
3.2. N -PARTICLE WAVE FUNCTIONS 101

where the argument of the orbitals denotes the number (index) of the particle
that occupies this orbital. As we have just seen, for fermions, all orbitals have
to be different. Now, the anti-symmetrization of this state can be performed
immediately, by applying the operator Λ−

1...N given by Eq. (3.14). For two
particles, we obtain

|Ψj1,j2〉− =
1√
2!

{|φj1(1)〉|φj2(2)〉 − |φj1(2)〉|φj2(1)〉} =

= |0, 0, . . . , 1, . . . , 1, . . . 〉. (3.19)

In the last line, we used the occupation number representation, which has eve-
rywhere zeroes (unoccupied orbitals) except for the two orbitals with numbers
j1 and j2. Obviously, the combination of orbitals in the first line can be writ-
ten as a determinant which allows for a compact notation of the general wave
function of N fermions as a Slater determinant,

|Ψj1,j2,...jN 〉− =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

|φj1(1)〉 |φj1(2)〉 ... |φj1(N)〉
|φj2(1)〉 |φj2(2)〉 ... |φj2(N)〉
... ... ... ...
... ... ... ...

∣

∣

∣

∣

∣

∣

∣

∣

=

= |0, 0, . . . , 1, . . . , 1, . . . , 1, . . . , 1, . . . 〉. (3.20)

In the last line, the 1’s are at the positions of the occupied orbitals. This
becomes obvious if the system is in the ground state, then the N energetically
lowest orbitals are occupied, j1 = 1, j2 = 2, . . . jN = N , and the state has
the simple notation |1, 1, . . . 1, 0, 0 . . . 〉 with N subsequent 1’s. Obviously, the
anti-symmetric wave function is normalized to unity.

As discussed in Sec. 3.2.1, the (anti-)symmetric states form an orthonormal
basis in Fock space. For fermions, the restriction of the occupation numbers
leads to a slight modification of the completeness relation which we, therefore,
repeat:

〈{n}|{n′}〉 = δn1,n′

1
δn2,n′

2
. . . ,

1
∑

n1=0

1
∑

n2=0

. . . |{n}〉〈{n}| = 1. (3.21)

3.2.4 Non-interacting many-boson wave function

The case of bosons is analyzed analogously. Considering again the two-particle
case

|Ψj1,j2〉+ =
1√
2!

{|φj1(1)〉|φj2(2)〉+ |φj1(2)〉|φj2(1)〉} =

= |0, 0, . . . , 1, . . . , 1, . . . 〉, (3.22)
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the main difference to the fermions is the plus sign. Thus, this wave function
is not represented by a determinant, but this combination of products with
positive sign is called a permanent.

The plus sign in the wave function (3.22) has the immediate consequence
that the situation j1 = j2 now leads to a physical state, i.e., for bosons, there
is no restriction on the occupation numbers of individual orbitals, except for
their normalization

∞
∑

p=1

np = N, np = 0, 1, 2, . . . N, ∀p. (3.23)

Thus, the two single-particle orbitals |φj1〉 and |φj2〉 occuring in Eq. (3.22) can
accomodate an arbitrary number of bosons. If, for example, the two particles
are both in the state |φj〉, the symmetric wave function becomes

|Ψj,j〉+ = |0, 0, . . . , 2, . . . 〉 =

= C(nj)
1√
2!

{

|φj(1)〉|φj(2)〉+ |φj(2)〉|φj(1)〉
}

, (3.24)

where the coefficient C(nj) is introduced to assure the normalization condition
+〈Ψj,j|Ψj,j〉+ = 1. Since the two terms in (3.24) are identical the normalization
gives 1 = 4|C(nj)|2/2, i.e. we obtain C(nj = 2) = 1/

√
2. Repeating this

analysis for a state with an arbitrary occupation number nj, there will be nj!
identical terms, and we obtain the general result C(nj) = 1/

√
nj. Finally, if

there are several states with occupation numbers n1, n2, . . . with
∑∞

p=1 np = N ,

the normalization constant becomes C(n1, n2, ...) = (n1!n2! . . . )
−1/2. Thus, for

the case of bosons action of the symmetrization operator Λ+
1...N , Eq. (3.14), on

the state |Ψj1,j2,...jN 〉 will not yield a normalized state. A normalized symmetric
state is obtained by the following prescription,

|Ψj1,j2,...jN 〉+ =
1√

n1!n2!...
Λ+

1...N |Ψj1,j2,...jN 〉 (3.25)

Λ+
1...N =

1√
N !

∑

PǫSN

P̂ . (3.26)

Hence the total prefactor of the symmetric state (the permanent) is
(N !n1!n2!...)

−1/2.
An example of the wave function of N bosons is

|Ψj1,j2,...jN 〉+ = |n1n2 . . . nk, 0, 0, . . . 〉,
k

∑

p=1

np = N, (3.27)
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where np 6= 0, for all p ≤ k, whereas all orbitals with the number p > k are
empty. In particular, the energetically lowest state of N non-interacting bosons
(ground state) is the state where all particles occupy the lowest orbital |φ1〉,
i.e. |Ψj1,j2,...jN 〉+GS = |N0 . . . 0〉. This effect of a macroscopic population which
is possible only for particles with Bose statistics is called Bose-Einstein con-
densation. Note, however, that in the case of interaction between the particles,
a permanent constructed from the free single-particle orbitals will not be an
eigenstate of the system. In that case, in a Bose condensate a finite fraction of
particles will occupy excited orbitals (“condensate depletion”). The construc-
tion of the N-particle state for interacting bosons and fermions is subject of
the next section.

3.2.5 Interacting bosons and fermions

So far we have assumed that there is no interaction between the particles, and
the total hamiltonian is a sum of single-particle hamiltonians. In contrast, in
the case of interactions,

Ĥ =
N
∑

i=1

ĥi + Ĥint, (3.28)

and the N -particle wave function will (prior to anti-symmetrization), in ge-
neral, deviate from a product of single-particle orbitals. Moreover, there is no
reason why interacting particles should occupy the single-particle orbitals |φp〉
of a non-interacting system.

