
Kapitel 4

Bosons and fermions in
thermodynamic equilibrium

In this chapter we consider a quantum many-particle system in thermodynamic
equilibrium. In contrast to the quantum-mechanical description which is based
on a given many-particle state or wave function here the system is in general in
a mixed state, i.e. in an incoherent superposition of pure quantum states1. The
central quantity which describes such states is the density operator ρ which
we discuss in the next section.

4.1 Averages in a mixed state. Density opera-

tor

Let us rewrite the computation of an expectation value of operator Â in a pure
state |Ψ〉 of a N -particle system by introducing a projection operator onto this
state,

〈Â〉Ψ = 〈Ψ|Â|Ψ〉 = Tr P̂ΨÂ , (4.1)

P̂Ψ = |Ψ〉〈Ψ| (4.2)

Let us prove relation (4.1). To this end we switch to an arbitrary representation
of the state. As an example we take the coordinate representation in terms
of coordinate product states for all particles, |R〉 = |r1r2 . . . rN〉. The first
expression in Eq. (4.1) then becomes

〈Ψ|Â|Ψ〉 =
∫

dR1dR2Ψ
∗(R1)〈R1|Â|R2〉Ψ(R2) . (4.3)

1The case of a pure state is, of course, included as as special case.
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This has to be compared to the expression with the trace which is the sum
over the diagonal matrix elements,

Tr P̂ΨÂ =

∫

dR1〈R1|Ψ〉〈Ψ|Â|R1〉

=

∫

dR1dR2〈R1|Ψ〉〈Ψ|R2〉〈R2|Â|R1〉 (4.4)

≡ 〈Â〉Ψ ,

which coincides with expression (4.3).
Mixed state. This expression with the projection operator has the advan-

tage that it is straightforwardly generalized to mixed states. In the following
we will consider a complete orthonormal set |Ψi of eigenstates of the hamil-
tonian, i.e. solutions of the stationary Schrödinger equation Ĥ|Ψi〉 = Ei|Ψi〉
with E1 ≤ E2 ≤ E3 . . . and 〈Ψi|Ψk〉 = δik. Now, if our system is in contact
with a bath which gives rise to random exchange of energy (and particles) our
system will typically not remain in a single pure state but undergo random
excitations into other eigenstates. Averaging over a sufficiently long time will
lead to a finite positive real probability Wi that the state |Ψi〉 will be realized,
giving rising to a mixed state,

P̂Ψ → ρ̂ =
∑

i

WiP̂Ψ(i) =
∑

i

Wi|Ψ(i)〉〈Ψ(i)| (4.5)

0 ≤ Wi ≤ 1,
∑

i

Wi = 1 . (4.6)

In Eq. (4.5) we defined the density operator that was introduced by Landau
and von Neumann. The normalization of the density operator is given by

1 = Tr ρ̂ =

∫

dR〈R|ρ̂|R〉 =
∑

i

Wi

∫

dR |Ψ(i)(R)|2 . (4.7)

In the special case of thermodynamic equilibrium the probabilities are
known and depend on the thermodynamic ensemble.

Canonical density operator. For example, in the canonical ensemble,
where the system may exchange energy (but no particles) with the environ-
ment, the probabilities are given by the Boltzmann factor,

W c
i (N, V, T ) =

e−Ei/kBT

Zc(N, V, T )
(4.8)

Zc(N, V, T ) =
∑

i

e−Ei/kBT , (4.9)
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where Zc(N, V, T ) is the canonical partition function (sum of microstates)
from which all other thermodynamic functions can be computed via standard
relations. From these relations we can identify the canonical density operator
as (we define β = (kBT )

−1)

ρ̂c =
e−βĤ

Zc(N, V, T )
. (4.10)

This operator commutes with the hamiltonian, so the matrix of this operator
in the eigenstates of Ĥ is diagonal

ρcij = 〈Ψi|ρ̂c|Ψj〉 = e−βEi

Zc(N, V, T )
δi,j , (4.11)

and one readily verifies that this expression also follows from the general defi-
nition (4.5). In most cases, however, the eigenstates of the hamiltonian are not
known. Then the canonical density operator is not given by a diagonal matrix.
Using for example coordinate eigenstates as a basis in the N -particle Hilbert
space we obtain

