
Kapitel 8

Nonequilibrium Green
Functions

Real-time nonequilibrium Green functions (NEGFs)1 naturally appear in the
extension of the ground state Green functions theory and of the Matsubara
formalism of (equilibrium) quantum many-body theory [54, 55] to situations
out of equilibrium. In this respect, the term “one-particle NEGF”, cf. Secti-
on 8.2.3, has a complex meaning including the notion “propagator” (retarded
Green function) as well as “correlation function”. The great success of NEGFs
is, in general, due to the fact that fundamentals of ground state and equilibrium
theory that include Feynman rules and diagram techniques, can be applied, wi-
thout major conceptual modifications, also to nonequilibrium situations. This
circumstance is sometimes referred to as “analytic continuation”.

Nonequilibrium Green functions are one of the most powerful approaches
to nonequilibrium quantum statistical mechanics and quantum kinetic equa-
tions [Bon98]. Their development was pioneered by Martin [56] and Schwin-
ger [Sch61] and was expedited by Kadanoff and Baym [27] in the USA and,
in parallel, by Keldysh [Kel64] in the USSR, see also Ref. [BJST19]. The main
achievements were rendered in the late 1950s and early 1960s and were sti-
mulated by quantum field theory. Since then, NEGFs have become standard
tools to derive quantum transport models on various levels of sophistication,
e.g., [23, 24, 25, 58, HK09], and have been applied to give quantum corrections
and many-body improvements to the Boltzmann equation [59, 60, SKB00].
On the other hand, NEGFs have nowadays2 reached the potential to nume-

1This chapter is based on a number of previous book chapters and reviews. In particular,
it is an extension of the presentation given in [BB13] and has been written together with
Simon Groth.

2Due to the continuously increasing power of computers.
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260 KAPITEL 8. NONEQUILIBRIUM GREEN FUNCTIONS

rically treat time-dependent quantum systems from first principles3. To this
end, one solves the basic equations of motion for the one-particle NEGF – the
Keldysh-Kadanoff-Baym equations (KBEs) – and obtains statistical and dy-
namical information about the system even in the presence of strong external
driving forces, far from the linear response regime.

8.1 Introduction

Our goal is the description of time-dependent processes in a fully interacting
quantum many-body system of identical particles. Using second quantization
with creation (f̂ †

i ) and annihilation (f̂i) operators acting on a many-particle
state |{n}〉 in Fock space4, that are constructed from a complete set of single-
particle orbitals, |i〉, we consider a generic time-dependent many-body hamil-
tonian,

Ĥ(t) =
∑

ij

〈i|h(t)|j〉 f̂ †
i f̂j +

1

2

∑

ij,kl

〈ij|w|kl〉 f̂ †
i f̂

†
j f̂l f̂k , (8.1)

h(t) = t+ v(t) ,

where t (v) is the kinetic (potential) energy of a single particle, w denotes the
two-body interaction potential, and 〈i|h(t)|j〉 and 〈ij|w|kl〉 are the correspon-
ding single-particle and two-particle matrix elements, cf. Chap. 3. The great
advantage of the second quantization formulation is that the commutation
(bosons) and anticommutation (fermions) relations5 ,

[f̂i, f̂
†
j ]∓ = δij , [f̂i, f̂j]∓ = [f̂ †

i , f̂
†
j ]∓ = 0 . (8.2)

take care of the correct symmetry of the many-body state. Moreover, the crea-
tion and annihilation operators often facilitate a simple form of single-particle
operators. While the number operator is just n̂i = f̂ †

i f̂i, the one-particle redu-
ced density matrix (1pRDM) operator reads,

n̂ij = f̂ †
i f̂j . (8.3)

This matrix of operators yields, after ensemble averaging, the familiar one-
particle density matrix nij = 〈n̂ij〉. Below, we will express it in terms of the
single-particle Green function, cf. Eq. (8.73).

3By this we mean that the equations of motion are formally exact with the accuracy
determined by the choice (approximation) of a single function – the self-energy.

4f̂
†
i (f̂i) adds (removes) a particle to (from) a spin orbital |i〉, e.g., Ref. [35] and Ch. 3.