The solution to this problem is based on the fact that the (anti-)symmetric
states, |Ψ{j}〉± = |{n}〉, form a complete orthonormal set in the N -particle Hil-
bert space, cf. Eq. (3.16). This means, any symmetric or antisymmetric state
can be represented as a superposition of N -particle permanents or determi-
nants, respectively,

|Ψ{j}〉± =
∑

{n}, N=const

C±
{n}|{n}〉 (3.29)

where the orbitals correspond to the non-interacting problem. The effect of
the interaction between the particles on the ground state wave function is to
“add” contributions from determinants (permanents) involving higher lying
orbitals to the ideal wave function, i.e. the interacting ground state includes
contributions from (non-interacting) excited states. For weak interaction, we
may expect that energetically low-lying orbitals will give the dominant contri-
bution to the wave function. For example, for two fermions, the dominating
states in the expansion (3.29) will be |1, 1, 0, . . . 〉, |1, 0, 1, . . . 〉, |1, 0, 0, 1 . . . 〉,
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is then a Slater determinant of these N plane waves. In occupation num-
ber representation this wave function has ni = 1, for all ki ≤ kF , and
zeroes, for all ki > kF .

2. At finite temperature, some particles are excited into states above the
Fermi energy. This means, the occupation of states around the Fermi edge
fluctuates and the mean value is a real number between 0 and 1. This
N-particle state cannot be represented by a single Slater determinant of
orbitals that are fully occupied (np = 1) but, instead, it is represented
by a weighted average of the ground state and excited states where the
weight is given by the Boltzmann factor, Pk = e−Ek/kBT , where Ek =
∑∞

i=1 ǫin
(k)
i is the total energy of all particles in the given determinant

“k”.

3. Finally, in the case of an interacting electron gas, even at T = 0, a
single determinant is again not sufficient because interactions lead to
excitations of particles into orbitals above the Fermi energy. This again
gives rise to fractional occupations of the orbitals which corresponds to
a superposition of Slater determinants, cf. Eq. (3.29).

This behavior is illustrated in Fig. 3.2. The ideal ground state is shown by
the dashed step function whereas the case of finite temperature is depicted by
the full line which is nothing but the Fermi distribution that decays exponen-
tially, for large k. The correlated distributions are shown by the orange and
blue dashed lines corresponding to weak and moderate Coulomb interaction,
respectively. Note that correlation effects lead to a qualitative change of the
large k-asymptotic: it is no longer exponential but proportional to k−8. The
present results are quasi-exact and do not involve any approximation. They
are obtained from Configuration Path Integral Monte Carlo (CPIMC) simu-
lations [SBF+11, HSD+21]. Note the exceptional accuracy of the data which
span ten orders of magnitude in the occupation numbers n(k). For an over-
view on the properties of the interacting electron gas at finite temperature, see
Ref. [DGB18].

Configuration Interaction. The approach of computing the N -particle
state via a superposition of permanents or determinants can be extended
beyond the ground state properties. Indeed, extensions to thermodynamic equi-
librium (mixed ensemble where the superpositions carry weights proportional
to Boltzmann factors, e.g. [SBF+11]) and also nonequilibrium versions of CI
(time-dependent CI, TDCI) that use pure states are meanwhile well establis-
hed. In the latter, the coefficients become time-dependent, C±

{n}(t), whereas the
orbitals remain fixed. We will consider the extension of the occupation number
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formalism to the thermodynamic properties of interacting bosons and fermions
in Chapter 4. Further, nonequilibrium many-particle systems will be conside-
red in Chapters 6 and 8 where we will develop alternative approaches based on
reduced density operators and nonequilibrium Green functions, respectively.

The main problem of CI-type methods is the exponential scaling with the
system size which we illustrate for a simple example. Consider a system of
N↑ = N↓ = N/2 electrons and a single-particle basis of 2Nb orbitals. Then the
total number of determinants NFCI corresponds to the total number of ways
N↑ electrons can be placed on Nb orbitals, times the same number for the N↓

electrons:

NFCI =

(

Nb

N↑

)(

Nb

N↓

)

=

[

Nb!

(N↑)!(Nb −N↑)!

]2

(3.30)

For the example of a moderate electron number N = 10 and a basis dimension
M = 100 we obtain NFCI ∼ (1005/120)2 ∼ 1016. This “exponential wall” dra-
matically limits the range of exact quantum mechanical simulations of many-
particle systems. This estimate was just for a ground state calculation. For
finite temperature the number of required orbitals Nb needed to cover the
excitations in the system increases with temperature. In similar manner, in
nonequilibrium situations where particles are excited to high energy orbitals
Nb may again increase significantly.

Multiconfiguration and restricted active space approaches. To mit-
igate the exponential efficiency loss of full CI, in recent years a large variety
of approximate methods has been developed. Here we mention multiconfigu-
ration (MC) approaches such as MC Hartree or MC Hartree-Fock which exist
also in time-dependent variants (MCTDH and MCTDHF), e.g. [MMC90] and
are now frequently applied to interacting Bose and Fermi systems. In this me-
thod not only the coefficients C±(t) are optimized but also the orbitals are
adapted in a time-dependent fashion. The main advantage is the reduction of
the basis size, as compared to CI. A recent time-dependent application to the
photoionization of helium can be found in Ref. [HB11]. Another very general
approach consists in subdividing the N -particle state in various classes with
different properties. This has been termed “Generalized Active Space” (or re-
stricted active space) approach and is very promising due to its generality
[HB12, HB13]. An overview on first results is given in Ref. [HHB14]. Similar
approaches have been developed in many other groups, including L. Madsen
and co-workers, e.g. [BSM14a] and T. Sato and co-workers [SI13]. An example
of application of these methods is presented in Fig. 3.5.
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Abbildung 3.5: Angle-resolved photoionization yield (norm of electron wave
function outside rc = 20aB) of beryllium (N = 4) for a IR-pump-XUV-
probe field and delay δ. 20 cycles XUV-pulse: 200 eV, 1012Wcm−2; single-
cycle IR-pulse, 780 nm, 1011Wcm−2. Comparison of different approximations
that take into account a different number of participating orbitals. (2s): TD-
CIS; (ns,mp): CISD with double excitations up to orbitals ns and mp. From
Ref. [HB12].
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3.3 Second quantization for bosons