ρc(R,R′) = 〈R|ρ̂c|R′〉 = 〈R|e−βĤ |R′〉
Zc(N, V, T )

. (4.12)

For the special case that e−βĤ = e−βĤ1e−βĤ2 and Ĥ1|R〉 = E1(R)|R〉, i.e. the
states are eigenstates of Ĥ1, it follows

ρc(R,R′) =
e−βE1(R)

Zc(N, V, T )
〈R|e−βĤ2 |R′〉 , (4.13)

and the difficult part of the problem has been reduced to computing the matrix
elements of the second (non-diagonal) hamiltonian Ĥ2.

Grand canonical density operator. For the second example we consider
the grand canonical ensemble, where the system may exchange energy and
particles with the environment. Then the probabilities of the microstate i at a
given particle number N is given by the modified Boltzmann factor,

W g
i,N(µ, V, T ) =

eβ(µN−ENi)

Zg(µ, V, T )
(4.14)

Zg(µ, V, T ) =
∞
∑

N=0

∑

i

eβ(µN−ENi) , (4.15)

where µ is the chemical potential, and Zg(µ, V, T ) is the grand canonical parti-
tion function (sum of microstates) from which all other thermodynamic func-
tions can be computed via standard relations. This form assumes again that
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the grand canonical density operator is diagonal which means it is represen-
ted with respect to the joint eigenstates of the hamiltonian and the particle
number operator, i.e. [Ĥ, N̂ ] = 0,

Ĥ|iN〉 = ENi|iN〉 , (4.16)

N̂ |iN〉 = N |iN〉 , (4.17)

The general operator form is a generalization of the canonical density operator
(4.10),

ρ̂g =
eβ(µN̂−Ĥ)

Zg(µ, V, T )
. (4.18)

We now ask ourselves how, in the present case, the definition of the density
operator in terms of a superposition of projection operators, cf. (4.5) can be
generalized to the grand ensemble. It is easy to verify the result,

ρ̂g =
∞
∑

N=0

∑

i

WNi |iN〉〈iN | , (4.19)

0 ≤ WNi ≤ 1 ,
∞
∑

N=0

∑

i

WNi = 1 , (4.20)

i.e., the density operator is the weighted sum of projections onto all eigenstates
of the hamiltonian for any given particle number N . As before, the density
operator is normalized, Tr ρ̂g = 1.

(Anti-)Symmetrization of the density operator. So far we have com-
pletely neglected the spin symmetry of the N -particle system. The definition
(4.5) involves projections onto eigenstates of the hamiltonian that are not
(anti-)symmetrized. Therefore, we need to perform the (anti-)symmetrization
a posteriori, as we discussed in Sec. 3.8.2:

ρ̂ → ρ̂± =
∑

i

Wi|Ψ(i)〉± ±〈Ψ(i)| = ρ̂ λ±

1...N . (4.21)

We demonstrate the procedure for the general definition (4.5) in the coordinate
representation,

ρ̂± → 〈R|ρ̂±|R′〉 =
∑

i

WiΨ
(i)(R)

∑

P

sign(P)Ψ(i) ∗(P[R′]) (4.22)

=
∑

i

WiΨ
(i)±(R)Ψ(i)±∗(R′) , (4.23)
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where the proper normalization, Eq. (4.7), has to be fulfilled again. This is
indeed obvious from the representation (4.23):

Tr ρ̂± =

∫

dR
∑

i

WiΨ
(i)±(R)Ψ(i)±∗(R)

=
∑

i

Wi

∫

dR |Ψ(i)±(R)|2 = 1 . (4.24)

Note that in our result (4.22) no pre-factor 1/N ! appears, in contrast to the
standard literature. This factor has no effect on the full density operators be-
cause it would also appear (or not) in the normalization, Z. However, all results
that are computed directly from the partition function would be affected.

