
Kapitel 5

Dynamics of the creation and
annihilation operators

5.1 Introduction to many-particle dynamics.

Overview of methods

After considering the description of a many-particle system in a pure state in
Chapter 3 or in thermodynamic equilibrium, in Chapter 4, we now move on
to time-dependent phenomena. In fact, the nonequilibrium dynamics of inter-
acting many-body systems is presently among the most actively developing
fields of physics. This is driven by tremendous recent progress in experimen-
tal approaches to rapidly excite quantum systems, and to accurately diagnose
these dynamics with femtosecond and – in case of laser excitation – even sub-fs
time resolution. Examples include atomic physics (laser excitation and ioniza-
tion of atoms and molecules, dynamics of cold atoms in optical lattices and
traps), nuclear matter (dynamics following nuclear collisions), condensed mat-
ter systems (laser or free electron laser excitation of solids), or plasma physics
(including shock compression of matter and inertial confinement fusion).

All these developments pose a big challenge to theory and simulations.
Even though the governing equations are known for almost a century – the
time-dependent Schrödinger equation,

i~∂tΨ(r1, r2, . . . rN ; t) = Ĥ(t)Ψ(r1, r2, . . . rN ; t) , (5.1)

Ψ(r1, r2, . . . rN ; 0) = Ψ0(r1, r2, . . . rN) , (5.2)

and computer technology has progressed dramatically, a numerical solution
of Eq. (5.2) is limited to rather small systems. The reason is the exponential
scaling of the required computation time with the system size (basis dimensi-
on). There has been tremendous activity in the development of theoretical and
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Abbildung 5.1: Qualitative overview of different many-body methods: com-
parison of accuracy versus numerical effort (computing time). MCTDHF re-
presents wave function-based methods; TDDFT: time-dependent density func-
tional theory; Boltzmann: Markovian kinetic equations, NEGF: Nonequili-
brium Green functions; TD-2RDM: time-dependent reduced density matri-
ces [Bon98]; G1-G2: Hartree-Fock-GKBA based NEGF scheme derived in
Ref. [SJB20].

computational strategies to overcome this bottleneck. The approaches to the
quantum dynamics of correlated many-body systems are extremely diverse,
and can be sorted in the following way:

1. Wave function-based methods. These include1

(a) perturbative approaches (time-dependent perturbation theory), “cou-
pled cluster” theory, R-matrix methods, or multiconfiguration time-
dependent Hartree or Hartree-Fock methods, e.g. [MMC90, HB11];

(b) approaches that restrict the excitation processes (such as the “single-
active electron” approximation, CI-singles, or CI-singles/doubles
etc.);

1The list is incomplete. There exist many more names for similar concepts in different
areas of physic and quantum chemistry, see for example Ref. [HHB14], for an overview.
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(c) approaches that impose different approximations to different spec-
tral (energy) ranges such as time-dependent restricted active space
(TD-RASCI) [HB12, HHB14, LBSB16], time-dependent “generali-
zed active space” (TD-GASCI) [BSM14b], or “complete active spa-
ce” [SI13];

2. Propagation of reduced quantities. The idea is to transform the
wave function into a suitably averaged quantity of lower complexity.

(a) Time-dependent density functional theory where the density n(r, t)
is propagated, or kinetic equations where the phase space distribu-
tion, f(r,p, t), is evolved in time;

(b) Reduced density operators (density matrices, RDM), where an infi-
nite hierarchy of equations (BBGKY2-hierachy) for the time-depen-
dent RDM of different orders, F1(t), F12(t), . . . is derived and solved
approximately, e.g. [Bon98];

(c) Nonequilibrium Green functions (NEGF), where a hierarchy of equa-
tions (Martin-Schwinger hierarchy) for the many-particle Green func-
tions, G1(t1, t

′
1), G12(t1, t2; t

′
1, t

′
2), . . . is derived that depend on mul-

tiple times. NEGF yield, as a limiting case, the dynamics of single-
time quantities that are closely related to RDM.

3. Other time-dependent approaches include time-dependent Density
matrix renormalization group approaches (DMRG), quantum molecular
dynamics (path integral MD), semiclassical approaches such as Wigner
function MD [FTV+02], stochastic mean field approximation [LHHB14],
quantum fluctuations approaches, e.g. [SJB22, SWJB23, SB24a] hydro-
dynamics and more.

Here will concentrate on the approaches falling into class two. To develop
the foundation for these methods, we now extend the formalism of second
quantization to nonequilibrium. We will derive the equations of motion for
the second quantization operators, where we consider fermions and bosons
in a common approach. The only distinction will enter through the different
(anti-)commutation properties of the respective operators and the different
occupation numbers.

Time evolution operator. Before discussing the dynamics of the field
operators we recall that, in quantum mechanics, there exist two (main) pictures
of studying time-dependent processes—the Schrödinger and the Heisenberg

2The shortcut stands for the names Bogolyubov-Born-Green-Kirkwood-Yvon, see Ch. 6



186 KAPITEL 5. DYNAMICS OF FIELD OPERATORS

picture3. In the Schrödinger picture the quantum mechanical states (or wave
functions) evolve in time, starting from an initial state at time t0,

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉 , (5.3)

|Ψ(t0)〉 = |Ψ0〉, (5.4)

where the dynamics are governed by the time evolution operator U(t, t′) that
obeys a Schrödinger equation

i~∂tU(t, t
′)− Ĥ(t)U(t, t′) = 0, (5.5)

U(t, t) = 1̂, (5.6)

where Ĥ is the full N -particle hamiltonian. We recall the main properties of
the time evolution operator:

1. The explicit solution of Eq. (5.5) with the initial condition (5.6), for the
case of a time-independent hamiltonian, is given by

U(t, t′) = e−
i

~
Ĥ(t−t′) , (5.7)

and U depends only on the time difference, τ = t − t′, but not on the
center of mass time T = (t + t′)/2, i.e., the system is time-translation
invariant4

2. If the hamiltonian depends on time the solution is generalized to5

U(t, t′) = T̂ e−
i

~

∫
t

t′
dt̄ Ĥ(t̄) , (5.8)

and we observe a dependence on, both, the relative and center of mass
times. Since the hamiltonian Ĥ(t1), not necessarily commutes with Ĥ(t2),
the solution involve a time ordering operator T̂ tha orders operator with
a “later” time argument left of those with earlier times (this will be
discussed in more detail below).

3. If the hamiltonian is hermitean, Ĥ† = Ĥ, then U is unitary, U † = U−1.

4. The backward evolution is equivalent to hermitean conjugation of U ,

[U(t, t′)]† = U(t′, t) (5.9)

3Of course, there exist intermdediate concepts such as the interaction (Dirac) picture
4This is a consequence of energy conservation, as expressed in Noether’s theorems.
5The derivation was given in quantum mechanics in the context of the interaction picture.

Recall that T̂ is the time-ordering operator that orders products of time-dependent operators
such that the latest time appears at the left end and so on.
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5. U has a semi-group property, i.e. for t2 ≥ t1 ≥ t0, it follows:
U(t2, t0) = U(t2, t1)U(t1, t0).

6. Since U , in general, depends on two times we also need to consider the
dynamics with respect to the second time argument, in addition to the
equation of motion (5.5). To this end we compute the adjoint of this
equation,

0 = −i~∂tU
†(t, t′)− U †(t, t′)Ĥ(t) = −i~∂tU(t

′, t)− U(t′, t)Ĥ(t)

= i~∂t′U(t, t
′) + U(t, t′)Ĥ(t′), (5.10)

where, in the last line, we used Eq. (5.9), multiplied by −1, renamed the
time arguments t←→ t′ and understand Ĥ to act to the left.

5.2 Equation of motion of the field operators

Let us now consider the dynamics of the field operators (we start with the
coordinate-spin representation). Their time-dependent form is obtained by
transforming to the Heisenberg representation of quantum mechanics accor-
ding to6

ψ̂H(x, t) = U †(t, t0)ψ̂(x)U(t, t0) (5.11)

where ψ̂(x) is the (time-independent) field operator in the Schrödinger picture,
i.e. the value of the Heisenberg operator ψ̂H(x, t) at a chosen initial time t0.
This holds for fermions and bosons simultaneously.