5The (anti-)commutator is defined as [â, b̂]∓ = âb̂ ∓ b̂â where the minus (plus) refers to
bosons (fermions), cf. Sec. 3.4.
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In quantum mechanics, there exist different ways (“pictures”) to account
for time dependencies in a system. Despite their mathematical equivalence, the
one or the other may allow for a more advantageous formulation of the problem
considered in a particular case [for details, see Ch. 5]. NEGFs make essential
use of the Heisenberg picture (H). In contrast to the Schrödinger picture (S),

where the system’s state vector |Ψ(N)
S 〉 evolves in time and operators of obser-

vables are stationary6, the Heisenberg picture allows for the operators to evolve
in time while the state vectors remain time-independent. The transformation
between S and H is mediated by the unitary time evolution operator7, that
obeys the Schrödinger equation,

i~
∂

∂t
Û(t, t′) = ĤS(t) Û(t, t′) , (8.4)

or equivalently,

i~
∂

∂t′
Û(t, t′) = −Û(t, t′) ĤS(t

′) , (8.5)

with the initial condition Û(t, t) = 1. The solution is8,

Û(t, t′) := T̂ e−
i
~

∫ t

t′dt̄ ĤS(t̄) , if t > t′ , (8.6)

Û(t, t′) := ˆ̃T e+
i
~

∫ t′

t
dt̄ ĤS(t̄) , if t < t′ , (8.7)

Û(t, t′) Û(t′, t) = 1 ,

satisfying the group property

Û(t, t1)Û(t1, t
′) = Û(t, t′) , where t ≥ t1 ≥ t′ , (8.8)

and ĤS(t) is the full Hamiltonian. Further, we introduced the chronological (T̂ )

and anti-chronological ( ˆ̃T ) time-ordering operators defined by the following
action on a product of arbitrary time-dependent operators:

T̂
{

Â1(t1) . . . Ân(tn)
}

=
∑

P

Θ(tP(1) − tP(2)) . . . Θ(tP(n−1) − tP(n))

× ÂP(1)(tP(1)) . . . ÂP(n)(tP(n)) , (8.9)

ˆ̄T
{

Â1(t1) . . . Ân(tn)
}

=
∑

P

Θ(tP(1) − tP(2)) . . . Θ(tP(n−1) − tP(n))

× ÂP(n)(tP(n)) . . . ÂP(1)(tP(1)) , (8.10)

6If they do not have an explicit time-dependence like for example a time dependent
potential v̂(t).

7In matrix representation, the unitarity is expressed by Û †Û = 1.
8The solution (8.6) is obtained by integrating equation Eq. (8.4) from t′ to t leading to

the integral-equation Û(t, t′) = 1 − i~
∫ t

t′
dĤ(t̄) Û(t̄, t′) , which can be iterated yielding Eq.

(8.6). Similarly, the solution (8.7) is derived from Eq. (8.5).
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where the sum runs over all permutations P of the n-tuple (1, 2, . . . , n), and
the step function is defined by

Θ(t− t′) =

{

1 if t > t′ ,

0 if t < t′ .
(8.11)

Thus, the two time-ordering operators are not defined for equal times of the
operators to be ordered9!

Next, the Heisenberg operator ÂH corresponding to the Schrödinger ope-
rator ÂS is defined as

ÂH(t) := Û(t0, t) ÂS Û(t, t0) , (8.12)

and fulfills the Heisenberg equation:

i~
d

dt
ÂH(t) = i~

∂

∂t
ÂH(t) =

[

ÂH(t), ĤH(t)
]

−
+ i~

(

∂ÂS

∂t

)

H

. (8.13)

As noted already above, the corresponding state vector10

|Ψ(N)
H (t)〉 = Û(t0, t) |Ψ(N)

S (t)〉 = Û(t0, t) Û(t, t0) |Ψ(N)
S (t0)〉 = |Ψ(N)

S (t0)〉 , (8.14)

remains constant (t0 only gives a reference time) and any not explicitly time-
dependent operator that commutes with the Hamiltonian is a constant of mo-
tion, as is obvious from Eq. (8.13).

Proof that Eq. (8.12) is a solution of the Heisenberg equation

(8.13) (assuming ∂ÂS

∂t
≡ 0): Using the definition of the evolution operator Eq.

9It is not necessary to define the case of equal times, since under the integrals in the
expansion of the evolution operator, the value of each integral is not influenced by the value
of the integrand at the integral borders.