We have seen in Chapter 1 for the example of the harmonic oscillator that an
elegant approach to quantum many-particle systems is given by the method
of second quantization. Using properly defined creation and annihilation ope-
rators, the hamiltonian of various N -particle systems was diagonalized. The
examples studied in Chapter 1 did not explicitly include an interaction con-
tribution to the hamiltonian – a simplification which will now be dropped.
We will now consider the full hamiltonian (3.28) and transform it into second
quantization representation. While this hamiltonian will, in general, not be
diagonal, nevertheless the use of creation and annihilation operators yields a
quite efficient approach to the many-particle problem.

3.3.1 Creation and annihilation operators for bosons

We now introduce the creation operator â†i acting on states from the symmetric
Fock space F+, cf. Sec. 3.2.2. It has the property to increase the occupation
number ni of single-particle orbital |φi〉 by one. In analogy to the harmonic
oscillator, Sec. 2.3 we use the following definition

â†i |n1n2 . . . ni . . . 〉 =
√
ni + 1 |n1n2 . . . ni + 1 . . . 〉 (3.31)

While in case of coupled harmonic oscillators this operator created an additio-
nal excitation in oscillator “i”, now its action leads to a state with an additional
particle in orbital “i”. The associated annihilation operator âi of orbital |φi〉 is
now constructed as the hermitean adjoint (we use this as its definition) of â†i ,
i.e. [â†i ]

† = âi, and its action can be deduced from the definition (3.31),

âi|n1n2 . . . ni . . . 〉 =
∑

{n′}

|{n′}〉〈{n′}|âi|n1n2 . . . ni . . . 〉

=
∑

{n′}

|{n′}〉〈n1n2 . . . ni . . . |â†i |n′
1 . . . n

′
i . . . 〉∗ =

=
∑

{n′}

√

n′
i + 1 δi{n},{n′}δni,n′

i+1|{n′}〉 =

=
√
ni |n1n2 . . . ni − 1 . . . 〉, (3.32)

yielding the same explicit definition that is familiar from the harmonic os-
cillator8: the adjoint of â†i is indeed an annihilation operator reducing the
occupation of orbital |φi〉 by one. In the third line of Eq. (3.32) we introduced

8See our results for coupled harmonic oscillators in section 2.3.2.
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the modified Kronecker symbol in which the occupation number of orbital i is
missing,

δi{n},{n′} = δn1,n′

1
. . . δni−1,n′

i−1
δni+1,n′

i+1
. . . . (3.33)

δik{n},{n′} = δn1,n′

1
. . . δni−1,n′

i−1
δni+1,n′

i+1
. . . .δnk−1,n

′

k−1
δnk+1,n

′

k+1
. . . . (3.34)

In the second line, this definition is extended to two missing orbitals.
We now need to verify the proper bosonic commutation relations, which

are given by the
Theorem: The creation and annihilation operators defined by Eqs. (3.31, 3.32)
obey the relations

[âi, âk] = [â†i , â
†
k] = 0, ∀i, k, (3.35)

[

âi, â
†
k

]

= δi,k. (3.36)

Proof of relation (3.36):
Consider first the case i 6= k and evaluate the commutator acting on an arbi-
trary state

[

âi, â
†
k

]

|{n}〉 = âi
√
nk + 1| . . . ni, . . . nk + 1 . . . 〉

− â†k
√
ni| . . . ni − 1, . . . nk . . . 〉 = 0

Consider now the case i = k: Then
[

âk, â
†
k

]

|{n}〉 = (nk + 1)|{n}〉 − nk|{n}〉 = |{n}〉,
which proves the statement since no restrictions with respect to i and k were
made. Analogously one proves the relations (3.35), see problem 19.

Construction of the N-particle state

As for the harmonic oscillator or any quantized field, an arbitrary many-
particle state can be constructed from the vacuum state by repeatedly applying
the creation operator(s). For example, single and two-particle states with the
proper normalization are obtained via

|1〉 = â†|0〉,
|0, 0 . . . 1, 0, . . . 〉 = â†i |0〉,

|0, 0 . . . 2, 0, . . . 〉 =
1√
2!

(

â†i

)2

|0〉,

|0, 0 . . . 1, 0, . . . 1, 0, . . . 〉 = â†i â
†
j|0〉, i 6= j,

9From this property we may also conclude that the ladder operators of the harmonic
oscillator have bosonic nature, i.e. the elementary excitations of the oscillator (oscillation
quanta or phonons) are bosons.
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where, in the second (third) line, the 1 (2) stands on position i, whereas in
the last line the 1’s are at positions i and j. This is readily generalized to an
arbitrary symmetric N -particle state according to10.

|n1, n2, . . . 〉 =
1√

n1!n2! . . .

(

â†1

)n1
(

â†2

)n2

. . . |0〉 (3.37)

Particle number operators

The operator

n̂i = â†i âi (3.38)

is the occupation number operator for orbital i because, for ni ≥ 1,

â†i âi|{n}〉 = â†i
√
ni|n1 . . . ni − 1 . . . 〉 = ni|{n}〉,

whereas, for ni = 0, â†i âi|{n}〉 = 0. Thus, the symmetric state |{n}〉 is an
eigenstate of n̂i with the eigenvalue coinciding with the occupation number
ni of this state. In other words: all n̂i have common eigenfunctions with the
hamiltonian and commute with it, [n̂i, H] = 0.

