPI (inter-process) communication
3
01 0 1 0 1 t
MPlLiank
ty ty
tank = 3 b
I ®)

Maank - MPLe = 6

0 1

0 1 0
MPTank

=6

Maank * MPTgize
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Distributed memory concept

collision integrals I involve
© @ self-energy X<
" < AL.a o >
E G @ nonequilibrium Green's function G<
L
E G Figs. (b) — (d): relevant contributions for different steps
= GZ(t) — GR(t + 6t)
01 0 1 0 1 t
MPILpne
ty 2]
tank = 3 b brank = 3 d
o T, ®) o T, @

=6

Myank * MPLg,e = 6
Maank © MPlgize

0 1 1 0 1
MPlank

0 1 0
MPTank
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Distributed memory concept

@ minimum MPI communication:
. . >
i. broadcast self-energies <

Mrank = 3 (a
0 1 2

©
L G< ii. sort newly-calculated NEGFs G< into the
ol "multi-color” chess board
=1
3 G~ @ MPI,e steps parallel:
§ steps for G< and G~ are bunched in a single
o 1 01 0 ] MPI process )
MPILank
ta to ta
Mrank = 3 b Myank = 3 c Myank = 3 d
0 1 2 ®) il () 1 2 @
R=] o
Il I
ol =
= =
% %
0 1 1 2t ty

0 1
MPTank
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MPI performance

ol 2 4 8 16 3 64 128 256 512 NEGF Gl (t1,t2) with n, = 23 FE-DVR
R Y A basis functions (1D helium model)
128 steps —+— B y
256 steps —x—
512 st ——
Am;iahlsg?%z + pro
98% ---
léf‘ﬁ @ 1-512 MPI processes:
= optimal speed-up behavior
& . .
2 @ more than 95% is parallelizable
Z 10t A y
B
i T 1
Amdahl's law: =4 = ——
& _ T, (-a)+a/p
1010 a>0.95
170
4,
1 ‘
1 10

\\
Number of processes p ZU RIR|Z|N|
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He, Hy and LiH—One-dimensional models

Ne~-Hamiltonian [in a.u.]

H=T+V+U

N 1, Ne 1
— V2 S
;{ Jr2:\/ +Cn}+;v(xi—$j)2+c

<. number of nuclei
n: atomic number of nucleus n
Zy: nuclei positions, determine molecular geometry
cn = ¢ =1V n: soft-core Coulomb potentials/interaction

2

Helium (He, 2¢7) N.=1 Z1=2 T = %10
Hydrogen (Hz, 2e7™) Ne=2 Zip=1 Z1,2 = 5(xo £ d)

Lithium hydride (LiH, 4e=) N.=2 Z1=3,Zy=1 Z12= %(azo +d)

d: interatomic distance
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le~-densities, energies and bond lengths!

E, . — HF He (2e7)

1 () (z) — zfgégé)'@Wﬂ Parameters:
er 1 zo = 50 a.u.
06l T np, = 153 FE-DVR basis functions

vaf . Ground state energy Egs [Ha]:

N | HF  —2.224210

2ndB  —2.233419 ~ 65% of corr. energy

0 exact  —2.238258

z [a.u]

K. Balzer, S. Bauch and M. Bonitz, Phys. Rev. A 81, 022510 (2010)
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le~-densities, energies and bond lengths!

= ‘
E — WF

1 (R (2) — QT’BSBE("(H )
------ SE (exac

Hz (2e7) and LiH (4e7)

@ self-consistent results obtained by
scanning the potential energy surface

06F e (PES)
04 4
Bond-length d}, [a.u.]:
r 1 HF 2ndB exact
S Hao 1.9925 2.0561 2.151

’ / ) LiH 3380 3.5053 3.6--

Binding energy Ei, [Ha]:
HF 2ndB exact
Ha —1.3531 —1.3740 —1.391
LiH —4.8534 —4.8886 —4.91-

K. Balzer, S. Bauch and M. Bonitz, Phys. Rev. A 81, 022510 (2010)
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le~-densities, energies and bond lengths!

. --- HF
F{win) (@) 2" Born
TDSE (exact)

Hz (2e7) and LiH (4e7)

@ self-consistent results obtained by
scanning the potential energy surface

(PES)

Bond-length d}, [a.u.]:
HF 2ndB exact
Hao 1.9925 2.0561 2.151
LiH 3.3860 3.5053 3.6--

Binding energy Ei, [Ha]:

HF 2ndB exact

Ha —1.3531 —1.3740 —1.391
LiH —4.8534 —4.8886 —4.91-

K. Balzer, S. Bauch and M. Bonitz, Phys. Rev. A 81, 022510 (2010)
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le~-densities, energies and bond lengths!

T T
HF

2" Born
------ TDSE (exact)

—4.4

|
=~
=Y

—4.7

binding energy B [a.u]

|
-
%

—4.9

interatomic distance d [a.u.]

K. Balzer, S. Bauch and M. Bonitz, Phys. Rev. A 81, 022510 (2010)
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Nonequilibrium behavior

Time-dependent Ne™-Hamiltonian [in a.u.]