10In a third (intermediate) picture – the interaction (or Dirac) picture (I) –, the state

vector |Ψ(N)
I 〉 carries the (trivial) time dependence of some not explicitly time-dependent

part Ĥ0 of the full Hamiltonian Ĥ(t).
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(8.6), we calculate:

i~
dÂH

dt
= i~

d

dt
ˆ̃T
{

e
+ i

~

∫ t

t0
dt̄ ĤS(t̄)

}

ÂST̂
{

e
− i

~

∫ t

t0
dt̄ ĤS(t̄)

}

= − ˆ̃T
{

ĤS(t)e
+ i

~

∫ t

t0
dt̄ ĤS(t̄)

}

ÂST̂
{

e
− i

~

∫ t

t0
dt̄ ĤS(t̄)

}

+ ˆ̃T
{

e
+ i

~

∫ t

t0
dt̄ ĤS(t̄)

}

ÂST̂
{

ĤS(t)e
− i

~

∫ t

t0
dt̄ ĤS(t̄)

}

= −Û(t0, t)ĤS(t)ÂSÛ(t, t0) + Û(t0, t)ÂSĤS(t)Û(t, t0)

= −Û(t0, t)ĤS(t)Û(t, t0)Û(t0, t)ÂSÛ(t, t0)

+Û(t0, t)ÂSÛ(t, t0)Û(t0, t)ĤS(t)Û(t, t0)

=
[

ÂH, ĤH

]

−
. (8.15)

In prospect to the next section, this simple proof has been given to point out
the importance of the two different time-ordering operators when writing down
the explicit form of the evolution operators in the solution of the Heisenberg
equation11.

Combining the Heisenberg picture with the scond quantization, the creation
and annihilation operators in Eqs. (8.1) to (8.3) become time-dependent, i.e.,
we replace f̂i → f̂i,H(t). The (anti-)commutation relations of Eq. (8.2) then
remain valid in the equal-time limit only, for different times there is no relation.

Initial state. Many situations require to properly define the initial state
at some reference time t0. In equilibrium, this may be an eigenstate of the
system (for a pure quantum state) or a mixture of eigenstates defined through
the statistical operator ρ̂. For an interacting many-body system, there are
basically two different ways to account for stationary (generally correlated)
initial states:

i. through an adiabatic switch-on of the interaction [Kel64, Fuj65, Hal75,
62], where the system passes through a sequence of intermediate eigen-
states, or

ii. by starting from a (correlated) many-body state formulated in the picture
of the grand canonical ensemble (GCE), e.g. [62, 63].

Of course, other approaches exist which a priori define (non-)correlated no-
nequilibrium initial states, see, e.g., [BSH99, SBK03, KSB05] and references
therein.

11One might ask why we could apply the time-ordering in Eq. (8.15) since we did not
define the case of equal times. This problem can be circumvented by casting the integrals in
the exponents into Riemann sums. Thereby the Hamiltonians in the exponents will always
be evaluated at times smaller than t allowing us to apply the time-ordering operators as
defined.
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In this chapter, we mainly follow approach ii., because the mathematical
methods behind nonequilibrium Green functions are most comprehensively
developed along this line. However, strategy i. is not irrelevant, and we will
later emphasize its significance when using the generalized Kadanoff-Baym
ansatz (GKBA), see Section 8.9.2 and the G1–G2-scheme [SJB20].

8.2 Nonequilibrium Green functions

8.2.1 Keldysh Contour

From now on, we suppose that the quantum many-body system of Eq. (8.1)
[system a) in Fig. 8.1] exchanges particles and energy with a reservoir [sy-
stem b)]. In addition, we assume that both are in equilibrium for times t ≤ t0,
i.e. the external potential v(t) = 0, for times t ≤ t0. In equilibrium, the reser-
voir has the temperature12 T = (kBβ)

−1 and chemical potential µ. The system
and the reservoir are entangled which is the consequence of the coupling bet-
ween them, see Fig. 8.1. Therefore, the reduced density matrix of the system
must describe an ensemble of states (rather than a pure state), namely the
grand canonical ensemble in this specific setup. Carrying out the trace over
the reservoir under the assumption of a weak coupling between the reservoir
and the system leads to the well-known grand canonical density matrix13:

ρ̂GCE =
1

Z0

e−β(Ĥ−µN̂) , (8.16)

Z0 = Tr {e−β(Ĥ−µN̂)} , (8.17)

where Ĥ must be a time-independent (equilibrium) Hamiltonian and N̂ is the
number operator. The trace is performed by summing over a complete set of
states in the Fock space (commonly in occupation number representation).

