Quantenmechanik

Michael Bonitz

Institut für Theoretische Physik und Astrophysik Christian-Albrechts-Universität zu Kiel

Vorlesungsskript (nicht zur Verbreitung) Kiel, September 2024^1

 $^{^1\}mathrm{Erste}$ Fassung: 2003. Erste La
TeX-Fassung erstellt von Hendrik Schrautzer, 2016. Copyright: M. Bonitz

Vorwort

Diese Aufzeichnungen basieren auf Vorlesungen zur Theoretischen Physik III "Quantenmechanik", die ich seit 2003 an der Sektion Physik der Uni Kiel als einsemestrige Veranstaltung gehalten habe. Grundlage sind Vorlesungen, die ich selbst gehört habe und viele Lehrbücher, aus denen ich mir häufig Inspirationen für gute Herleitungen und überzeugende Darstellungen geholt habe. Dennoch haben sich die Vorlesungen über die Jahre immer wieder geändert, da neue Anwendungen und insbesondere auch neue Ergebnisse meiner Arbeitsgruppe entstanden sind

Ich danke Hendrik Schrautzer für die Erstellung der ersten Latex-Fassung und meinen Arbeitsgruppen-Mitgliedern und vielen Studierenden für das Finden von Fehlern² und für nützliche Kommentare. Insbesondere danke ich Karsten Balzer, Sebastian Bauch, Fabio Caruso, Tobias Dornheim, Alexey Filinov, Simon Groth, David Hochstuhl, Carlotta Jöhnk, Jan-Philip Joost, Hanno Kählert, Christopher Makait, Mika Molder, Torben Ott, Miriam Scharnke, Niclas Schlünzen und Tim Schoof.

²Dieses Skript ist ein Arbeitsmaterial, das ständig in Veränderung begriffen ist. Es ist derzeit nicht zur Veröffentlichung gedacht und darf nicht – auch nicht in Teilen – ohne Zustimmung des Autors verbreitet werden.

Inhaltsverzeichnis

1	Ein	leitung	9				
	1.1	Quantenmechanik in der modernen Physik	9				
	1.2	Klassische Teilchen und Felder	13				
	1.3	Grenzen der klassischen Physik. Quanteneffekte	15				
		1.3.1 Quantennatur des EM Feldes	15				
		1.3.2 Quanteneigenschaften der Atome	24				
		1.3.3 Beugung freier Elektronen	26				
		1.3.4 Aufgaben	28				
2	Gru	ındlagen der Quantenmechanik	29				
	2.1	Doppelspaltexperiment mit klassischen Teilchen	29				
	2.2	Einschub: Wahrscheinlichkeits-Theorie	30				
	2.3	Doppelspaltexperiment mit Wellen	33				
	2.4	Doppelspaltexperiment mit Mikroteilchen	35				
	2.5	Die Schrödingergleichung	37				
	2.6	Zeitverhalten eines freien Quanten-Teilchens	43				
		2.6.1 Lösung im Fourier-Raum	44				
		2.6.2 Lösung für eine Gauss-Anfangsbedingung	45				
	2.7	Endliche räumliche Ausdehnung von Mikroteilchen	47				
		2.7.1 Wahrscheinlichkeitsamplitude und Unschärfe	47				
		2.7.2 Ursache der endlichen Ausdehnung von Mikroteilchen	50				
	2.8	1					
		2.8.1 A) Eindimensionaler Potentialkasten mit					
		unendlich hohen Wänden	54				
		2.8.2 B) Eindimensionaler Potentialkasten mit endlicher Tiefe	60				
		/	74				
		2.8.4 Fazit	77				
	2.9	Der harmonische Oszillator	79				
		2.9.1 Einführung	79				
		2.9.2 Lösung der stationären Schrödingergleichung.					
		Sommerfeld–Polynom-Methode	80				
		2.9.3 Hermite–Polynome	85				
		2.9.4 Eigenfunktionen des harmonischen Oszillators	85				
		2.9.5 Vergleich mit der klassischen Mechanik. Unschärfe	89				
		2.9.6 Erzeugungs- und Vernichtungsoperatoren	90				
		2.9.7 Kohärente Zustände	95				
3	Der	mathematische Apparat der Quantenmechanik	99				
	3.1	Zustandsvektoren im Hilbertraum	99				
	3.2	Observable und Operatoren im Hilbertraum	03				