The total particle number operator is defined as

N̂ =
∞
∑

i=1

n̂i =
∞
∑

i=1

â†i âi, (3.39)

because its action yields the total number of particles in the system: N̂ |{n}〉 =
∑∞

i=1 ni|{n}〉 = N |{n}〉. Thus, also N̂ commutes with the hamiltonian and has
the same eigenfunctions.

Single-particle operators

Consider now a general single-particle operator11 defined as

B̂1 =
N
∑

α=1

b̂α, (3.40)

where b̂α acts only on the variables associated with particle with number “α”.
We will now transform this operator into second quantization representation.

10The origin of the prefactors was discussed in Sec. 3.2.4 and is also analogous to the case
of the harmonic oscillator Sec. 2.3.

11Examples are the total momentum, total kinetic energy, angular momentum or potential
energy of the system.
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To this end we define the matrix element with respect to the single-particle
orbitals

bij = 〈i|b̂|j〉, (3.41)

and the generalized projection operator12

Π̂ij =
N
∑

α=1

|i〉α〈j|α, (3.42)

where |i〉α denotes the orbital i occupied by particle α.

Theorem: The second quantization representation of a single-particle opera-
tor is given by

B̂1 =
∞
∑

i,j=1

bij Π̂ij =
∞
∑

i,j=1

bij â
†
i âj (3.43)

Proof:
We first expand b̂, for an arbitrary particle α, into a basis of single-particle
orbitals, |i〉 = |φi〉,

b̂ =
∞
∑

i,j=1

|i〉〈i|b̂|j〉〈j| =
∞
∑

i,j=1

bij|i〉〈j|,

where we used the definition (3.41) of the matrix element. With this result we
can transform the total operator, Eq. (3.40), using the definition (3.42),

B̂1 =
N
∑

α=1

∞
∑

i,j=1

bij|i〉α〈j|α =
∞
∑

i,j=1

bijΠ̂ij, (3.44)

We now express Π̂ij in terms of creation and annihilation operators by ana-

lyzing its action on a symmetric state (3.25), taking into account that Π̂ij

commutes with the symmetrization operator Λ+
1...N , Eq. (3.26)

13,

Π̂ij|{n}〉 =
1√

n1!n2! . . .
Λ+

1...N

N
∑

α=1

|i〉α〈j|α · |j1〉|j2〉 . . . |jN〉. (3.45)

12For i = j this definition contains the standard projection operator on state |i〉, i.e. |i〉〈i|,
whereas for i 6= j this operator projects onto a transition, i.e. transfers an arbitrary particle
from state |j〉 to state |i〉.

13From the definition (3.42) it is obvious that Π̂ij is totally symmetric in all particle
indices.
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The product state is constructed from all orbitals that are occupied by the N
particles and, in general, includes the orbitals |i〉 and |j〉. In general, these or-
bitals will be present ni and nj times, respectively (there is no Pauli principle).
Let us consider two cases.
1) j 6= i: Since the single-particle orbitals form an orthonormal basis, 〈j|j〉 = 1,
multiplication with 〈j|α reduces the number of occurences of orbital |j〉 in the
product state by one, whereas multiplication with |i〉α increases the number of
orbitals |i〉 by one. The occurence of nj such orbitals (occupied by nj particles)
in the product state gives rise to an overall factor of nj because nj terms of
the sum will yield a non-vanishing contribution.

Finally, we compare this result to the properly symmetrized state which
follows from |{n}〉 by increasing ni by one and decreasing nj by one, which
will be denoted by

∣

∣{n}ij
〉

= |n1, n2 . . . ni + 1 . . . nj − 1 . . . 〉

=
1

√

n1! . . . (ni + 1)! . . . (nj − 1)! . . .
Λ+

1...N · |j1〉|j2〉 . . . |jN〉. (3.46)

It contains the same particle number N as the state |{n}〉 but, due to the diffe-
rent orbital occupations, the prefactor in front of Λ+

1...N differs by
√
nj/

√
ni + 1,

compared to the one in Eq. (3.45) which we, therefore, can rewrite as

Π̂ij|{n}〉 = nj

√
ni + 1
√
nj

∣

∣{n}ij
〉

= â†i âj|{n}〉. (3.47)

2), j = i: The same derivation now leads again to a number nj of factors,
whereas the square roots in Eq. (3.47) compensate each other, and we obtain

Π̂jj|{n}〉 = nj |{n}〉
= â†j âj|{n}〉. (3.48)

Thus, the results (3.47) and (3.48) can be combined to the operator identity

Π̂ij =
N
∑

α=1

|i〉α〈j|α = â†i âj (3.49)

which, together with the definition (3.46), proves the theorem14.

14See problem 2.
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For the special case that the orbitals are eigenfunctions of an operator,
b̂α|φi〉 = bi|φi〉—such as the single-particle hamiltonian, the corresponding
matrix is diagonal, bij = biδij, and the representation (3.43) simplifies to

B̂1 =
∞
∑

i=1

bi â
†
i âi =

∞
∑

i=1

bi n̂i, (3.50)

where bi are the eigenvalues of b̂. Equation (3.50) naturally generalizes the
familiar spectral representation of quantum mechanical operators to the case
of many-body systems with arbitrary variable particle number.

Two-particle operators

A two-particle operator is of the form

B̂2 =
1

2!

N
∑

α 6=β=1

b̂α,β, (3.51)

where b̂α,β acts only on particles α and β. An example is the operator of the pair

interaction, b̂α,β → w(|rα−rβ|). We introduce again matrix elements, now with
respect to two-particle states composed as products of single-particle orbitals,
which belong to the two-particle Hilbert space H2 = H1 ⊗H1,

bijkl = 〈ij|b̂|kl〉, (3.52)

Theorem: The second quantization representation of a two-particle operator
is given by

B̂2 =
1

2!