With that, we can compute averages of an operator Â, for times t ≤ t0
according to14

〈

Â
〉

(t ≤ t0) = Tr {ρ̂S(t ≤ t0)ÂS} =
1

Z0

Tr {e−β(ĤS(t0)−µ N̂S) ÂS} . (8.18)

For times t > t0, the system hamiltonian has changed and become time-
dependent, so we have to use the time-dependent non-equilibrium density

12Note that out of equilibrium there is no such thing as “temperature”.
13Eq. (8.16) can also be derived by maximizing the entropy of the system which is as well

only valid for the equilibrium case.
14Again the subscript S in ÂS indicates the Schrödinger and ÂH the Heisenberg picture.
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Abbildung 8.1: Grand canonical ensemble (GCE) with inverse temperature
β = 1/(kBT ) and chemical potential µ. Whereas system b) denotes the heat
and particle reservoir, system a) is the basic (open) system under investigation.
In general, particles (black dots) and energy can be transferred between a)
and b). Further, w(2) = w denotes the two-body interaction between identical
particles with kinetic energy t(1) = t.

matrix for the calculation of the averages. Therefore, we have to return to
the general form of the density operator and express it in terms of the
equilibrium density matrix Eq. (8.16) via the evolution operator15:

ρ̂S(t) =
∑

r

Wr|Ψr
S(t)〉〈Ψr

S(t)| (8.19)

=
∑

r

WrÛ(t, t0)|Ψr
S(t0)〉〈Ψr

S(t0)|Û(t0, t)

= Û(t, t0)ρ̂S(t0)Û(t0, t)

= Û(t, t0)
1

Z0

e−β(ĤS(t0)−µN̂S)Û(t0, t) , (8.20)

with non-negative real probabilities Wr that sum to unity. Note that the evo-
lution operators appear here (3rd and 4th lines) differently than in a standard
Heisenberg operator, Eq. (8.12), because ρ̂ is not a conventional operator but
is constructed from state vectors.

Further, we make use of the formal equality of the canonical density ope-
rator and the evolution operator of the time-independent system described by

15Note the inverse ordering of the two time evolution operators, as compared to a standard
Heisenberg operator, in the final result. This arises due to the peculiar “ket-bra” structure
of the two states, in the definition of ρ̂S.
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ĤS(t0) in imaginary time, i.e.

e−βĤS(t0) = e+
i
~
ĤS(t0)[t0−(t0−i~β)]

= ˆ̃TIe
+ i

~
ĤS(t0)[t0−(t0−i~β)] (8.21)

= ˆ̃TIe
+ i

~

∫ t0
t0−i~βdt̄ ĤS(t0)

≡ Û0(t0 − i~β, t0) , (8.22)

where we introduced the anti-chronological time-ordering operator ˆ̃TI for ima-
ginary times (t0 − i~τ) ∈ [t0 − i~β, t0], τ ∈ R (chronological with respect to
τ). Its action is also defined by Eq. (8.10) when replacing t1 by t0 − i~τ1. In
fact, we could have added any time-ordering operator in Eq. (8.21), because
there is no product of time-dependent operators to be ordered. We chose the
anti-chronological order to identify the expression with the evolution operator
defined in Eq. (8.7)16. Finally, the subscript “0” in Û0(t0 − i~β, t0) indicates
that this evolution operator has to be evaluated using the time-independent
Hamiltonian ĤS(t0).

Combining Eq. (8.20) and (8.22), the time-dependent averages of observa-
bles for t ≥ t0 become

〈

Â
〉

(t) = Tr {ρ̂S(t)ÂS}

=
1

Z0

Tr {eβµN̂SÛ(t, t0)Û0(t0 − i~β, t0)Û(t0, t)ÂS}

=
1

Z0

Tr {eβµN̂SÛ0(t0 − i~β, t0)Û(t0, t)ÂSÛ(t, t0)} (8.23)

=
1

Z0

Tr {eβµN̂SÛ0(t0 − i~β, t0)ÂH(t)}

= Tr {ρ̂HÂH(t)} =:
〈

ÂH(t)
〉

, (8.24)

where we took advantage of the fact that all Hamiltonians investigated here
commute with the number operator17, i.e.