The time evolution of the field operators is governed by the hamiltonian for
which we use a general expression containing kinetic energy, potential energy
and pair interaction energy which we write in second quantization (x = (r, σ),
see chapter 3)

Ĥ = T̂ + V̂ + Ŵ =

∫

dx′ ψ̂†(x′)

(

−
~
2

2m
∇

′2 + v(r′)

)

ψ̂(x′)+

1

2

∫

dx′
∫

dx′′ ψ̂†(x′)ψ̂†(x′′)w(r′, r′′)ψ̂(x′′)ψ̂(x′). (5.12)

6A critical discussion ot the Heisenberg representation of the field operators is given in
Sec. 5.7.
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The evolution equation of the field operators is given by Heisenberg’s equation
(see problem 5.1, Sec. 5.11) 7

i~∂tψ̂H(x, t) = −[ĤH , ψ̂H(x, t)] = −U
†(t, t0)[Ĥ, ψ̂(x)]U(t, t0) , (5.14)

which always involves a commutator, regardless of the spin statistics. We now
evaluate the commutator which is the sum of three commutators involving T̂ , V̂
and Ŵ , respectively. This will lead to commutators of different combinations
of field operators which we will simplify using the commutation (anticommu-
tation) relations for bosonic (fermionic) operators.

We start the derivation by noting the following properties of commutators,

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂, (5.15)

[ÂB̂, Ĉ] = Â[B̂, Ĉ]∓ ± [Â, Ĉ]∓B̂, (5.16)

[ψ̂†(x′), ψ̂(x)]∓ = ∓δ(x− x′), (5.17)

where the first two are verified by direct evaluation of the left and right-hand
sides (see problem 5.2, Sec. 5.11), whereas the third follows from the standard
(anti-)commutation relations8.

Consider first the commutator with the external potential which is simpli-
fied with the help of Eq. (5.16),

[V̂ , ψ̂(x)] =

∫

dx′ [ψ̂†(x′)v(r′)ψ̂(x′), ψ̂(x)] =

=

∫

dx′ v(r′)
{

ψ̂†(x′)[ψ̂(x′), ψ̂(x)]∓ ± [ψ̂†(x′), ψ̂(x)]∓ψ̂(x
′)
}

= −v(r)ψ̂(x), (5.18)

where we took into account that the first commutator vanishes and the second
is evaluated according to Eq. (5.17). The same derivation applies to the kinetic

7The derivation starts from the r.h.s. of Heisenberg’s equation that involves two Heisen-
berg operators

−[U †(t, t0)ĤU(t, t0), U
†(t, t0)ψ̂(x)U(t, t0)], (5.13)

and uses the property U(t, t0)U
†(t, t0) = 1.

8In the second and third line the upper (lower) sign refers to bosons (fermions), i.e. to
the commutator (anti-commutator).
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energy term with the result (see problems)9

[T̂ , ψ̂(x)] = −

(

−
~
2

2m
∇2

)

ψ̂(x). (5.19)

Finally, we transform the commutator with the interaction energy using rela-
tion (5.15),

2[Ŵ , ψ̂(x)] =

∫

dx′
∫

dx′′ [ψ̂†(x′)ψ̂†(x′′)w(r′, r′′)ψ̂(x′′)ψ̂(x′), ψ̂(x)] =

=

∫

dx′
∫

dx′′w(r′, r′′)

{

ψ̂†(x′)ψ̂†(x′′)[ψ̂(x′′)ψ̂(x′), ψ̂(x)] +

+ [ψ̂†(x′)ψ̂†(x′′), ψ̂(x)]ψ̂(x′′)ψ̂(x′)

}

. (5.20)

The first commutator vanishes as it involves only annihilation operators whe-
reas the second is transformed, using Eqs. (5.16) and (5.17),

[ψ̂†(x′)ψ̂†(x′′), ψ̂(x)] = ψ̂†(x′)[ψ̂†(x′′), ψ̂(x)]∓ ± [ψ̂†(x′), ψ̂(x)]∓ψ̂
†(x′′)

= ∓ψ̂†(x′)δ(x′′ − x)− δ(x′ − x)ψ̂†(x′′), (5.21)

and the second term in the integral (5.20) becomes

[ψ̂†(x′)ψ̂†(x′′), ψ̂(x)]ψ̂(x′′)ψ̂(x′) = −2δ(x′ − x)ψ̂†(x′′)ψ̂(x′′)ψ̂(x′),

where the first term in Eq. (5.21) is transformed by exchanging x′ ↔ x′′, after
which it becomes identically equal to the second one10. With this the final
result for the commutator becomes

[Ŵ , ψ̂(x)] = −

∫

dx′′w(r, r′′)ψ̂†(x′′)ψ̂(x′′)ψ̂(x). (5.22)

9The derivation follows from considering (contributed by Erik Schroedter)

−
2m

~2
[ψ(x), T̂ ] =

∫

dx′[ψ(x), ψ†(x′)∆′ψ(x′)] =

= −

∫

dx′
{

ψ†(x′)[∆′ψ(x′), ψ(x)]∓ ± [ψ†(x′), ψ(x)]∓∆
′ψ(x′)

}

= −

∫

dx′
{

ψ†(x′)∆′[ψ(x′), ψ(x)]∓ − δ(x− x
′)∆′ψ(x′)

}

= ∆ψ(x)

10The derivation assumes w(r′, r′′) = w(r′′, r′), and the sign change, in the case of fermi-
ons, arises from exchanging the order of the two annihilation operators.
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Inserting the results for the three commutators into Eq. (5.14) and applying the
time evolution operators (assuming ∂H/∂t = 0, it follows U †v(r) = v(r)U †; for
the general case, see Sec. 5.6 and problem 2) we obtain the equation of motion
of the field operator,

i~∂tψ̂H(x, t) =

{

−
~
2

2m
∇2 + v(r) + Û ind

H (x, t)

}

ψ̂H(x, t) (5.23)

Û ind
H (x, t) =

∫

dx′′w(r, r′′)ψ̂†
H(x

′′, t)ψ̂H(x
′′, t). (5.24)

Let us briefly discuss this result. The notion “induced” potential in Eq. (5.24)
indicates a similarity to the induced electrostatic potential of charged partic-
les. Indeed, when w is a Coulomb potential, w(r, r′′) = e2|r − r′′|−1, then the
induced potential becomes Û ind

H (x, t) = eφ̂ind
H (x, t), where the potential φ̂ind

H is
the operator generalization of the electrostatic potential produced by a charge
density, ρ̂indH (x′′, t) = eψ̂†

H(x
′′, t)ψ̂H(x

′′, t), which obeys Poisson’s equation11

∆φ̂ind
H (x, t) = −4πρ̂indH (x, t) . (5.25)

Thus the field operator is subject to an effective single-particle operator po-
tential,

Û eff
H = v(r) + Û ind

H . (5.26)

This is an exact result valid, both, for fermions and bosons. Remarkably,
this equation which was derived from the Heisenberg equation (5.14) has the
form of a one-particle time-dependent Schrödinger equation, just as for the
wave function, and it shares the same basic properties. First, the equation for
the creation operator is obtained by hermitean conjugation of Eq. (5.23):

i~∂tψ̂
†
H(x, t) = −ψ̂

†
H(x, t)

{

−
~
2

2m
∇2 + v(r) + Û ind

H (x, t)

}

(5.27)

where the operators ∇ and Û ind
H act on the field operator to the left, and we

took into account that (Û ind
H )† = Û ind

H , which is a consequence of the fact that

the density operator, n̂H = ψ̂†
Hψ̂H , appearing in Û ind

H , is hermitean.