∞
∑

i,j,k,l=1

bijkl â
†
i â

†
j âlâk (3.53)

Proof:
We expand b̂ for an arbitrary pair α, β into a basis of two-particle orbitals
|ij〉 = |φi〉|φj〉,

b̂ =
∞
∑

i,j,k,l=1

|ij〉〈ij|b̂|kl〉〈kl| =
∞
∑

i,j,k,l=1

|ij〉〈kl| bijkl,

leading to the following result for the total two-particle operator,

B̂2 =
1

2!

∞
∑

i,j,k,l=1

bijkl

N
∑

α 6=β=1

|i〉α|j〉β〈k|α〈l|β. (3.54)
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The second sum is readily transformed, using the property (3.49) of the sigle-
particle states. We first extend the summation over the particles to include
α = β,

N
∑

α 6=β=1

|i〉α|j〉β〈k|α〈l|β =
N
∑

α=1

|i〉α〈k|α
N
∑

β=1

|j〉β〈l|β − δk,j

N
∑

α=1

|i〉α〈l|α

= â†i âkâ
†
j âl − δk,j â

†
i âl

= â†i

{

â†j âk + δk,j

}

âl − δk,j â
†
i âl

= â†i â
†
j âkâl.

In the third line we have used the commutation relation (3.36). After ex-
changing the order of the two annihilators (they commute) and inserting this
expression into Eq. (3.54), we obtain the final result (3.53)15.

General many-particle operators

The above results are directly extended to more general operators involving K
particles out of N

B̂K =
1

K!

N
∑

α1 6=α2 6=...αK=1

b̂α1,...αK
, (3.55)

and which have the second quantization representation

B̂K =
1

K!

∞
∑

j1...jkm1...mk=1

bj1...jkm1...mk
â†j1 . . . â

†
jk
âmk

. . . .âm1
(3.56)

where we used the general matrix elements with respect to k-particle product
states, bj1...jkm1...mk

= 〈j1 . . . jk|b̂|m1 . . .mk〉. Note again the inverse ordering of
the annihilation operators. Obviously, the result (3.56) includes the previous
examples of single and two-particle operators as special cases.

Comment: of course, our goal is to compute expectation values of ope-
rators that correctly incorporate the spin statistics of the particles. It may
look, therefore, counter-intuitive, that the second quantization representation
of B̂K , K ≥ 2 includes matrix elements with non-(anti-)symmetric K-particle

15Note that the order of the creation operators and of the annihilators, respectively, is
arbitrary. In Eq. (3.53) we have chosen an ascending order of the creators (same order as the
indices of the matrix element) and a descending order of the annihilators, since this leads
to an expression which is the same for Bose and Fermi statistics, cf. Sec. 3.4.1.
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states (product states). However, this is not a contradiction. The spin stati-
stics are taken care of by the creation and annihilation operates. The matrix
elements can be computed with any set of states, as long as they span the
relevant K-particle Hilbert space16.

3.4 Second quantization for fermions

We now turn to particles with half-integer spin, i.e. fermions, which are de-
scribed by anti-symmetric wave functions and obey the Pauli principle, cf.
Sec. 3.2.3.

3.4.1 Creation and annihilation operators for fermions

As for bosons we wish to introduce creation and annihilation operators that
should again allow for the construction of any many-body state out of the
vacuum state, according to [cf. Eq. (3.37)]

|n1, n2, . . . 〉 = Λ−
1...N |i1 . . . iN〉 =

(

â†1

)n1
(

â†2

)n2

. . . |0〉. ni = 0, 1, (3.57)

Due to the Pauli principle we expect that there will be no additional prefactors
resulting from multiple occupations of orbitals, as in the case of bosons17. So
far we do not know how these operators look like explicitly. Their definition
has to make sure that the N -particle states have the correct anti-symmetry
and that application of any creator (or annihilator) more than once will return
zero.

Example: N = 2. To solve this problem, consider two fermions which can
occupy the orbitals k or l. The two-particle state has the symmetry |kl〉 =
−|lk〉, upon particle exchange. The anti-symmetrized state is constructed of
the product state of particle 1 in state k and particle 2 in state l and has the
properties

Λ−
1...N |kl〉 = â†l â

†
k|0〉 = |11〉 = −Λ−

1...N |lk〉 = −â†kâ
†
l |0〉, (3.58)

i.e., it changes sign upon exchange of the particles (third equality). This indi-
cates that the state depends on the order in which the orbitals are filled, i.e.,
on the order of action of the two creation operators. One possible choice is

16This is the same approach as has been used in the construction of the N -particle wave
function of an interacting system in Sec. 3.2.5.

17The prefactors are always equal to unity because 1! = 1.
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used in the above equation and immediately implies that18

â†kâ
†
l + â†l â

†
k = [â†k, â

†
l ]+ = 0, ∀k, l, (3.59)

where we have introduced the anti-commutator19. In the special case, k = l,

we immediately obtain
(

â†k

)2

= 0, for an arbitrary state, in agreement with

the Pauli principle. Calculating the hermitean adjoint of Eq. (3.59) we obtain
that the anti-commutator of two annihilators vanishes as well,

[âk, âl]+ = 0, ∀k, l. (3.60)

We expect that this property holds for any two orbitals k, l and for any N -
particle state that involves these orbitals since our consideration did not de-
pend on a specific case.

Now we can introduce an explicit definition of the fermionic creation ope-
rator which has all these properties. The operator creating a fermion in orbital
k of a general many-body state is defined as20

â†k| . . . , nk, . . . 〉 = (1− nk)(−1)αk | . . . , nk + 1, . . . 〉, αk =
∑

l<k

nl (3.61)

where the prefactor explicitly enforces the Pauli principle, and the sign factor
takes into account the position of the orbital k in the many-fermion state and
the number of fermions standing “to the left” of the “newly created” particle,
cf. Fig. 3.6. In other words, with αk pair exchanges (anti-commutations) the
particle would move from the leftmost place to the position (e.g. according
to an ordering with respect to the orbital energies Ek) of orbital k in the N -
particle state. We now derive the annihilation operator by inserting a complete

18We can leave out the state |0〉 on which the operators act because our derivation can be
repeated for any state.