[

ĤS(t), N̂S

]

= 0 ⇐⇒ e−β(ĤS(t)−µN̂S) = e−βĤS(t)eβµN̂S , (8.25)

and, in Eq. (8.23), we used the cyclic invariance of the trace. The last line in Eq.
(8.24) has been given to define what is meant by averaging over a Heisenberg

16Note that t0 − i~β is “smaller” than t0 with respect to the imaginary part.
17These are all Hamiltonians with an equal number of creation and annihilation operators.
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Abbildung 8.2: Keldysh contour C full (red) line including three different bran-
ches: the upper branch a) with chronological time-ordering T̂ evolving with

ĤS(t̄), the lower branch b) with anti-chronological time-ordering ˆ̃T evolving
with ĤS(t̄) and the imaginary branch c) with anti-chronological time-ordering
ˆ̃TI with respect to t0 − i~τ (chronological with respect to τ) evolving with
ĤS(t0). On C it is z1 < z2 < z3. The dashed line shows the extended contour
reaching to plus infinity.

operator18. For further investigation of the third line in Eq. (8.23) we write
down the evolution operators explicitly:

〈

Â
〉

(t) =
1

Z0

Tr

{

eβµN̂S ˆ̃TI

{

e−
i
~

∫ t0−i~β
t0

dt̄ ĤS(t0)
}

× ˆ̃T
{

e−
i
~

∫ t0
t dt̄ ĤS(t̄)

}

ÂST̂
{

e
− i

~

∫ t

t0
dt̄ ĤS(t̄)

}}

.(8.26)

When acting on a ket-vector under the trace (meaning we read from right
to left), first, the ket-vector is propagated on the real time axis from t0 to t
(chronological time ordering, cf. the integration limits in the right exponential)
where the operator ÂS(t) acts. Second, the ket-vector is evolved back from
t to t0 (anti-chronological time-ordering) and third, an additional evolution
of the ket-vector occurs along the imaginary axis from t0 to t0 − i~β (again
anti-chronological time-ordering). This forward and backward propagation is
a direct consequence of the Heisenberg representation of operators.

18By definition ρ̂H ≡ ρ̂S(t0). Therefore, it is the time independent density operator ρ̂S(t0)
that enters the trace when averaging a Heisenberg operator.
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However, for a variety of many-body approaches (e.g. Feynman diagram
technique), it is required to work with time-ordered operator products.
To achieve this, in the present case, one can apply a simple trick which is
originally due to Keldysh [Kel64]: we design a “time contour”19 C consisting of
three branches (see Fig. 8.2), From now on, we will use the letter z to denote
a contour time variable lying on one of the three branches or, equivalently,
we use the letter t and explicitly specify the corresponding branch with the
subscripts20 −,+, | (cf. Fig. 8.2). With this notation, the contour can be written
as the union of the three branches:

C = [t0−, t] ∪ [t, t0+] ∪ [t0+, t0+ − i~β] . (8.27)

With this special contour, the action of all operators appears in a “forward”
(“chronological”) order.

8.2.2 Algebra on the Keldysh contour

In this section we consider in more detail how to understand Heisenberg opera-
tors on the Keldysh contour. The following equations define the three possible
cases:

ÂH(t1−) := Û(t0, t1)ÂSÛ(t1, t0) (8.28)

ÂH(t1+) := Û(t0, t1)ÂSÛ(t1, t0) (8.29)

ÂH(t1|) := ÂH(t0 − iτ1)

= Û0(t0, t0 − iτ1)ÂSÛ0(t0 − iτ1, t0)

= e+
τ1
~
ĤS(t0)ÂSe

−
τ1
~
ĤS(t0) , with τ1 ∈ R . (8.30)

Therefore, it is irrelevant for the operators whether the contour argument lies
on the upper or lower branch for it is always the corresponding real time (see
Fig. 8.2) that is used for evaluation of the evolution operator. Moreover, one
should note that the imaginary time evolution operator is not unitary, i.e.
Û †
0(t0, t0 − iτ1) 6= Û0(t0 − iτ1, t0).