11Note that, with this, we have obtained a quantization of the electrostatic potential which
is done more systematically in quantum electrodynamics.
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Theorem: As the Schrödinger equation in quantum mechanics, Eq. (5.23)
is associated with an operator continuity equation describing local particle num-
ber conservation,

∂tn̂H(x, t) +∇ĵH(x, t) = 0 (5.28)

n̂H = ψ̂†
Hψ̂H , ĵH(x, t) =

~

2im

{

ψ̂†
H∇ψ̂H −

(

∇ψ̂†
H

)

ψ̂H

}

(5.29)

Note that, while in the continuity equation for the single-particle wave function
of standard quantum mechanics, the quantities n and j describe the probability
density and probability current density, here the analogous operator quantities
refer to an N -particle system12.

Proof: We compute the time-derivative of the density operator and use the
equations of motion (5.23), (5.27), dropping the arguments x, t

˙̂nH = ψ̂†
H
˙̂
ψH +

˙̂
ψ†
Hψ̂H = −

~

2im

{

ψ̂†
H∇

2ψ̂H −
(

∇2ψ̂†
H

)

ψ̂H

}

=

= −
~

2im
∇
{

ψ̂†
H∇ψ̂H −

(

∇ψ̂†
H

)

ψ̂H

}

,

and the expression in the brackets is just the current density operator (5.29)13,
which completes the proof.

The key difference between the familiar one-particle Schrödinger equation
and Eq. (5.23) for the field operator is the appearance of the effective potential
Û eff
H , Eq. (5.26), instead of the external potential v. The “induced” potential

contained in Û eff
H , in addition to v, includes the whole many-body problem. It

has exactly the form of a mean field (Hartree) potential that is created by all
particles, as in the case of the quantum Vlasov equation (Hartree equation)14

Thus equation (5.23) is the simplest formulation of the nonequilibrium
many-body problem for fermions and bosons in its full generality. This simple
form arises from the nature of the creation and annihilation operators that
are well adapted to this problem. One should, however, note that this single-
particle operator Schrödinger equation is nonlinear in the field operators, since

12While the probability density is normalized to 1 (the particle number equals one), here
the integral of n̂ over the volume yields the total particle number operator N̂ .

13In the derivation we took into account that the terms with the potentials cancel.
14Interestingly, the same general structure of an exact mean-field type form of the many-

body problem was obtained before in Ch. 2, for classical systems when we discussed the
phase space density N(r,p, t), cf. Eq. (2.20). The closest expression to N is, for quantum
systems, the density operator n̂(r, r′, t) = Ψ̂†(r, t)Ψ̂(r′, t). We will consider its equation of
motion in Sec. 5.8.
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in the induced potential two additional operators appear. This means that this
equation does not obey a superposition principle, in contrast to the (equivalent)
N -particle Schrödinger equation which is linear in the wave function ψN .

Unfortunately, a direct solution of Eq. (5.23) is impossible due to its ope-
rator character. The standard procedure is, therefore, to introduce suitable ex-
pectation values. This will be considered in Sec. 5.9. An independent approach
that is based on a stochastic treatment of this equation will be discussed in
Sec. 5.7. But before that we generalize the equation of motion for the field
operators to a general basis and derive the equations of motion for the general
creation and annihilation operators.

5.3 Dynamics of the creation and annihilation

operators in an arbitrary representation

After considering the dynamics of the second quantization operators in coor-
dinate representation, we now generalize this result to an arbitrary basis of
single-particle states {|i〉}. The N -particle states belong to the Fock space and
are again written in occupation number representation |n1n2 . . . 〉, cf. Chapter
3. The creation and annihilation operators associated to orbital i are ai and
a†i and obey the standard (anti-)commutation relations.

We start with the same hamiltonian as before, Eq. (5.12), for which we use
the general second quantization representation,

Ĥ = T̂ + V̂ + Ŵ , (5.30)

T̂ + V̂ =
∞
∑

i,j=1

a†i (tij + vij) aj =
∞
∑

i,j=1

hij a
†
iaj, (5.31)

Ŵ =
1

2

∞
∑

i,j,k,l=1

a†ia
†
j wijkl alak. (5.32)

Proceeding as in Sec. 5.2 we introduce Heisenberg operators (we omit the sub-
script “H” – when the time dependence is written this implies the Heisenberg
form),
âi(t) = U †(t, t0)âiU(t, t0), and consider the Heisenberg equation of motion15

i~∂tai(t) = −U
†(t, t0)[Ĥ, ai]U(t, t0), ai(t0) = ai. (5.33)

15As before, we assume ∂tH = 0. For the general case, see Sec. 5.6.
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Evaluating the three commutators in Eq. (5.33) we finally obtain (see problem
5.4, Sec. 5.11)

i~∂tai(t) =
∑

l

(til + vil)al(t) +
∑

lmn

wimlna
†
m(t)an(t)al(t) (5.34)

where all operators are now Heisenberg operators. This is the generalization
of the coordinate space result (5.23) to a general basis representation. All
the results discussed before (induced potential, adjoint equation, continuity
equation etc.) remain valid. Again we may introduce an effective potential
and rewrite the equation of motion in the form of an effective single-particle
problem

i~∂tai(t) =
∑

l

{

til + v̂effH,il(t)
}

al(t), (5.35)

v̂effH,il(t) = vil +
∑

mn

wimlnn̂mn(t). (5.36)

Problem: Consider the general result for the following special cases:

a. basis in which kinetic energy is diagonal

b. basis in which single-particle energy is diagonal

c. the Hubbard basis.

5.4 Solution of the field equations 1: Bose con-

densates. Gross-Pitaevskii equation

For the case of weakly interacting bosons at temperatures below the conden-
sation temperature the field equations simplify considerably. We will demon-
strate this in the coordinate representation using, as a basis, the eigenstates
of the coordinate vector, |r, N〉 to represent the states of N particles. Since
(almost) all particles occupy the lowest orbital (there is no Pauli principle), in
the thermodynamic limit, N →∞, one can approximately replace

lim
N→∞

〈r, N |Ψ̂|r, N + 1〉 ≈ χ(r, t) , (5.37)

where χ(r, t) is the condensate wave function that is macroscopically popula-
ted, with the normalization

∫

d3r|χ(r, t)|2 = N. Replacing the field operator in
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Eq. (5.23) by the condensate wave function (this means, we neglect fluctuations
around the mean values16) gives rise to a nonlinear Schrödinger equation

i~
∂

∂t
χ(r, t) =

{

−
~
2

2m
∇2 + V (r) +

∫

d3r′|χ(r, t)|2w(r− r′)

}

χ(r, t) , (5.38)

which was independently derived by Gross and Pitaevskii in 1961 and carries
their name. It has become extremely popular in recent years for the description
of Bose gases and fluids in traps. The attractive feature is its simplicity: the
entire N -particle problem is described by a single-particle wave equation.

The Gross-Pitaevskii equation can also be derived from the N-particle
Schrödinger equation making a factorization ansatz into N single-particle or-
bitals that are all coinciding with the ground state orbital. Integration over
all particle indices except that of particle one yields immediately Eq. (5.38).
This means that the Gross-Pitaevskii equation has to be understood as a pure
mean field (Hartree) approximation to the full many-body problem that even
neglects exchange effects17. We return to this problem in Sec. 5.10.

Finally, note that the only assumption that was made in deriving the Gross-
Pitaevskii equation was that the wave function χ is independent of the particle
number, i.e. that particle number N fluctuations play a negligible role. While
changing the particle number by one may be irrelevant in a state that has a
macroscopic population, such as a Bose condensate, the situation is drama-
tically different in the case of fermions where the occupation cannot exceed
one.

5.5 Solution of the field equations 2: Basis of

coherent states

Another approach to the solution of the field equation (5.34) for the annihilati-
on operators â consists in conversion to an equation for the eigenvalues ai of
the operators. This can be done by choosing a basis of coherent states |i〉. For
the case of a single annihilation operator, the eigenvalue problem reads

â|Ψc
k〉 = ak|Ψ

c
k〉 . (5.39)

16When N is large, fluctuations related to few particle excitations will be small. This is
similar to the close relation between quantum and classical descriptions of the electroma-
gnetic field in the case of high intensity. Note that the situation is completely different for
fermions where each orbital contains not more than one particle.