19This was introduced by P. Jordan and E. Wigner in 1927. Sometimes the anticommutator
is denoted with curly brackets, {Â, B̂}.

20There can be other conventions which differ from ours by the choice of the exponent αk

which, however, is irrelevant for physical observables.
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Abbildung 3.6: Illustration of the phase factor α in the fermionic creation and
annihilation operators. A fermion is added to orbital “p” (red arrow) and has
to be moved past three singly occupied orbitals (np = 1) with lower energy.
This requires αp = 3 pair exchanges, i.e. a sign change will occur. Particles
in orbitals with higher energy do not influence the sign. The single-particle
orbitals are assumed to be in a definite order (e.g. with respect to the energy
eigenvalues).

set of anti-symmetric states and using (3.61)

âk| . . . , nk, . . . 〉 =
∑

{n′}

|{n′}〉〈{n′}|âk| . . . , nk, . . . 〉 =

=
∑

{n′}

|{n′}〉〈{n}|â†k|{n′}〉∗

=
∑

{n′}

(1− n′
k)(−1)α

′

kδk{n′},{n}δnk,n
′

k
+1|{n′}〉

= (2− nk)(−1)αk | . . . , nk − 1, . . . 〉
≡ nk(−1)αk | . . . , nk − 1, . . . 〉

where, in the third line, we used definition (3.33). Also, α′
k = αk because the

sum involves only occupation numbers that are not altered. Note that the
factor 2 − nk = 1, for nk = 1. However, for nk = 0 the present result is not
correct, as it should return zero. To this end, in the last line we have added
the factor nk that takes care of this case. At the same time this factor does not
alter the result for nk = 1. Thus, the factor 2−nk can be skipped entirely, and
we obtain the expression for the fermionic annihilation operator of a particle
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in orbital k

âk| . . . , nk, . . . 〉 = nk(−1)αk | . . . , nk − 1, . . . 〉 (3.62)

Using the definitions (3.61) and (3.62) one readily proves the anti-commutation
relations given by the
Theorem: The creation and annihilation operators defined by Eqs. (3.61) and
(3.62) obey the relations

[âi, âk]+ = [â†i , â
†
k]+ = 0, ∀i, k, (3.63)

[

âi, â
†
k

]

+
= δi,k. (3.64)

Proof of relation (3.63):
Consider, the case of two annihilators and the action on an arbitrary anti-
symmetric state

[âi, âk]+|{n}〉 = (âiâk + âkâi) |{n}〉, (3.65)

and consider first case i = k. Inserting the definition (3.62), we obtain

(âk)
2 |{n}〉 ∼ nkâk|n1 . . . nk − 1 . . . 〉 = 0,

and thus the anti-commutator vanishes as well. Consider now the case21 i < k:

âiâk|{n}〉 = âink(−1)
∑

l<k nl |n1 . . . nk − 1 . . . 〉 =
= nink(−1)

∑
l<k nl(−1)

∑
l<i nl |n1 . . . ni − 1 . . . nk − 1 . . . 〉.

Now we compute the result of the action of the exchanged operator pair

âkâi|{n}〉 = âkni(−1)
∑

l<i nl |n1 . . . ni − 1 . . . 〉 =
= nink(−1)

∑
l<i nl(−1)

∑
l<k nl−1|n1 . . . ni − 1 . . . nk − 1 . . . 〉,

The only difference compared to the first result is in the additional −1 in the
second exponent. It arises because, upon action of âk after âi, the number
of particles to the left of k is already reduced by one. Thus, the two expressi-
ons differ just by a minus sign, which proves vanishing of the anti-commutator.

The proof of relation (3.64) proceeds analogously and is subject of Problem 3,
cf. Sec. 3.9.

Thus we have proved all anti-commutation relations for the fermionic ope-
rators and confirmed that the definitions (3.61) and (3.62) obey all properties
required for fermionic field operators. We can now proceed to use these ope-
rators to bring arbitrary quantum-mechanical operators into second quantized
form in terms of fermionic orbitals.

21This covers the general case of i 6= k, since i and k are arbitrary.
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Particle number operators

As in the case of bosons, the operator

n̂i = â†i âi (3.66)

is the occupation number operator for orbital i because, for ni = 0, 1,

â†i âi|{n}〉 = â†i (−1)αini|n1 . . . ni − 1 . . . 〉 = ni[1− (ni − 1)]|{n}〉,

where the prefactor equals ni, for ni = 1 and zero otherwise. Thus, the anti-
symmetric state |{n}〉 is an eigenstate of n̂i with the eigenvalue coinciding with
the occupation number ni of this state

22.
The total particle number operator is defined as

N̂ =
∞
∑

i=1

n̂i =
∞
∑

i=1

â†i âi, (3.67)

because its action yields the total particle number:
N̂ |{n}〉 = ∑∞

i=1 ni|{n}〉 = N |{n}〉.

Single-particle operators

Consider now again a single-particle operator

B̂1 =
N
∑

α=1

b̂α, (3.68)

and let us find its second quantization representation.
Theorem: The second quantization representation of a single-particle opera-
tor is given by

B̂1 =
∞
∑

i,j=1

bij â
†
i âj (3.69)

Proof:
As for bosons, cf. Eq. (3.44), we have

B̂1 =
N
∑

α=1

∞
∑

i,j=1

bij|i〉α〈j|α =
∞
∑

i,j=1

bijΠ̂ij, (3.70)

22This result, together with the anti-commutation relations for the operators a and a†

proves the consistency of the definitions (3.61) and (3.62).
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where Π̂ij was defined by (3.42), and it remains to show that Π̂ij = â†i âj, for

fermions as well. To this end we consider action of Π̂ij on an anti-symmetric

state, taking into accont that Π̂ij commutes with the anti-symmetrization ope-
rator Λ−

1...N , Eq. (3.14),

Π̂ij|{n}〉 =
1√
N !