Now, we define a generalized time-ordering operator T̂C, which works chro-
nologically (anti-chronologically) on the upper (lower and imaginary) branch of
the contour, thereby arranging imaginary times which originate from the ver-
tical branch behind (i.e. “later” than) purely real times. For a contour-ordered

19or Keldysh or round-trip contour
20The upper branch is indicated with “-” since it is “earlier” on the contour.
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product of operators Â1,H(z1) . . . Ân,H(zn), we have (z1, . . . zn ∈ C),

T̂C{Â1,H(z1) . . . Ân,H(zn)} :=
∑

P

θC(zP(1) − zP(2)) . . . θC(zP(n−1) − zP(n))

× ÂP(1),H(zP(1)) . . . ÂP(n),H(zP(n)) , (8.31)

with

θC(z − z′) :=

{

1 , if z > z′ on C
0 , if z < z′ on C ,

(8.32)

again leaving out the definition for equal contour times. Thus, the contour
time-ordering operator simply puts the latest times on the contour to the
leftmost place in a contour ordered product. Of course, the definition of the
contour Heisenberg operator (Eq. (8.28) should only be used after the contour
time-ordering operator has been applied. By defining also the Hamiltonian on
the contour21,

ĤS(z̄) :=







HS(t̄) , if z ∈ [t0−, t] ∪ [t, t0+] ,

HS(t0) , if z ∈ [t0+, t0+ − i~β] ,
(8.33)

we can finally rewrite the time-dependent average of an observable (Eq. (8.26))
and find the following important expression:

〈

Â
〉

(z) :=
1

Z0

Tr
{

eβµN̂ST̂C

{

e(−
i
~

∫

Cdz̄ ĤS(z̄))ÂS|z
}}

(8.34)

:=
1

Z0

Tr {eβµN̂SÛC ÂS|z} ,

where the notation ÂS|z is only used to specify the contour time at which
the (in general) time-independent Schrödinger operator has to act. We refer
to ÛC as the generalized time evolution operator or contour time evolution
operator, which is defined by the following equations:

21t̄ denotes the real time belonging to the contour time z̄.
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ÛC(t0+ − i~β, t0−) := T̂C e
− i

~

∫

Cdz̄ ĤS(z̄) (8.35)

:= T̂C exp

{

− i

~

(∫ t0+−i~β

t0+

dt̄| ĤS(t̄|)

+

∫ t0+

t

dt̄+ ĤS(t̄+) +

∫ t

t0−

dt̄− ĤS(t̄−)

)}

(8.36)

= ˆ̃TI

{

e−
i
~

∫ t0−i~β
t0

dt̄ ĤS(t0)
}

ˆ̃T
{

e−
i
~

∫ t0
t dt̄ ĤS(t̄)

}

×T̂
{

e
− i

~

∫ t

t0
dt̄ ĤS(t̄)

}

(8.37)

= Û0(t0 − i~β, t0)Û(t0, t)Û(t, t0)

= Û0(t0 − i~β, t0) . (8.38)

Going from Eq. (8.36) to Eq. (8.37), we applied the contour time-ordering
operator and used the relation between the contour and the real time Ha-
miltonian Eq. (8.33). These two steps must be done at once, since the three
time-ordering operators in the third line are defined for real times only (T̂C

for contour times only). The last three lines are not correct, if the generali-
zed evolution operator appears together with a Schrödinger operator like in
Eq. (8.34). In that case ÂS|z has to be inserted at the proper position in bet-
ween the contour integrals. Nevertheless, we can obviously express the grand
partition function in terms of the generalized evolution operator:

Z0 = Tr {eβµN̂SÛC}. (8.39)

For a better understanding of the introduced Keldysh contour and the contour

function
〈

Â(z)
〉

a few remarks should be made:

i ) The spacing between the upper and the lower branch in Fig. 8.2 is to be
understood as an illustrative help only. In fact both branches lie exactly
on top of each other. That is why the time t lies on both branches, i.e.
t = t− = t+, if t is the turning point of the contour on the real axis22 .

ii ) As a result of the group property of the evolution operator, the contour
can easily be extended to infinity on the real axis. For that purpose let us

22In the second remark, we extend the contour and shift the turning point on the real axis
to +∞. Then we should replace “t” by ∞ in the definitions Eq. (8.33) and (8.27) since in
that case the relation ∞ = ∞− = ∞+ holds.
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consider the contour time-dependent average
〈

Â
〉

(z) for the case when

z lies on the upper branch, i.e. z = t1− ∈ [t0−, t]

〈

Â
〉

(t1−) =
1

Z0

Tr
{

eβµN̂ST̂C

{

e−
i
~

∫

Cdz̄ ĤS(z̄)ÂS|t1−
}}

(8.40)