17Spin effects are only taken into account by permitting multiple particles to occupy the
individual orbitals. For more details, see the diploma thesis of Jens Böning, Kiel University
2007. pdf-file available from the web page of M. Bonitz (link Arbeitsgruppe)
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Assuming that these states exist, are complete in the single-particle Hilbert
space and orthonormal, we obtain

〈Ψc
l |â|Ψ

c
k〉 = akδl,k . (5.40)

What remains is to extend this to N-particle states with field operators for all
orbitals. Here exist various path integral concepts that are related to so-called
Grassmann variables18. However, no simple solution exists.

Problem: perform this procedure and analyze the resulting system of equa-
tions for the eigenvalues.

We will continue the general discussion of the solution of the field equations
in Sec. 5.8.

5.6 Extension to time-dependent hamiltonians

So far we have assumed that the hamiltonian does not depend explicitly on
time. This was used when applying the time evolution operators, on the final
step of the derivation. We now remove this restriction and generalize our results
to the case of a time-dependent single-particle potential, such as an external
electromagnetic field. Then the only term that changes is the one involving the
potential V̂ (t), cf. Eq. (5.31), and the contribution to the r.h.s. of Eq. (5.33)
becomes

−U †(t, t0)[V̂ , ai]U(t, t0) = U †(t, t0)
∑

l

vil(t) al U(t, t0) (5.41)

=
∑

l

U †(t, t0)vil(t)U(t, t0) al(t) =
∑

l

v̂H,il(t) al(t) ,

where, in the last line, we inserted a unity operator between vil and al. Note
that, for the general case of a time-dependent potential, v(t) does not neces-
sarily commute with the time evolution operator, v(t)U(t, t0) 6= U(t, t0)v(t),
and the result, therefore, contains the Heisenberg operator vH,il(t). Thus, our
previous result, Eq. (5.36), is generalized to

i~∂tai(t) =
∑

l

{

til + v̂effH,il(t)
}

al(t), (5.42)

v̂effH,il(t) = v̂H,il(t) +
∑

mn

wimlnn̂mn(t), (5.43)

18See for example lecture notes by F. Evertz, TU Graz, available online
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where the time dependence of the new potential operator,

v̂H,il(t) = U †(t, t0)vil(t)U(t, t0), (5.44)

is due, both, to the explicit time dependence of the potential v and the two
time evolution operators.

5.7 Schrödinger dynamics of the creation and

annihilation operators19

In the previous sections we used the Heisenberg picture for the creation and
annihilation operators20. While this is common practice in many text books,
this approach has to be critically assessed. The problem is that the “standard”
Heisenberg operator âH(t) = U †(tt0) â U(tt0) has, strictly speaking, no clear
mathematical meaning if the Hamilton operator (and, similarly, the evolution
operator U) refers to a fixed particle number N . Suppose we act with âH(t)
on an arbitrary state |ψN〉 of the N -particle Hilbert state HN . Then we will,
obviously, understand U as an N -particle time evolution operator associated
with the N -particle hamiltonian ĤN . The action of U produces again a state
from HN . Acting now with â produces a state from the Hilbert space HN−1.
The final action of U †, which is again associated with ĤN , is then, however,
ill-defined. Thus, the use of the standard Heisenberg picture for the operators
â and â† is only possible if ĤN and U do not refer to a fixed N but are defined
in Fock space21.

19Optional section
20This aspect and the following results have been worked out together with S. Hermanns

and C. Hinz.
21One possible way to define Heisenberg-type operators with hamiltonians for a fixed N

is to work with different Hilbert spaces:

aHk (t) = U
†
N−1

(t, t0)akUN (t, t0). (5.45)

Then, the equation of motion is given by

i∂ta
H
k (t) = i∂tU

†
N−1

akUN + U
†
N−1

aki∂tUN

= −U†
N−1

HN−1akUN + U
†
N−1

akHNUN

= −HH
N−1

(t)aHk (t) + aHk (t)HH
N (t) (5.46)

where, in the third line, we inserted unity according to UN−1U
†
N−1

= 1̂. The density matrix
operator is then given by

nH
kl(t) = a

†,H
k (t)aHl (t) = U

†
Na

†
kUN−1U

†
N−1

alUN = U
†
NnklUN , (5.47)
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Alternatively, if the Hamiltonian is defined in Hilbert space HN , the dy-
namics of creation and annihilation operators should be formulated in the
Schrödinger picture where no such problem occurs since it involves only a sin-
gle evolution operator UN . Let us now consider how this is accomplished and
compare the results with those of the previous sections of this chapter.

We start with an arbitrary complete set of single-particle states |i〉 for which
the operators âi and â†i are defined as before. With these operators we can
again produce the second quantization representation of arbitrary operators,
in particular, for the generic N -particle hamiltonian Ĥ, cf. Eq. (5.30). We
proceed by constructing properly (anti-)symmetrized N -particle states |{n}〉
and defining the N -particle evolution operator U , as before, via Eq. (5.23).

Now we define the time-dependent annihilation and creation operators that
evolve from the operators âi and â

†
i , leaving out the hats

ai(t) = aiU(t, t0) (5.49)

a†i (t) = U †(t, t0)a
†
i (5.50)

where the second line follows by hermitean adjungation of the first one. The-
se definitions mean that the annihilation and creation operators behave like
wave functions of first quantization evolving according to the time-dependent
N−particle Schrödinger equation,

i~∂tai(t) = aiH(t)U(t, t0), (5.51)

−i~∂ta
†
i (t) = U †(t, t0)H(t)a†i . (5.52)

These equations are well defined when U is an N -particle operator22.
Let us now see how the corresponding density matrix operator looks like

and what its properties are. One immediately finds

nji(t) = a†j(t)ai(t) = U †(t, t0)a
†
jaiU(t, t0) = nH

ji(t), (5.53)

n†
ji(t) = nij(t). (5.54)

which is a proper Heisenberg operator in N -particle Hilbert space that evolves according to
the Heisenberg equation of motion

i~∂t n
H
kl(t) = [nH

kl(t), H
H
kl (t)]. (5.48)

Thus this modified Heisenberg dynamics of the creation and annihilation operators lead to
the same equations of motion for the density matrix operator. Furthermore, it is clear that
this modified Heisenberg dynamics will approach the standard definition in the macroscopic
limit, N → ∞, when N − 1 → N , and the r.h.s. of Eq. (5.46) approaches the commutator
[aHk (t), HH

N (t)].
22This is not a restriction. N can be chosen arbitrary, only U has to be chosen correspon-

dingly.
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The first line shows that the density matrix operator defined with Eqs. (5.49)
and (5.50) is a proper Heisenberg operator and its equation of motion is given
by the Heisenberg equation (5.48).

This way we have at our disposal two independent dynamical equations of
the creation and annihilation operators – a Schrödinger equation and a Heisen-
berg equation. Both have a different applicability range: the first corresponds
to Hamiltonians (and time evolution operators) acting in the N -particle Hil-
bert space, whereas the second involves operators defined in Fock space with
a variable particle number. Both approaches have their advantages and disad-
vantages for numerical applications as we discuss below.

5.8 Dynamics of the density matrix operator

n̂nm(t)

Similar as for the field operators, we can derive equations of motion for any
product of field operators. While for bosons the dynamics of a single field ope-
rator leads to a dynamics of the many-particle wave function, this is not the
case for fermions, and the expectation value vanishes, 〈ân〉 ∼ 0. Instead, we
have to consider the dynamics of two-operator correlation functions, such as
the operator n̂nm(t). This operator is directly related to observable quantities
in quantum many-body systems in nonequilibrium and is, thus, of prime im-
portance. Since n̂nm(t) is a Heisenberg operator the ambiguity in the dynamics
of the field operators – Heisenberg vs. Schrödinger dynamics – does not play
a role here, as we showed above. Both representations lead to the same result
for the density matrix operator.