will be completed

4.2 Path Integral Monte Carlo (PIMC)

As for a quantum many-particle system in the ground state, also in thermody-
namic equilibrium there exist only a few analytically solvable problems. These
include the ideal gas (Boltzmann, Fermi or Bose gas). If the interaction is weak
the problem can be solved by perturbation theory. Similarly, if the system is
perturbed by a weak field, one can apply linear response theory. Beyond that,
there exist a large number of many-body methods where special approxima-
tion are being derived that are adopted to specific physical situations. These
methods are similar to nonequilibrium systems which we will discuss in the
subsequent chapters. Instead, here we briefly summarize a different approach
that is very efficient in thermodynamic equilibrium: path integral Monte Carlo
(PIMC). It is based on an independent representation of quantum mechanics
in terms of path integrals that was introduced by R. Feynman [FH65a] and
further developed by many others, e.g. [Kle09].

For a general quantum many-particle problem the hamiltonian is the sum
of different terms such as kinetic, potential and interaction energy. Then the
density operator has a form similar to (4.13) where we assumed Ĥ = Ĥ1 + Ĥ2

where Ĥ1 is diagonal in a certain representation (basis of its eigenstates),

whereas Ĥ2 is not. In order to reduce the matrix elements of e−βĤ to the
manageable form (4.13), however, assumes that [Ĥ1, Ĥ2] = 0.

Case of non-commuting operators. The problem is that, in many cases,
Ĥ1 and Ĥ2 do not commute

e−β(Ĥ1+Ĥ2) = e−βĤ1e−βĤ2e−β2Ĉ , (4.25)
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where the error term is obtained from the Baker-Campbell-Hausdorff formula
as [DGB18]

Ĉ =
1

2
[Ĥ1, Ĥ2]− β

(

1

6
[Ĥ1, [Ĥ1, Ĥ2]]−

1

3
[[Ĥ1, Ĥ2], Ĥ2]

)

+ . . . . (4.26)

The interesting observation is that the commutator terms decrease with tem-
perature because quantum effects are diminished. To take advantage of this
property we exploit the (semi-)group property of the exponential function

e−βĤ =
P−1
∏

α=0

e−ǫĤ , (4.27)

where ǫ = β/P , and P is a positive integer number. We now use Eq. (4.27)
and simultaneously insert P − 1 unity operators of the form2

1̂ =

∫

dRα |Rα〉〈Rα| , (4.28)

into the partition function, where |R〉 are the eigenfunctions of Ĥ1 and form a
complete orthonormal set.

4.2.1 Path integral

With this we obtain for the canonical partition function

Zc =

∫

dX 〈R0|e−ǫĤ |R1〉〈R1| . . . |RP−1〉〈RP−1|e−ǫĤ |R0〉 . (4.29)

Note that Eq. (4.29) is still exact and the integration is carried out over P
sets of particle coordinates, dX = dR0 . . . dRP−1. Despite the increased di-
mensionality of the integral, this re-casting proves to be advantageous since
each of the matrix elements must now be evaluated at a P times higher tempe-
rature and, for sufficiently many factors, we can introduce a high-temperature
approximation, e.g., the primitive factorization3

e−ǫĤ ≈ e−ǫĤ1e−ǫĤ2 , (4.30)

2This is not necessarily a coordinate vector. It should be a complete set in N-particle
Hilbert space.

3Higher order factorizations have also been studied and allow to use a much lower number
of factors. An example is permutation blocking PIMC by Dornheim et al. For an overview
and additional references, see Ref. [DGFB15].
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which, according to the Trotter formula, becomes exact in the limit of P → ∞

e−β(Ĥ1+Ĥ2) = lim
P→∞

(

e−ǫĤ1e−ǫĤ2

)P

. (4.31)

An interesting interpretation of Eq. (4.28) is given in terms of imaginary time
path integrals. In particular, we note that the density operator is equivalent
to a propagation in imaginary time by τ = −iβ (henceforth, we shall adopt
the more conventional definition τ → τ/(−i) ∈ [0, β]). Therefore, Eq. (4.27)
corresponds to the introduction of P imaginary ‘’time slices” of length ǫ and,
a factorization like Eq. (4.30), to an “imaginary time propagator”. Inserting
Eq. (4.30) into (4.29) finally gives

Zc =

∫

dX
P−1
∏

α=0

(

e−ǫE1(Rα)ρ2(Rα,Rα+1; ǫ)
)

, (4.32)

where E1 is the eigenvalue of the diagonal part, Ĥ1, i.e. Ĥ1|R〉 = E1(R)|R〉,
whereas ρ2 is the density matrix connected with the off-diagonal hamiltonian
Ĥ2, i.e. ρ2(R,R′; ǫ) = 〈R|e−ǫĤ2 |R′〉.