N
∑

α=1

∑

πǫSN

sign(π)|i〉α〈j|α · |j1〉π(1)|j2〉π(2) . . . |jN〉π(N). (3.71)

If the product state does not contain the orbital |j〉 expression (3.71) vanishes,
due to the orthogonality of the orbitals. Otherwise, let jk = j. Then 〈j|jk〉 = 1,
and the orbital |jk〉 will be replaced by |i〉, unless the state |i〉 is already present,
then we again obtain zero due to the Pauli principle, i.e.

Π̂ij|{n}〉 ∼ (1− ni)nj

∣

∣{n}ij
〉

, (3.72)

where we used the notation (3.46). What remains is to figure out the sign
change due to the removal of a particle from the j-th orbital and creation of
one in the i-th orbital. To this end we first “move” the (empty) orbital |j〉 past
all orbitals to the left that are occupied by αj =

∑

p<j np particles, requiring
just αj pair permutations and sign changes. Next we move the “new” particle to
orbital “i” past αi =

∑

p<i np particles occupying the orbitals with an energy

lower then Ei leading to αi pair exchanges and sign changes23. Taking into
account the definitions (3.61) and (3.62) we obtain24

Π̂ij|{n}〉 = (−1)αi+αj(1− ni)nj

∣

∣{n}ij
〉

= â†i âj|{n}〉 (3.73)

which, together with the equation (3.70), proves the theorem. Thus, the second
quantization representation of single-particle operators is the same for bosons
and fermions.

Two-particle operators

As for bosons, we now derive the second quantization representation of a two-
particle operator B̂2.

23Note that, if i > j, the occupation numbers occuring in αi have changed by one compared
to those in αj .

24One readily verifies that this result applies also to the case j = i. Then the prefactor is
just [1− (nj − 1)]nj = nj , and αi = αj , resulting in a plus sign

Π̂jj |{n}〉 = nj |{n}〉 = â
†
j âj |{n}〉.
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Theorem: The second quantization representation of a two-particle operator
is given by

B̂2 =
1

2!

∞
∑

i,j,k,l=1

bijkl â
†
i â

†
j âlâk (3.74)

Proof:
As for bosons, we expand B̂ into a basis of two-particle orbitals |ij〉 = |φi〉|φj〉,

B̂2 =
1

2!

∞
∑

i,j,k,l=1

bijkl

N
∑

α 6=β=1

|i〉α|j〉β〈k|α〈l|β, (3.75)

and transform the second sum

N
∑

α 6=β=1

|i〉α|j〉β〈k|α〈l|β =
N
∑

α=1

|i〉α〈k|α
N
∑

β=1

|j〉β〈l|β − δk,j

N
∑

α=1

|i〉α〈l|α

= â†i âkâ
†
j âl − δk,j â

†
i âl

= â†i

{

−â†j âk + δk,j

}

âl − δk,j â
†
i âl

= −â†i â†j âkâl.

In the third line we have used the anti-commutation relation (3.64). After
exchanging the order of the two annihilators, which now leads to a sign change
and, inserting this expression into Eq. (3.75), we obtain the final result (3.74).

Comment: from the derivation it is clear that there exist a variety of
equivalent representations of two-particle operators that are obtained by in-
terchanging pairs of field operators. Here we note one that is obtained when
we retain the original alternating order of creation and annihilation operators.
Introducing the single-particle density operator n̂ij = â†i âj

B̂2 =
1

2!

∞
∑

i,j,k,l=1

bijkl {n̂ikn̂jl − δkjn̂il} . (3.76)

General many-particle operators

The above results are directly extended to a general K-particle operator, K ≤
N , which was defined in Eq. (3.55). Its second quantization representation is
found to be

B̂K =
1

K!

∞
∑

j1...jkm1...mk=1

bj1...jkm1...mk
â†j1 . . . â

†
jk
âmk

. . . .âm1
(3.77)
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where we used the general matrix elements with respect to k-particle product
states, bj1...jkm1...mk

= 〈j1 . . . jk|b̂|m1 . . .mk〉. Note again the inverse ordering
of the annihilation operators which exactly agrees with the expression for a
bosonic system. Obviously, the result (3.77) includes the previous examples of
single and two-particle operators as special cases.

3.5 Coordinate representation of second quan-

tization operators. Field operators

So far we have considered the creation and annihilation operators in an arbi-
trary basis of single-particle states. The coordinate and momentum represen-
tations are of particular importance and will be considered in the following.
As before, an advantage of the present second quantization approach is that
these considerations are entirely analogous for fermions and bosons and can be
performed at once for both, the only differences being the details of the com-
mutation (anticommutation) rules of the respective creation and annihilation
operators and the different orbital occupation numbers. Here we start with
the coordinate representation, whereas the momentum representation will be
introduced below, in Sec. 3.6.

3.5.1 Definition of field operators

We now introduce operators that create or annihilate a particle at a given
space point rather than in given orbital φi(r). To this end we consider the
superposition in terms of the functions φi(r) where the coefficients are the
creation and annihilation operators,

ψ̂(x) =
∞
∑

i=1

φi(x)âi, (3.78)

ψ̂†(x) =
∞
∑

i=1

φ∗
i (x)â

†
i . (3.79)

Here x = (r, σ), i.e. φi(x) is an eigenstate of the operator r̂, and the φi(x)
form a complete orthonormal set. Obviously, these operators have the desired
property to create (annihilate) a particle at space point r in spin state σ. From
the (anti-)symmetrization properties of the operators a and a† we immediately
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Abbildung 3.7: Illustration of the relation of the field operators to the second
quantization operators defined on a general basis {φi(x)}. The field operator
ψ̂†(x) creates a particle at space point x (in spin state |σ〉) to which all single-
particle orbitals φi contribute. The orbitals are vertically shifted for clarity.

obtain

[

ψ̂(x), ψ̂(x′)
]

∓
= 0, (3.80)

[

ψ̂†(x), ψ̂†(x′)
]

∓
= 0, (3.81)

[

ψ̂(x), ψ̂†(x′)
]

∓
= δ(x− x′). (3.82)

These relations are straightforwardly proven by direct insertion of the de-
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finitions (3.78) and (3.79). We demonstrate this for the last expression:

[

ψ̂(x), ψ̂†(x′)
]

∓
=

∞
∑

i,j=1

φi(x)φ
∗
j(x

′)
[

âi, â
†
j

]

∓
=

=
∞
∑

i=1

φi(x)φ
∗
i (x

′) = δ(x− x′) = δ(r− r′)δσ,σ′ ,

where, in the last line, we used the representation of the delta function in terms
of a complete set of functions.