5.8.1 Equation of motion for n̂nm(t)

We start from the Heisenberg equation23

i~∂tn̂ij(t) = −U
†(t, t0)[Ĥs(t), n̂ij]U(t, t0), n̂ij(t0) = n̂ij. (5.55)

23Alternatively, we can start from the equation of motion for âi, Eq. (5.34), and multiply

it by â†j and do the same with the adjoint equation. However, the present approach avoids
the ambiguity in the definition of the time dependent operators.
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and evaluate the three commutators in Eq. (5.55), using again the relations
(5.15), (5.16) and [a†i , aj]∓ = ∓δi,j,

[T̂ + V̂ , n̂ij] =

[

∑

kl

hkl(t)a
†
kal, a

†
iaj

]

= (5.56)

=
∑

kl

hkl(t)
{

a†k[al, a
†
iaj] + [a†k, a

†
iaj]al

}

=

=
∑

kl

hkl(t)
{

∓a†k[a
†
i , al]∓aj − a

†
i [aj, a

†
k]∓al

}

=

=
∑

kl

hkl(t)
{

a†kajδil − a
†
ialδjk

}

=

=
∑

k

{

hki(t) a
†
kaj − hjk(t) a

†
iak

}

= (5.57)

= −
∑

k

{

n̂ik h
∗
kj(t)− h

∗
ik(t) n̂kj

}

= h∗(t)n̂− n̂h∗(t), (5.58)

where, in the last expression, we introduced standard matrix notation.

Finally, the commutator with the interaction energy is transformed simi-
larly,

2[Ŵ , a†iaj] =
∑

klmn

wklmn

{

a†ka
†
l [anam, a

†
iaj] + [a†ka

†
l , a

†
iaj]anam

}

=

=
∑

klmn

wklmn

{

−a†ka
†
l [a

†
i , anam]aj − a

†
i [aj, a

†
ka

†
l ]anam

}

=

=
∑

klmn

wklmn

{

a†ka
†
l (anδmi ± amδni) aj − a

†
i

(

a†l δkj ± a
†
kδlj

)

anam

}

= −2
∑

kln

{

wjnkla
†
ia

†
nalak − w

∗
inkla

†
ka

†
lanaj

}

. (5.59)

In the third line, the first terms in the parantheses are equal to the second
ones – this is shown by exchanging (k,m) ↔ (l, n) and using the symmetries
aman = ±anam and wklmn = wlknm.

What remains now is to apply the time evolution operators. There are
two ways to proceed. The first is to apply the evolution operators only to the
outermost field operators. To this end we use the results for the commutators
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in the form (5.57) and (5.59) and combine them as follows

i~∂tn̂ij(t) = U †(t, t0)a
†
i

∑

k

heffjk (t)akU(t, t0)−

−
∑

k

U †(t, t0)a
†
kh

eff
ki (t)ajU(t, t0) (5.60)

heffjk = hjk(t) + Ŵ ind
jk , Ŵ ind

jk =
∑

ln

wjnkla
†
nal, (5.61)

where we introduced the same operators of the induced potential (Hartree mean
field) and effective single-particle potential as before, cf. Sec. 5.6. Note, howe-
ver, that here the induced potential is still time-independent. This is our first
result. It is particularly useful when we consider computation of suitable ave-
rages.

Suppose we are interested in the average dynamics of the density ma-
trix operator, i.e. the dynamics of the density matrix nij, in a given time-
independent N -particle state |Ψ〉. When the density matrix operator is avera-
ged with |Ψ〉, we can, for each term, combine the pair of time evolution opera-
tors, 〈Ψ|U(t0, t) . . . U(t, t0)|Ψ〉 = 〈Ψ(t)| . . . |Ψ(t)〉 with the state vectors to yield
time-dependent N -particle states, where the dots denote a time-independent
operator, except for the intrinsic time-dependence of ĥ(t). This brings us back
to a Schrödinger-type description of the time evolution which is the basis for
Configuration Interaction approaches (CI, exact diagonalization). Of course
the computational effort of working with and propagation of N-particle states
is tremendous as it scales exponentially with the system size.

5.8.2 Closed equation of motion for n̂nm(t) in terms of
density matrix operators

The second approach consists in re-ordering the field operators in the inter-
action term such that this term can be expressed via time-dependent density
matrix operators. The goal is to get rid of the N-particle time evolution opera-
tors. Eventually we will also try to achieve a compact matrix equation, as was
done for the single-particle terms in Eq. (5.58). To this end we transform the
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first four-operator product, using24 n̂nlak = akn̂nl − δknal

a†ia
†
nalak = n̂ikn̂nl − δnkn̂il

= ± (n̂iln̂nk − δlnn̂ik)

=
1

2
(n̂ikn̂nl ± n̂iln̂nk)−

1

2
(δnkn̂il ± δlnn̂ik) . (5.62)

The first two lines correspond to the two options to pair the creation and
annihilation operators which are both equivalent. Therefore, below we will use
the (anti-)symmetrized form given in the third line. Analogously, the second
four-operator product becomes

a†ka
†
lanaj =

1

2
(n̂lnn̂kj ± n̂knn̂lj)−

1

2
(δnkn̂lj ± δlnn̂kj) . (5.63)

The next step is to apply the two time evolution operators which simply leads
to the replacement of all density matrix operators by time-dependent (Hei-
senberg) operators. Finally, we take into account the induced potential and
transform, using Eq. (5.62),

a†i
∑

k

Ŵ ind
jk ak =

∑

kln

wjnkl

2
{(n̂ikn̂nl ± n̂iln̂nk)− (δnkn̂il ± δlnn̂ik)} .

=
∑

k

n̂ik

∑

ln

w∗
kljn

2
n̂nl ±

∑

l

n̂il

∑

kn

w∗
kljn

2
n̂nk

−
∑

k

n̂ik

∑

ln

δln
w∗

lkjn ± w
∗
kljn

2

=
∑

k

n̂ik

∑

ln

w∗
kljn ± w

∗
lkjn

2
{n̂nl ∓ δln}

= n̂Û±,

with the definition Û±
kj =

∑

ln

w∗
kljn ± w

∗
lkjn

2
{n̂nl ∓ δln} ,

=
∑

ln

wjnkl ± wjnlk

2
{n̂nl ∓ δln} ,

=
1

2

∑

ln

w±
jnkl {n̂nl ∓ δln} , (5.64)

where, in the two terms containing n̂il, we exchanged the summation indices
l ↔ k. In Eq. (5.64) we introduced the operator of the (anti-)symmetrized

24This follows directly from the commutator [n̂nl, ak] = −alδnk. It is easy to verify that
this holds for bosons and fermions by using the definition of n̂nl.
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induced potential that involves the (anti-)symmetrized potential matrix ele-
ments w±

jnkl = wjnkl ± wjnlk that also appeared in the Slater-Condon rules in
Chapter 4.

Similarly, the second term becomes

∑

k

a†kŴ
ind
ki aj =

∑

kln

wklin

2
{(n̂lnn̂kj ± n̂knn̂lj)− (δnkn̂lj ± δlnn̂kj)} .

=
∑

k

∑

ln

wklin ± wlkin

2
{n̂ln ∓ δln} n̂kj.

= Û±n̂. (5.65)

One readily verifies that the potential U± is exactly the one introduced in
Eq. (5.64).25

Collecting all the results, we obtain, after applying the time evolution ope-
rators,

i~∂tn̂(t) =
[

n̂(t),
{

h∗
H(t) + Û±

H(t)
}]

=
[

n̂(t), ĥ±
H(t)

]

(5.66)

where all operators are now Heisenberg operators, in particular, the induced
potential operator now contains Heisenberg creation and annihilation operators.
The term in the curly brackets can again be understood as the operator of an
effective (Hartree-Fock-type) potential, ĥ±

H(t) = h∗
H(t) + Û±

H(t).
Thus, we have achieved our goal of obtaining a closed equation of motion

for the single-particle density matrix operator and to eliminate the N-particle
time evolution operator completely.