Path integral in coordinate space. We now turn to the commonly
studied case of the coordinate representation, where the eigenvectors of Ĥ1

comprise the coordinates of all particles4, |R〉 = |r1r2 . . . rN〉. In that case, the
diagonal part of the hamiltonian is given by Ĥ1 → V̂ , the operator of the
potential energy where, for the eigenvalues, we have E1(R) → V (R), denoting
all potential energy terms. A typical factor (on “time slice” α) then has the
form

V (Rα) =
N
∑

i=1

Vext(rα,i) +
N
∑

k>i

W (|rα,i − rα,k|) , (4.33)

where W (r) is an arbitrary pair interaction, e.g., the Coulomb interaction,
whereas Vext(r) denotes an external potential.

The role of the second hamiltonian is now taken over by the kinetic energy
operator, T̂ = −

∑N
i=1 ~

2∇2
i /2m, and ρ2 → ρ0 becomes the ideal part of the

density matrix. The result is a Gaussian integral5,

ρ0(Rα,Rα+1, ǫ) =
1

λ3N
ǫ

N
∏

k=1

[

exp

(

− π

λ2
ǫ

(rα,k − rα+1,k)
2

)]

, (4.34)

4Note that this state is not (anti-)symmetrized. This can be a product of single-particle
coordinate vectors.

5See problems, Sec. 4.4
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with λǫ = h/
√
2πmkBP · T = ~

√

2πǫ/m being the thermal DeBroglie wave-
length corresponding to the P -fold increased temperature. In the limit P → ∞,
Eq. (4.34) becomes exact. An illustration of the path integral representation
of three quantum particles is shown in the left part of Fig. 4.1. Each par-
ticle is represented by P = 6 high-temperature factors, leading to a set of 6
coordinates. Since the partition function is given by a trace the first and final
coordinate of all particles coincide, so they are represented by closed loops (clo-
sed paths, “ring polymers”). Classical particles would correspond to straight
vertical lines. In the case of quantum particles, the deviation from the straight
line (variance of the coordinate fluctuations) is given by the thermal DeBroglie
wavelength λT .

An illustration of the particle paths in three dimensions is shown in Fig. 4.2.
It shows a snapshot of a real PIMC simulation for two cases: left, for a high
temperature where each particle is given by a small cloud of particles. In the
classical limit, all particles would shrink to a point (corresponding to a straight
line in the one-dimensional representation). The right part shows the same
system at a reduced temperature where the thermal DeBroglie wavelength
increases and, therefore, the extension of the individual particles is large giving
rise to significant particle overlap.

Path integral Monte Carlo (PIMC). The partition function Zc is now
given by a high-dimensional integral, Eq. (4.32) – the total dimension in case
of N particles and P high-temperature factors is Ndim = 3NP . In only very
few cases these integrals can be computed analytically. The success of the path
integral approach is largely due to the existence of highly efficient numerical
integration routines that use random numbers and stochastic sampling me-
thods (importance sampling, Metropolis algorithm).

4.2.2 (Anti-)Symmetrization of the partition function

So far the result for the partition function (4.32) involves a density operator
that does not take into account the spin statistics. We have discussed befo-
re how (anti-)symmetry can be restored on the level of the density operator.
One way is to perform an (anti-)symmetrization of the second argument of
the density matrix, cf. Eq. (4.23). Then the partition function will contain an
additional sum of N ! terms over all permutations of N particles. The previous
result corresponds to the “identity permuation” whereas an example of the
permutation of two particles is sketched in the right part of Fig. 4.1.