	3.3	Mathematischer Einschub: Operatoren	
		im Hilbertraum	
	3.4	Zustandsmessung und vollständige Observable	. 109
	3.5	Der Quantenmechanische Messprozess	. 111
	3.6	Darstellungs- und Transformationstheorie	. 116
		3.6.1 Ortsdarstellung	. 116
		3.6.2 Impulsdarstellung	. 121
		3.6.3 Energiedarstellung	. 122
	3.7	Vertauschbarkeit von Operatoren. Messbarkeit.	
		Unschärfe	. 123
		3.7.1 Messbarkeit	. 123
		3.7.2 Unschärfe und allgemeine Unschärferelation	. 125
		3.7.3 Diskussion zur Messung in der Quantenmechanik. Kollaps der Wellen-	
		funktion und nichtinvasive Messung	. 129
4	Qua	intenmechanische Dynamik	131
	4.1	Dynamik der Zustände. Zeit-Entwicklungsoperator	. 131
	4.2	Dynamik der Operatoren. Schrödinger- und	
		Heisenberg-Bild	. 133
	4.3	Dynamik der Operatoren. Heisenberg-Gleichung	. 135
	4.4	Erhaltungsgrößen	. 135
5	The	orie des Drehimpulses. Wasserstoffatom	137
	5.1	Quantenmechanische Theorie des Drehimpulses	. 137
		5.1.1 Bahndrehimpulsoperator	. 137
		5.1.2 Eigenwert-Problem des allgemeinen Drehimpulsoperators	. 139
		5.1.3 Das Eigenwertproblem des Bahndrehimpulsoperators	
		der Quantenmechanik	. 145
	5.2	Bewegung im Zentralpotential	. 152
	5.3	Teilchen im Coulombpotential. H-Atom	
	5.4	Eigenschaften der Lösungen	. 160
	5.5	Messungen am Wasserstoff-Atom	. 169
	5.6	Wechselwirkung mit Strahlung. Auswahlregeln	. 172
6	-	n. Pauligleichung	175
	6.1	Magnetisches Moment und Drehimpuls	
	6.2	Stern-Gerlach-Experiment	
	6.3	Der Spin der Elementarteilchen	. 178
	6.4	Zustände mit Spin. Paulimatrizen	. 180
	6.5	Pauligleichung	. 185
		6.5.1 Pauligleichung in Orts-Spindarstellung (s beliebig)	. 187
		6.5.2 Pauligleichung in der Coulomb-Eichung.	
		Schwaches Magnetfeld	. 189
	6.6	Wasserstoff-Atom im Magnetfeld. Zeeman-Effekt	. 191
	6.7	Freies Teilchen mit Spin im Magnetfeld. Landau-Niveaus	
	6.8	Dynamik des Spins. Spinpräzession	
	6.9	Aharonov-Bohm-Effekt	
	6.10	Addition von Drehimpulsen in der Quantenmechanik	201