We underline that the present approach uses a particular ordering of the
field operators: all operator products are expressed in terms of single-particle
density matrix operators, a†a. This approach can be used to construct equa-
tions of motion for correlation functions of fluctuations (see Sec. 5.9.1 below).
At the same time, this approach differs from standard density operator and
Green functions approaches where a “normal” ordering is being used. Here all

25Starting from the definition (5.64) we readily transform to the expression (5.65) by, first,
exchanging the summation indices n, l and then using, in the second term, the property of
the matrix elements of the interaction, wklni = wlkin

Û±
ik =

∑

ln

wknil ± wknli

2
{n̂nl ∓ δln}

=
∑

ln

wklin ± wklni

2
{n̂ln ∓ δln} =

∑

ln

wklin ± wlkin

2
{n̂ln ∓ δln} .
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creators appear to the left of all annihilators (or vice versa) which gives rise
to the definition of many-particle density operators or Green functions, see
below.

5.9 Ensemble average of the Heisenberg equa-

tion. Fluctuations and correlations

Despite the formal simplicity of the dynamical equation (5.66) which has the
form of a Hartree-Fock equation, the operator nature of the entering field
operators prohibits a direct access to observable physical quantities. There are
(at least) four solutions:

A. Computation of pure state averages usingN -particle states and time propa-
gation of these states (expansion coefficients) in CI-manner, as discussed
in the context of Eq. (5.60), or using coherent states, cf. Sec. 5.5.

B. Application of the field operators to suitable many-body states using ran-
dom initial states. Propagation of individual random trajectories with
subsequent ensemble averaging. An example is the stochastic mean field
approach of Ayik, Lacroix and others which is discussed in Sec. 5.9.2.

C. Performing a suitable statistical average over field operators yielding results
in a mixed ensemble. This approach results in a hierarchy of equations
for reduced s-particle density matrices or correlation operators (BBGKY-
hierarchy [Bon98]) and will be considered in Ch. 6.

D. Computation of statistical averages of field operator products taken at
different times, e.g. â†i (t)âj(t

′). This leads to the theory of nonequili-
brium Green functions (NEGF) and will be discussed in Chapter 8. In
the equal-time limit the NEGF reduce to density matrices, and a direct
connection to approach C can be established. This is done via the Ge-
neralized Kadanoff-Baym ansatz (GKBA) and gives rise to the G1–G2
scheme [SJB20], see Ch. 6 and Sec. 8.10.

5.9.1 Fluctuations and correlations (Approach B)

We now perform a statistical average of the operator equation (5.66). We
will denote averages of operators by symbols without hat and fluctuations
(deviations from the average) by the symbol δ, i.e.

〈n̂nm〉 ≡ nnm. (5.67)

δn̂nm ≡ n̂nm − nnm. (5.68)
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Since averaging is a linear operation, its application to the operator equation
of motion (5.66) does not change the equation, except for terms containing
products of density matrix operators. For arbitrary operators (or random va-
riables), the average of a product can be written as 〈ÂB̂〉 = AB+ 〈δÂδB̂〉. We
now apply these results to the operator equation (5.66):

i~∂tn(t)−
[

n(t),h±
H(t)

]

=
〈[

δn̂(t), δÛ±
H(t)

]〉

≡ I±(t) (5.69)

This equation is a very general quantum kinetic equation for the one-particle
density matrix out of equilibrium. The l.h.s. contains all (ensemble avera-
ged) mean field terms and constitutes a standard time-dependent Hartree-Fock
(TDHF) equation for the density matrix. Since the hamiltonian again contains
the density, this is a nonlinear equation. There exist various approaches (e.g.
iterative procudures) for an efficient numerical solution of this equation (wi-
thout the right-hand side).

The r.h.s., in contrast, contains all terms going beyond TDHF which is
the only nontrivial part of the problem and which constitutes the main focus
of quantum kinetic theory, density matrix theory and nonequilibrium Green
functions. By definition, these are correlation contributions to the many-body
dynamics that account for elastic collisions between particles, inelastic collisi-
ons associated with excitation or ionization and so on. We will see later that
this collision integral involves the pair correlation operator, i.e. the correlated
part of the two-particle density operator, e.g. [Bon98]. Here we see that these
correlation terms have a one to one correspondence with fluctuations of ope-
rator pairs26. We have also introduced the short notation I± for the collision
integral.

The solution of this inhomogeneous (formally) linear equation, together
with the initial condition, n(t0) = n0, is straightforward and given in terms of
Hartree-Fock propagators UHF (these are two-dimensional matrices and every-
where matrix multiplication is implied)

n(t) = UHF†(t, t0)n0 U
HF(t, t0) + nI(t), (5.70)

nI(t) =
1

i~

∫ t

t0

dt̄ UHF†(t, t̄) I±(t̄)UHF(t, t̄), (5.71)

i~∂tU
HF(t, t0) = h±

H(t)U
HF(t, t0), UHF(t, t) = 1. (5.72)

Equation of motion for the fluctuation operators: We now can make
further progress in evaluating the collision term I± by directly computing the

26This correspondence between correlations and fluctuations is well known from the kinetic
theory of classical plasmas and was established by Kadomtsev, Klimontovich and others.
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fluctuations δn̂ and, from them, also the fluctuation of the effective potential
(5.64),

δÛ±
kj =

1

2

∑

ln

w±
jnkl δn̂nl. (5.73)

Indeed the equation of motion of δn̂ follows immediately by taking the diffe-
rence of Eqs. (5.66) and (5.69) [we suppress the time arguments]

i~∂t (n̂− n) = [n̂,h∗
H]− [n,h∗

H] +

+
[

n̂, Û±
H

]

−
[

n,U±
H

]

−
〈[

δn̂, δÛ±
H

]〉

.

Using the linearity in the density matrix, this can be rewritten as

i~∂tδn̂− [δn̂,h∗
H] −

[

δn̂,U±
H

]

−
[

n, δU±
H

]

=

=
[

δn̂, δÛ±
H

]

−
〈[

δn̂, δÛ±
H

]〉

≡ Ĵ± . (5.74)

The term on the right can be understood as a higher order collision integral

or as the fluctuation of the correlator of the fluctuations, Ĵ± = δ
[

δn̂, δÛ±
H

]

.

Equation (5.74), together with the initial condition δn̂(t0) = δn̂0, can be solved
formally like Eq. (5.69). But this analysis is deferred to later when we develop
the quantum theory of fluctuations in Ch. ...

Here we only briefly outline possible ways how to proceed. One is to eva-
luate the r.h.s. of Eq. (5.74) by using again the equation of motion (5.74),
multiply by δÛ± to derive the equation of motion for the product of fluctua-
tions δn̂ · δÛ± and for their commutator. This can be expressed in terms of a
correlation function of two-particle fluctuations, 〈δn̂ ·δn̂〉. It is easy to see that
this equation, on the r.h.s., will contain products of three operator fluctuati-
ons, 〈δn̂δn̂δn̂〉. This shows that a hierarchy of equations for the fluctuations
emerges which, in fact, is analogous to the BBGKY-hierarchy for the reduced
density operators. An alternative approach is to avoid the solution of a hierar-
chy of equations for the fluctuation operators but instead perform an ensemble
average using stochastic methods. This is discussed in the next section. These
ideas are discussed in detail in Ch. ??27.

5.9.2 Stochastic Mean Field Approximation

As an alternative, we can use the solution of Eq. (5.74) for δn(t), to compute

the commutator [δn̂(t)δÛind(t)], for a given initial condition δn
(α)
0 . This yields

27This idea was implemented by Erik Schroedter in his bachelor thesis in 2020 and, sub-
sequently in Refs. [SJB22, SWJB23, SB24a].
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a single random realization of the collision integral I±(α) in Eq. (5.69). Re-
peating this for a representative set of initial conditions we can compute the
expectation value by averaging over an ensemble of initial conditions,

I±(t) =
〈[

δn̂(t), δÛ±(t)
]〉

= lim
M→∞

1

M

M
∑

α=1

[

δn(α)(t), δU±(α)(t)
]

, (5.75)

where (α) denotes the possible realizations that occur with probability pα,
where

∑

α pα = 1. This set (α, pα) specifies the ensemble.
With this, the r.h.s. of Eq. (5.69) is known, and this equation can be sol-

ved. Two problems remain. The first is how to specify a physically adequate
ensemble and the second, how to solve for δn̂, considering the complicated
structure of the collision integral Ĵ±. A very simple and successful approach
has recently been proposed by Ayik and co-workers [Ayi08, Lac13].