N 1 N
:Z{_ V2+Z + Ep cos(wt)x }

Fo: electric field strength
w: laser frequency

intensity regimes—FE)y frequency regimes—w

Fo =0.01 — 3.51 x 10** W/cm? IR: w < 0.06 — >780 nm
Eo=0.1 — 3.51 x 10" W/cm? UV:w=0.1...1 — <400 nm
Eo =1.0 — 3.51 x 10'° W/cm? XUV: w=1...45 — >30 eV
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: time-dependent le -density

0.001

0.01

O O ommem  (2He) (t)  logarithmic

Rt
10

I —————————————
L ———
5
[]-

0 5 10 15 20 25 5 1
I ] I [au]

TDHF TD2ndB

@ (ar—mm): no laser field, atom prepared in HF singlet state

@ TDSE: initial wave fuction % (z,z’;0) from HF Slater determinant
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He: time-dependent 1e™-density

- S
=3

0.001

T ommem (e (2)  logarithmic
30

(b1r) /’

o)

0 5 10 15 20 25 0 5 10 15 20 I
I ] I [au] ¢ o]

TDHF TD2ndB TDSE

@ (br_m): response to a permanent UV laser field with Eo = 0.1
and w = 0.54, atom prepared in HF singlet state

@ TDSE: ¢(x,z’;0) from HF Slater determinant
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000e0

He: time-dependent 1e™-density

0.01
0.001
0.0001

T O e (2He)(t)  logarithmic

o)

¢ o]

TD2ndB TDSE

@ (cr—mmr): response to a permanent UV laser field with Ey = 0.1
and w = 0.54, atom prepared in self-consistent eigenstate

@ (cr): uncorrelated (HF) initial state (cir): 2ndB initial state,
(crrr): fully correlated initial state
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He: time-dependent 1e™-density

TDHF ----
TD2ndB —

(RHe) (x, t)—non-logarithmic, (£)(t)

n @ Qualitatively, TD2ndB gives good
1000 results!

900
800
700
600
500
400
300
200
100
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He: time-dependent 1e™-density

T
TDHF ---- - . Shmic (4
oo (RHe) (x, t)—non-logarithmic, (£)(t)
TDSE - L .
n @ Qualitatively, TD2ndB gives good
1000 results!
=N 7 900
=,
= F 1 800
Er 4 700
=
L - 600
0.5 F - 500
0.4 - o 400
0.3} - 300
0.2 k= 200
0.1 100
0 I I 0




Application to atomic model systems
ooooe

He: time-dependent 1e™-density

TDHF ----
Dol -logarithmic, (Z)(t)
TDSE L .

n @ Qualitatively, TD2ndB gives good

1000 results! )
EN: 1 900
=, » —r
—F 1 800 direct applications
=

= F q 700 @ perform extended calculations
St = 600 with ¢ 2 100 a.u. = compute
05k 4 500 dipole spectra from DFT of (&) (t)
0.4 - 400 @ study nonequilibrium behavior of
03| - 300 other systems, atoms or molecules
021 200 with > 2e™ )
0.1 100

0 I L 0
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He: time-dependent 1e™-density

n-logarithmic, (%) (¢)

ny @ Qualitatively, TD2ndB gives good

1000 results! )

900

700 @ perform extended calculations

600 with ¢ 2 100 a.u. = compute

500 dipole spectra from DFT of (&) (t)

400 @ study nonequilibrium behavior of

300 other systems, atoms or molecules
4] 200 with > 2e™ J

100
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2-time KBE for inhomogeneous systems
FE-DVR applied on G(1,1):

i. allows for an optimal and flexible combination of grid and basis
methods o .
ii. (semi-)analytic matrix for elements 7', V' and U become available

iii.  very simple structure of self-energies ¥(1,1’) obtained

MPI parallelization

| A\

Large cluster computation enabled:

i. 2-time propagation can performed parallel with many processes

ii. minimum MP| communication possible due to clever-distributed
memory

iii. adequate RAM becomes available for full 2-time propagation

FE-DVR method + MPI code

Opens up new NEGF perspectives!




Conclusions

Conclusions

2-time KBE for inhomogeneous systems
FE-DVR applied on G(1,1’):

e.g. wave-packet scattering

i. allows for an optimal and flexible ¢
methods

ii. (semi-)analytic matrix for elements

iii.  very simple structure of self-energi

MPI parallelization

Large cluster computation enabled:

i. 2-time propagation can performed

ii. minimum MPI| communication pos
memory

iii. adequate RAM becomes available

FE-DVR method + MPI code

Opens up new NEGF perspectives!




Conclusions

Conclusions

2-time KBE for inhomogeneous systems
FE-DVR applied on G(1,1’):

e.g. wave-packet scattering

i. allows for an optimal and flexible ¢
methods

ii. (semi-)analytic matrix for elements

iii.  very simple structure of self-energi

MPI parallelization

Large cluster computation enabled:

i. 2-time propagation can performed

ii. minimum MPI| communication pos
memory

iii. adequate RAM becomes available

FE-DVR method + MPI code

Opens up new NEGF perspectives!




Appendix

Outline

Q Appendix




	Introduction
	Computational concepts
	Grid-based ansatz for inhomogeneous systems
	Kadanoff-Baym equations in FE-DVR representation
	Code parallelization with MPI

	Application to atomic model systems
	Self-consistent ground states: He, H2 and LiH
	Response to UV fields: TDHF and TD2ndB vs. TDSE

	Conclusions
	Appendix
	Appendix