7	Näh	_	sverfahren der Quantenmechanik	203
	7.1		näre Störungstheorie in der allgemeinen	
			lierung	
	7.2	Störun	ngstheorie für nichtentartete Niveaus	205
	7.3	Störun	ngstheorie für entartete Energieniveaus	
		7.3.1	Allgemeine Formulierung der Theorie	211
		7.3.2	Wasserstoffatom im Elektrischen Feld. Stark-Effekt	214
	7.4	Nichts	tationäre Störungstheorie	216
		7.4.1	Allgemeine Formulierung des zeitabhängigen Problems.	
			Störungsansatz	216
		7.4.2	Beispiel: Kick-Potential	219
		7.4.3	Beispiel: Konstante Störung	221
		7.4.4	Beispiel: Periodische Störung	224
		7.4.5	Korrekturen beliebiger Ordnung zur Wellenfunktion	227
		7.4.6	Zeitabhängige Störungstheorie im	
			Dirac- (Wechselwirkungs-) Bild	231
	7.5	Variat	ionsverfahren	235
8	Cm	ndloge	en der Quantenstatistik	239
O				209
9	Inte		tion der Quantenmechanik	241
	9.1	Diskus	ssion zur Messung in der Quantenmechanik	242
		9.1.1	Ist das Messergebnis vom Beobachter abhängig?	242
		9.1.2	Die "Kopenhagener Interpretation". Der "Kollaps der Wellenfunktion"	
			beim Messvorgang	
		9.1.3	Der Messprozess als quantenmechanische Zeitentwicklung	244
		9.1.4	Mathematischer Einschub: Dichteoperator.	
			Reduzierte Dichtematrizen	245
		9.1.5	Verschränkung von Objekt und Apparatur.	
			Umgebungseinfluss. Dekohärenz	
	9.2	Nichtle	okale und nichtinvasive Messungen	
		9.2.1	Nichtinvasive (zerstörungsfreie) Messungen	
		9.2.2	Nichtlokale Messung. Abbildung ohne ein einziges Photon?	248
10	Qua	ntenm	nechanische Verschränkung	251
	10.1	Korrel	ationen und Verschränkung	252
		10.1.1	Klassische Korrelationen	252
		10.1.2	Quantenmechanische Korrelationen und Verschränkung	253
	10.2	Quant	eneffekte in makroskopischen Systemen	255
			um Computing	
11	Anh	ang: V	Vichtige Formeln	261
		_	uutatoren	
			ationsoperatoren	
			chaften von Exponentialoperatoren	
10	Läsi	լրջբո	der Übungsaufgaben	263
- 4		_	utatoren	
	14.1		$[\hat{r}_i,\hat{p}_k]$	
			$[\hat{L}_i,\hat{r}_k]$	
			$[\hat{L}_i,\hat{L}_k]$	
		14.1.0	$[\bot_i, \bot_k]$	404

12.2	Verschachtelte Kommutatoren
	12.2.1 Kommutator $[\hat{a}, [\hat{c}, \hat{b}]]$
	12.2.2 Vereinfachung von $[[\hat{a}, \hat{b}], [\hat{c}, \hat{d}]]$
12.3	Compton-Effekt
12.4	Zeitentwicklung eines Lorentz-Wellenpaketes
12.5	Energiebilanz und Energiestromdichte
12.6	Harmonischer Oszillator

Kapitel 1

Einleitung

1.1 Quantenmechanik in der modernen Physik

Gegenstand der Quantenmechanik sind in erster Linie Objekte und Prozesse des Mikrokosmos, insbesondere Atome, chemische Verbindungen, Elementarteilchen usf.

- Quantenmechanische Systeme sind qualitativ verschieden von den makroskopischen System des Alltags wie zum Beispiel Körper, die in der klassischen Mechanik beschrieben werden. Allerdings ist diese Grenze fließend.
- Das theoretische Modell und die Methoden der klassischen Mechanik und der klassischen Elektrodynamik versagen bei der Beschreibung des Mikrokosmos. Dies zeigt sich insbesondere bei der Beschreibung der Atome, aber auch beim Phänomen der Beugung von Elektronen oder der Wechselwirkung von Licht mit Materie.
- In der Gesellschaft gibt es massive Verständnisprobleme und eine Mystifizierung der Quantenphänomene. Dies betrifft vor allem den Dualismus von Welle und Teilchen, die Heisenberg-Unschärfe, die spekulative Ausdehnung der Quantenmechanik auf die Makrowelt oder auf spirituelle Phänomene (Teleportation etc.).

In der **modernen Physik** bildet die Quantenmechanik eine entscheidende Grundlage. Sie stellt heute eine fundamental hervorragend begründete, strenge Theorie dar, analog zur klassischen Mechanik oder der Elektrodynamik. Die Quantenmechanik enthält darüber hinaus die klassischen Mechanik als **Grenzfall**. Es gibt also einen klar definierten Übergang zwischen beiden Gebieten, und alle Objekte der Natur besitzen Quanteneigenschaften, die ggf. nur schwach ausgeprägt sind.

Hier stellt sich nun die Frage, was wir als **Quanteneigenschaften** bezeichnen. Die folgende Auflistung gibt ein paar qualitative Beispiele (strenge Definitionen folgen später):