3.5.2 Representation of operators

We now transform operators into second quantization representation using the
field operators, taking advantage of the identical expressions for bosons and
fermions.

Single-particle operators

The general second-quantization representation was given by [cf. Secs. 3.3, 3.4]

B̂1 =
∞
∑

i,j=1

〈i|b̂|j〉a†iaj. (3.83)

We now transform the matrix element to coordinate representation:

〈i|b̂|j〉 =
∫

dxdx′φ∗
i (x)〈x|b̂|x′〉φj(x

′), (3.84)

and obtain for the operator, taking into account the definitions (3.78) and
(3.79),

B̂1 =
∞
∑

i,j=1

∫

dxdx′ a†iφ
∗
i (x)〈x|b̂|x′〉φj(x

′)aj =

=

∫

dxdx′ ψ̂†(x)〈x|b̂|x′〉ψ̂(x′). (3.85)

Diagonal case. For the important case that the matrix is diagonal, 〈x|b̂|x′〉 =
b̂(x)δ(x− x′), the final expression simplifies to

B̂1 =

∫

dx ψ̂†(x)b̂(x)ψ̂(x) (3.86)
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Consider a few important examples.
Single-particle density operator. The first example is again the density
operator. In first quantization the operator of the particle density for N par-
ticles follows from quantizing the classical result for point particles,

n̂(x) =
N
∑

α=1

δ(x− xα), (3.87)

and the expectation value in a certain N -particle state Ψ(x1, x2, . . . xN) is
25

〈n̂〉Ψ(x) = 〈Ψ|
N
∑

α=1

δ(x− xα)|Ψ 〉

= N

∫

d2d3 . . . dN |Ψ(x1 = x, 2, . . . N)|2 = n(r, σ), (3.88)

which is the single-particle spin density of a (in general correlated) N -particle
system. The second quantization representation of the density operator follows
from our above result (3.86) by replacing b̂→ δ(x− x′), i.e.

n̂(x) =

∫

dx′ψ̂†(x′)δ(x− x′)ψ̂(x′) = ψ̂†(x)ψ̂(x), (3.89)

and the operator of the total density is the sum (integral) over all coordinate-
spin states

N̂ =

∫

dx n̂(x) =

∫

dx ψ̂†(x)ψ̂(x), (3.90)

naturally extending the previous results for a discrete basis to continuous
states.

Kinetic energy operator. The second example is the kinetic energy ope-
rator which is also diagonal and has the second-quantized representation

T̂ =

∫

dx ψ̂†(x)

(

− ~
2

2m
∇2

)

ψ̂(x). (3.91)

The integrand can be understood as (operator of the) kinetic energy density.
Single-particle potential operator. The third example is the second

quantization representation of the single-particle potential v(r) given by

V̂ =

∫

dx ψ̂†(x)v(r)ψ̂(x). (3.92)

25This is the example of an (anti-)symmetrized pure state which is easily extended to
mixed states.
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If the potential is spin-independent, the spin summation can be performed,
and we are left with a coordinate integration.

Note that each of these examples is given by an operator that is a function of
the coordinate operator, hence, it is given by a diagonal matrix in coordinate-
spin representation.

Two-particle operators

In similar manner we obtain the field operator representation of a general
two-particle operator

B̂2 =
1

2

∞
∑

i,j,k,l=1

〈ij|b̂|kl〉a†ia†jalak. (3.93)

We now transform the matrix element to coordinate representation:

〈ij|b̂|kl〉 =
∫

dx1dx2dx3dx4φ
∗
i (x1)φ

∗
j(x2)〈x1x2|b̂|x3x4〉φl(x4)φk(x3), (3.94)

and, assuming that the matrix is diagonal,
〈x1x2|b̂|x3x4〉 = b̂(x1, x2)δ(x1 − x3)δ(x2 − x4), we obtain, after inserting this
result into (3.93),

B̂diag
2 =

1

2

∞
∑

i,j,k,l=1

∫

dx1dx2 a
†
iφ

∗
i (x1)a

†
jφ

∗
j(x2)b̂(x1, x2)φl(x2)alφk(x1)ak.

Using again the definition of the field operators the final result for a diagonal
two-particle operator in coordinate representation is

B̂diag
2 =

1

2

∫

dx1dx2 ψ̂
†(x1)ψ̂

†(x2)b̂(x1, x2)ψ̂(x2)ψ̂(x1) (3.95)

Note again the inverse ordering of the destruction operators which makes this
result universally applicable to fermions and bosons. The most important ex-
ample of this representation is the operator of the two-particle interaction, Ŵ ,
which is obtained by replacing b̂(x1, x2) → w(x1 − x2).

With this, a generic N-particle hamiltonian comprised of kinetic, potential
and pair interaction energies becomes, in coordinate representation,

Ĥ =

∫

dx ψ̂†(x)

(

− ~
2

2m
∇2 + v(r)

)

ψ̂(x)

+
1

2

∫

dx1dx2 ψ̂
†(x1)ψ̂

†(x2)w(r1 − r2)ψ̂(x2)ψ̂(x1) , (3.96)