One problem in treating the fluctuations of the density matrix operator
and of the mean field potential is their time dependence. A first simplifying
attempt to understand the general physics is, therefore, to neglect this depen-
dence entirely. This can be done by approximating the collision intergral I± in
Eq. (5.69) by a local function according to I±(t)→ I±(t0)δ(t− t0). This means
only the initial fluctuations are taken into account. With this the solution for
the density matrix, Eq. (5.71) becomes

nI(t) =
1

i~
UHF†(t, t0) I

±(t0)U
HF(t, t0),

and the total solution for the density matrix is given by

n(t) = UHF†(t, t0)

{

n0 +
1

i~

〈[

δn̂(t0), δÛ
±
H(t0)

]〉

}

UHF(t, t0).

This means that the evolution of the density matrix n(t) is given by a pure
Hartree-Fock dynamics. However, the evolution does not start from the initial
value of the density matrix, n(t0), but from a value that is shifted by the se-
cond term in the parantheses. If we forget for a moment the angular brackets
we would have random realizations of initial values. Ayik had the idea [Ayi08]
to replace the complicated commutator by a semiclassical ensemble of initial
density fluctuations with given mean and variance such that the term in pa-
rantheses becomes n0 +∆n

(α)
0 , for a given realization (α). The corresponding

dynamics, starting from this initial state is given by

n̂(α)(t) = UHF†
(α) (t, t0)

{

n0 +∆n
(α)
0

}

UHF
(α) (t, t0),
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than pure time-dependent Hartree-Fock (TDHF) but are of the same accu-
racy as NEGF results using selfenergies in second order Born approximation
[LHHB14]. An example is shown in Fig. 5.2 for the dynamics of a small Hub-
bard cluster following a strong perturbation of the system by a confinement
quench. The figure also shows the problems of the method: the accuracy quick-
ly fades with increasing time. Furthermore, the accuracy is good for very weak
coupling, U/J , but decreases with increasing U .

Concluding this section we note that a systematic quantum fluctuations
approach has been recently developed by Schroedter et al. in Refs. [SJB22,
SWJB23, SB24b, SB24a]. It starts from the time diagonal limit of the single-
particle Green function and then derives equations of motion for the fluctua-
tions of field operator products. More details will be presented in Ch. ??.

5.10 Ensemble average of the field operators

As we have discussed above, the operator nature of the field operators prohibits
their direct evaluation. One way to achieve measurable results is, therefore, to
perform a suitable averaging of the operators. Suppose our many-body system
is in a mixed state characterized by some time-independent probability distri-
bution. In the most general case this is the N -particle density operator ρN .
Then we can compute averages, 〈. . . 〉ρN = Tr . . . ρN ,

〈ψ̂(r, σ, t)〉ρN = ψ(r, σ, t) (5.77)

〈ψ̂†(r, σ, t)〉ρN = ψ∗(r, σ, t), (5.78)

which are already regular functions of coordinate, spin and time. Similarly, in
an arbitrary basis the expectation value of the second quantization operators
become,

〈âi(t)〉ρN = ai(t) (5.79)

〈â†i (t)〉ρN = a∗i (t), (5.80)

where we have “absorbed” the spin argument into the orbital label. In most
cases of interest, however, these expectation values will vanish. An exception
would be if the averaging is performed in a coherent state, which is an eigenstate
of the annihilation operator, so the expectation value would be given by the
associated eigenvalue.

5.10.1 Bose-Einstein condensates

Another example with a nontrivial expectation value would be a state that
is occupied by a macroscopically large number of particles. This is, obviously,
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Abbildung 5.3: Schematic comparison of the concepts of standard many-body
theories, such as TD-DFT, reduced density matrices and NEGF (left column)
with stochastic mean field (right column. From Ref. [LHHB14].



210 KAPITEL 5. DYNAMICS OF FIELD OPERATORS

possible only for bosons, and a macroscopic occupation would be most easily
achieved for the ground state, i.e., for a Bose-Einstein condensate. The ac-
tion of the second quantization operator on such a state would change the
occupation by one–which would be only a small modification leading to small
fluctuations around the mean value. We already briefly discussed this problem
in Sec. 5.4 and now extend the analysis a bit further.

In fact, replacing the field operators by their mean values, i.e. by wave
functions transforms Eq. (5.23) into a nonlinear Schrödinger equation

i~∂tψ(x, t) =

{

−
~
2

2m
∇2 + v(r) + U ind(x, t)

}

ψ(x, t) , (5.81)

U ind(x, t) =

∫

dx′′w(r, r′′)ψ∗(x′′, t)ψ(x′′, t).

In the case of atomic Bose systems, usually the interaction is short-range and
it is often approximated by contact interaction, w(r, r′′)→ gδ(r− r′′), and the
equation (5.81) becomes

i~∂tψ(x, t) =

{

−
~
2

2m
∇2 + v(r) + g|ψ(x, t)|2

}

ψ(x, t) , (5.82)

which has the name Gross-Pitaevskii equation that was first derived in 196128

The wave function is normalized to the total particle number,
∫

d3r|ψ|2(r) = N
and is also a reasonable order parameter, counting the number of particles in
the ground state (condensate). This system has the total energy

W [ψ] =

∫

d3r

{

~
2

2m
[∇ψ]2 + v(r)|ψ|2 + g|ψ|4

}

, (5.83)

and equation (5.81) can be derived by minimizing the energy (5.83) with re-
spect to ψ∗ under the constraint of fixed normalization. The stationary Gross-
Pitaevskii equation is the eigenvalue problem for the Gross-Pitaevskii hamil-
tonian [r.h.s. of Eq. (5.81)], ĤGPψ = Eψ. In the homogeneous case (v ≡ 0),
we make the ansatz of a plane wave, ψ(r) = n−1/2eikr, with n = N/V ), and
obtain the dispersion relation

E = E(k) = N

{

~
2k2

2m
+ n

g

2

}

,

28E. P. Gross, Structure of a quantized vortex in boson systems, Il Nuovo Cimento, 20
(1961) 454–457, Hydrodynamics of a superfluid condensate, J. Math. Phys. 4, (1963) 195–
207; L.P. Pitaevskii: Vortex Lines in an Imperfect Bose Gas, Soviet Physics JETP, 13, (1961)
451–454.
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which has a gap at zero momentum. This violates the Hugenholtz-Pines theo-
rem (for repulsive interaction)29. The reason is the too simple treatment of
the effect of interactions. In fact, the assumption that all particles are in the
condensate and that the wave function is a plane wave, as for free particles,
is not correct, in the case of interactions. Interactions between the conden-
sate lead to a (possibly small) fraction of particles that leave the condensate
(Landau’s two fluid theory) which can be treated in perturbation theory as
proposed by Bogolyubov: ψ = ψ0 + δψ. As before, the appearance of the
fluctuating part is equivalent to including correlations whereas its neglect cor-
responds to a mean field (Hartree) approximation. Then the time-dependent
Gross-Pitaevskii equation can be solved with the ansatz

ψ0 = n1/2e−
i

~
µt (5.84)

δψ = e−
i

~
µt
{

u(r)e−iωt + v∗(r)eiωt
}

(5.85)

This is inserted in the equations for ψ and ψ∗ and leads to the following system
of equations by taking the e±iωt components as independent

(

−
~
2

2m
∇2 + v + 2gn− ~µ− ~ω

)

u− gnv = 0

(

−
~
2

2m
∇2 + v + 2gn− ~µ+ ~ω

)

v − gnu = 0 (5.86)

Consdering again the homogeneous case, i.e. v =const, and assuming plane
waves one finds the modified energy spectrum by using V = ~µ− gn, from the
0-th order equation,

ǫk = ~ω(k) =

{

~
2k2

2m

(

~
2k2

2m
+ 2g|ψ|2

)}1/2

.