- Es existieren keine Punktteilchen, alles hat eine endliche räumliche Ausdehnung,
- Teilchen haben Wellencharakter.
- Tunnelprozesse (Durchdringung/Umgehung von Hindernissen),
- Energie-Quantisierung,
- Spin (es existiert kein klassisches Analogon) und weitere ähnliche Eigenschaften in der Elementarteilchenphysik (Isospin etc.)
- Quantenmechanischer Austausch [Kapitel IX]. Man betrachte als Beispiel den Streuprozess zweier Teilchen, die über das Potential V(r) miteinander wechselwirken, s. Abb. 1.1. Die Teilchen (Ladung e_1 und e_2) seien zu Beginn in den Zuständen mit dem Impuls \mathbf{p}_1

bzw. \mathbf{p}_2 und nach der Streuung in den Zuständen mit dem Impuls \mathbf{p}_1' bzw. \mathbf{p}_2' . Dabei ist es nicht möglich zu bestimmen, welcher Endzustand zu welchem Teilchen gehört (beide Prozesse treten auf). Die Teilchen sind ununterscheidbar, d.h. sie verlieren ihre "Identität"¹.

- Existenz von Antiteilchen (Antimaterie) [Kapitel VIII],
- statistische (Wahrscheinlichkeits-) Interpretation des Aufenthaltsortes eines Teilchens.

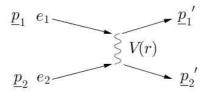


Abbildung 1.1: Wechselwirkung zweier Teilchen mit den Ladungen e_1 und e_2 über ein Potential V(r). Selbst bei fixierten Ausgangsimpulsen \mathbf{p}_1 bzw. \mathbf{p}_2 und Streuwinkel θ zwischen \mathbf{p}'_1 und \mathbf{p}_1 kann sich im Endzustand \mathbf{p}'_1 sowohl Teilchen 1 als auch Teilchen 2 (Austauschprozess) befinden.

Nun stellt sich die Frage, unter welchen Bedingungen Quanteneigenschaften relevant sind. Dafür gibt es drei wesentliche Fälle. Ein einzelnes freies Teilchen vor einem Hindernis, ein Teilchen im Feld eines zweiten, sowie der Fall mehrerer identischer Teilchen.

1. Betrachtet man ein einzelnes Teilchen, welches sich einem Doppelspalt mit der Spaltbreite d nähert, so sind Quanteneigenschaften zur Beschreibung genau dann wichtig, wenn die "Wellenlänge" λ_e (oder allgemeiner: die räumliche Ausdehnung) des Teilchens in der Größenordnung der Spaltbreite ist (dies ist analog zu elektromagnetischer Strahlung).

$$\lambda_e \gtrsim d$$

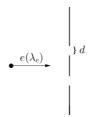


Abbildung 1.2: Längenskalen für ein Teilchen am Doppelspalt

2. Betrachten wir nun 2 Teilchen, die über ein attraktives Potential mit einander wechselwirken (Beispiel Proton, p, und Elektrons, e) und einen kleinen Abstand $|\underline{r}_{p,e}| = r$ besitzen (das Proton befinde sich im Ursprung). Das Wechselwirkungspotential der beiden Teilchen ist gegeben durch das Coulomb-Potential:

$$V_{p,e}(r) = -\frac{1}{4\pi\epsilon_0} \frac{e_0^2}{r}$$

¹Auch in klassischen Vielteilchensystemen können wir identische Teilchen betrachten. Dennoch wäre ihre Identität in Endzustand festgelegt durch den Streuwinkel (Winkel θ zwischen \mathbf{p}'_1 und \mathbf{p}_1). Im Quantenfall gibt es auch bei fixiertem θ zwei Streuresultate.

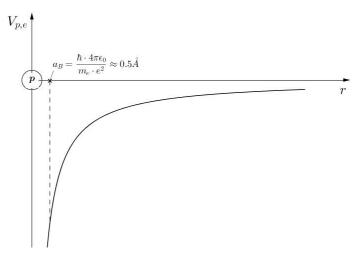


Abbildung 1.3: klassisches Coulomb-Potential eines Protons (im Ursprung)

Dieses Potential ist divergent für $|r| \to 0$, d.h., wenn das Elektron sich dem Proton nähert, würde seine potentielle Energie gegen $-\infty$ gehen. Da ein physikalisches System, das sich selbst überlassen wird, immer dem Zustand minimaler Energie zustrebt, wäre dies nicht aufzuhalten. Dies entspricht einem Kollaps des Systems, der aber in der Natur nicht beobachtet wird. Wie wir in Kürze sehen werden, behebt die Quantenmechanik diesen Defekt dadurch, dass das Elektron eine endliche räumliche Ausdehnung erhält, wodurch keine Divergenz mehr auftritt. Hierdurch erhält das Potential bei r=0 einen festen Wert V_0 . Der Abstand, ab dem dies relevant wird, ist etwa der Bohr'sche Radius a_B .

$$a_B \gtrsim |r|$$

Die Quantemechanik liefert mit der Wellenfunktion $\psi(\underline{r})$ eine ortsabhängige (abstandsabhängige) Ladungsdichte ρ_0 für das Elektron.

$$\rho_0(r) = e_0 \cdot |\psi(\underline{r})|^2$$

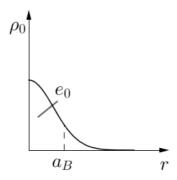


Abbildung 1.4: Räumliche Verteilung des Elektrons (schematisch) und seiner Ladung (Wahrscheinlichkeitsdichte) in der Umgebung des Atomkerns. Die Wechselwirkungsenergie der zugehörigen Ladungsdichte mit dem Kern ist endlich, was den Kollaps verhindert. Man beachte, dass die radiale Wahrscheinlichkeitsdichte in 3 Dimensionen noch mit r^2 zu multiplizieren ist (sie besitzt daher ein Maximum bei $r = a_B$), s. Kapitel 5.

3. Betrachten wir nun N Teilchen. Solange der mittlere Abstand d zwischen den Teilchen groß genug gegen die endliche Ausdehnung λ der Teilchen ist, ist das System klassisch beschreibbar. Die endliche Ausdehnung kommt dann überhaupt nicht zur Geltung.

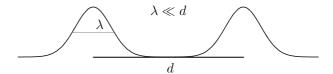


Abbildung 1.5: Räumliche Verteilung $\rho(r)$ zweier Quantenteilchen bei großem Abstand (schematisch).

Ist die Ausdehnung der Teilchen jedoch in der Größenordnung des Abstandes, werden Quanteneffekte wichig und man muss quantenmechanisch rechnen.

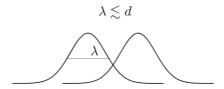


Abbildung 1.6: Räumliche Verteilung $\rho(r)$ zweier Quantenteilchen bei einem Abstand d, der kleiner ist als ihre Ausdehnung λ (schematisch).

Wir finden nun die Grenze zwischen beiden Fällen. Betrachten wir dazu die Anzahldichte n, wobei wir das Volumen, das ein Teilchen im Mittel einnimmt, würfelförmig (Kantenlänge d) abschätzen (wir bezeichnen das Volumen pro Teilchen mit ϑ),

$$n = \frac{N}{V} = \frac{1}{\vartheta} \approx \frac{1}{d^3} \,.$$

Stellt man obige Gleichung um, so erhält man den sogenannten quantenmechanischen Entartungsparameter:

$$\chi = n\lambda^3 \sim \left(\frac{\lambda}{d}\right)^3. \tag{1.1}$$

In einem Gas geringer Dichte ist d groß und χ klein. Betrachtet man z.B. die Elektronen in einem Metall, so ist der mittlere Abstand d typischerweise von der Ordnung der Gitterkonstanten, die Ausdehnung der Elektronen aber deutlich größer, also $\chi > 1$. Betrachten wir schließlich Elektronen im Zentrum von Zwergsternen, so ist dort die Dichte von der Größenordnung

$$n \propto (10^{30}...10^{35})cm^{-3}$$

also mehr als sieben Größenordnungen höher als im Metall. Hier ist somit $\chi \gg 1$. Bei diesen Dichten liegt die Materie in der Regel vollständig ionisiert vor, also in Form von Elektronen und Kernen (typischer Weise Kohlenstoff und Sauerstoff). Obwohl bei diesen Dichten der Abstand zwischen Elektronen und Kernen extrem klein ist und entsprechend die potentielle Energie sehr stark negativ (s. oben), tritt kein Kollaps auf. Die Ursache ist, dass die kinetische Energie der Elektronen bei der Kompression noch schneller wächst als der Betrag der potentiellen Energie, $|V| \sim n^{1/3}$. Da Elektronen Fermi-Teilchen sind, die dem Pauliprinzip unterliegen, ist ihre kinetische Energie gegeben durch die Fermi-Energie (bei T=0)²,

$$E_F \propto n^{\frac{2}{3}}$$
.

²Details dazu werden in der Vorlesung Theorie IV Thermodynamik und Statistische Physik diskutiert.