For large k the dispersion is quadratic, as for free particles, because kinetic
energy dominates. In contrast, for small k there is no energy gap but the di-
spersion is linear, resembling phonons. In fact the sound speed can be computed
to

ǫk = vs · ~k, vs =
(ng

m

)1/2

. (5.87)

Since ǫk > vs · ~k the energy cannot dissipate into phonons and the system is
frictionless (superfluid), as first explained by Landau. In the case of negative
g, with increasing k, the energy may decrease, giving rise to a minimum – the

29N. M. Hugenholtz; D. Pines. Ground-state energy and excitation spectrum of a system

of interacting bosons, Physical Review. 116 (3): 489–506 (1959)
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so-called roton – minimum that corresponds to different kind of excitations:
rotons. This is in good agreement with the experiments with liquid helium and
it is also reproduced by numerically exact quantum Monte Carlo simulations
[A. Filinov, M. Bonitz, Phys. Rev. A 86, 043628 (2012)].

An interesting property of cold atomic gases and fluids in an optical trap
is that g can be positive (repulsive interaction) or negative which drastically
changes the dispersion relation. Another striking feature is that the value of
g and even its sign can be tuned by an external magnetic field (Feshbach
resonance). Finally, there are qualitative differences between bosons (such as
4He) and fermions (such as 3He). In the latter case, pairing is observed that
also leads to superfluidity and large scale vortex formation. These vortices can
even crystallize, forming a lattice (Abrikosov lattice).

In the case of charged bosons in an external electromagnetic field Eq. (5.81)
is modified according to (minimal coupling) p→ p− q

c
A. The resulting equa-

tion is the Ginzburg-Landau equation which allows for a phenomenological
description of superconductivity.

5.10.2 Fermions. Time-dependent expectation values

Putting these cases aside, a nontrivial expectation value will involve typically
pairs of field operators, such as the single-particle density-matrix operator, the
average of which leads to the single-particle density matrix,

〈â†i (t)âj(t)〉ρN = nij(t). (5.88)

Here, the expectation value is computed with the density operator of the full
system, i.e. the quantum generalization of the N -particle probability that will
be discussed below.

Equation (5.88) is a special case of a more general class of functions, the
reduced s-particle density matrices (RDM). These functions are the matrix
representations of the reduced density operators (RDO) of density operator
theory. The relation between these quantities and the second quantization
operators is explored in chapter 6.

(Anti-)symmetrized expectation values. Consider an arbitrary s-par-
ticle operator, B̂s. To compute its expectation value we transform the operator
B̂s into second quantization representation, cf. Eq. (3.55),

B̂s =
1

s!

∞
∑

i1...is=1

∞
∑

k1...ks=1

〈k1 . . . ks|b̂1...s|i1 . . . is〉a
†
k1
. . . a†ksais . . . ai1 ,

where the sums run over the complete set of single-particle orbitals. This is still
an operator expression. In order to obtain its expectation value in the relevant
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statistical ensemble, we average this expression with the density operator ρN
(this is denoted by 〈. . . 〉ρN ), taking into account that the matrix element of b̂
is a regular c-function,

〈B̂s〉
±
ρN

=
1

s!

∞
∑

i1...is=1

∞
∑

k1...ks=1

〈k1 . . . ks|b̂1...s|i1 . . . is〉〈a
†
k1
. . . a†ksais . . . ai1〉ρN .

(5.89)

Here we indicated that this is a correctly (anti-)symmetrized expression be-
cause of the properties of the field operators. Note that we did not assume
any special properties on the basis states that are used to compute the matrix
elements and onto which the field operators act. Since the operators guarantee
the proper spin statistics we can use the simplest possible form of the basis
set, such as products of single-particle orbitals30, and express |i1 . . . is〉 as a
superposition of |i1〉 . . . |is〉.

As we discussed before, the expectation value of the field operator pro-
ducts plays the role of probability density. Here this is extended to the general
s−particle case. Let us discuss some special cases explicitly.

i) The single-particle RDM is obtained from setting s→ 1:

〈a†iak〉ρN ≡ nik ≡ n, (5.90)

The coordinate representation is obtained by using the field operators,
instead of a and a†, and a basis of single-particle coordinate-spin states
(x = r, σ),

〈ψ†(r, σ)ψ(r′σ′)〉ρN ≡ n(x, x′). (5.91)

For completeness, we give the normalization condition of the single-
particle density matrix in coordinate representation

N =
∑

σ

∫

dr 〈ψ†(r, σ)ψ(rσ)〉ρN . (5.92)

ii) The diagonal elements of the single-particle density operator (5.90) yield
the ensemble averaged occupations of the single-particle orbitals |i〉,

〈a†iai〉ρN ≡ nii = ni , (5.93)

30Note that it is not necessary to use (anti-)symmetrized states, because it is sufficient to
perform (anti-)symmetrization once. This follows from the properties of Λ±.
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whereas, in the coordinate representation, the diagonal elements yield
the local spin density

〈ψ†(r, σ)ψ(rσ)〉ρN ≡ nσ(r, r) = nσ(r). (5.94)

In contrast, the off-diagonal elements of expression (5.90) describe the
statistical probability of transitions between orbital |k〉 and |i〉. Similarly,
the off-diagonal elements of the coordinate-space expression (5.91) are
related to the probability of a particle undergoing a transition from spin
orbital |r′σ′〉 to |rσ〉.

iii) The second important case is the two-particle RDM,

〈a†i1a
†
i2
ak2ak1〉ρN ≡ n

(2)
i1,i2;k1,k2

≡ n(2), (5.95)

whereas its coordinate representation is,

〈ψ†(r1, σ1)ψ
†(r2, σ2)ψ(r

′
2σ

′
2)ψ(r

′
1σ

′
1)〉ρN ≡ n(2)(x1, x2; x

′
1, x

′
2). (5.96)

The two-particle density matrix is normalized according to

Tr12 n
(2) =

∞
∑

i1i2=1

〈a†i1a
†
i2
ai2ai1〉ρN = N(N − 1).

which we will derive in Ch. 6.

iv) All the above results are directly extended to time-dependent situations.
We simply have to introduce the Heisenberg operators in standard man-
ner,

ai → aHi(t) ≡ U †(t, t0)aiU(t, t0),

ψ(x)→ ψH(x, t) ≡ U †(t, t0)ψ(x)U(t, t0),

and so on. This will give rise to the time-dependent densities ni(t) and
nσ(r, t) etc. Thereby, the underlying dynamics of the Heisenberg ope-
rators were computed above: the field operators obey Eqs. (5.23) and
(5.27) and the general annihilation operator obeys Eq. (5.34). Thereby
the basis states are not changed, they remain time-independent.

As we just discussed, the time dynamics of a many-body system can be
obtained from the time evolution of the second quantization operators in the
Heisenberg picture. Alternatively, the dynamics can be derived from the equa-
tion of motion of the N -particle density operator ρN – the von Neumann equa-
tion which leads to the theory of reduced density operators. The equations of
motion is given by the BBGKY-hierarchy. This will be discussed in detail in
chapter 6. There we also establish the connection between the two approaches.
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5.11 Problems to Chapter 5

Problem 5.1 Derive the equation

i∂tψ̂H(x, t) = −U
†(t, t0)[Ĥ, ψ̂(x)]U(t, t0). (5.97)

Problem 5.2 Prove the identity (5.16): [ÂB̂, Ĉ] = Â[B̂, Ĉ]∓ ± [Â, Ĉ]∓B̂

Problem 5.3 Discuss the derivation of Eq. (5.23) for the case of a time-
dependent hamiltonian. Consider a time-dependent single-particle po-
tential, v(r, t).

Problem 5.4 Derive the general equation of motion (5.34) for the creation
and annihilation operators for the case of a time-independent external
potential.

Problem 5.5 Verify the equation of motion for the density matrix operator,
Eq. (5.66)