=
1

Z0

Tr

{

eβµN̂ST̂C

{

e
− i

~

t0+−i~β
∫

t0+

dt̄|ĤS(t̄|)

e
− i

~

t0+
∫

t

dt̄+ĤS(t̄+)

×e
− i

~

∫ t

t1−
dt̄− ĤS(t̄−)

}

ÂST̂C

{

e
− i

~

∫ t1−
t0−

dt̄− ĤS(t̄−)

}}

(8.41)

=
1

Z0

Tr

{

eβµN̂ST̂C

{

e
− i

~

∫ t0+−i~β

t0+
dt̄| ĤS(t̄|)e−

i
~

∫ t0+
∞ dt̄+ ĤS(t̄+)

×e
− i

~

∫∞
t1−

dt̄− ĤS(t̄−)

}

ÂST̂C

{

e
− i

~

∫ t1−
t0−

dt̄− ĤS(t̄−)

}}

(8.42)

=
1

Z0

Tr

{

eβµN̂SÛ0(t0 − i~β, t0)×

Û(t0,∞)Û(∞, t1)ÂSÛ(t1, t0)

}

(8.43)

=
1

Z0

Tr

{

eβµN̂SÛ0(t0 − i~β, t0)Û(t0, t1)ÂSÛ(t1, t0)

}

(8.44)

=
〈

Â
〉

(t1), (8.45)

where t1 is the corresponding real time of t1−. The extension of the
contour occurred in Eq. (8.42) by adding the terms

∫ t

∞

dt̄+ ĤS(t̄+) +

∫ ∞

t

dt̄− ĤS(t̄−) , (8.46)

in the exponents. These two terms cancel each other under the contour
time-ordering operator which is shown in Eq. (8.43) and (8.44). Since we
could have done the same calculation for z = t1+ ∈ [t, t0+], we are free to
extend the contour up to infinity (see Fig. 8.2 dashed line) and replace
“t” by “∞” in the definitions (8.33) and (8.27). Moreover, we found
that the following relation between the real and contour time-dependent
average of an observable holds:

〈

Â
〉

(t1−) =
〈

Â
〉

(t1), ∀ t1− ∈ [t0−,∞] ,
〈

Â
〉

(t1+) =
〈

Â
〉

(t1), ∀ t1− ∈ [∞, t0+] . (8.47)



272 KAPITEL 8. NONEQUILIBRIUM GREEN FUNCTIONS

This is not surprising when remembering the definition of the Heisenberg
operators on the contour, Eq. (8.28). Still, it shows that our introduced
contour formalism is consistent, which is always a nice result.

iii ) Now, let us investigate the case when z lies on the imaginary branch,
i.e. z = t1| = t0+ − iτ1 ∈ [t0+, t0+ − i~β]. We then have

〈

Â
〉

(t1|) =
1

Z0

Tr
{

eβµN̂ST̂C

{

e−
i
~

∫

Cdz̄ ĤS(z̄ÂS|t1|
}}

(8.48)

=
1

Z0

Tr
{

eβµN̂ST̂C

{

e
− i

~

∫ t0+−i~β

t0+−iτ1
dt̄| ĤS(t̄|)

}

ÂS

×T̂C

{

e
− i

~

∫ t0+−iτ1
t0+

dt̄| ĤS(t̄|)

}

Û(t0,∞)Û(∞, t0)
︸ ︷︷ ︸

1̂

}

(8.49)

=
1

Z0

Tr
{

eβµN̂SÛ(t0 − i~β, t0 − iτ1)

×ÂSÛ(t0 − iτ1, t0)
}

(8.50)

=
1

Z0

Tr
{

eβµN̂SÛ(t0 − iτ1, t0)

×Û(t0 − i~β, t0 − iτ1)ÂS

}

(8.51)

=
1

Z0

Tr
{

eβµN̂SÛ(t0 − i~β, t0 − iτ1)

×Û(t0 − iτ1, t0)ÂS

}

(8.52)

=
1

Z0

Tr
{

eβµN̂SÛ(t0 − i~β, t0)ÂS

}

(8.53)

= Tr
{

ρ̂(t0)ÂS

}

=
〈

Â
〉

(t0), ∀τ1 ∈
[

0,
~

β

]

. (8.54)

First, we used the cyclic invariance of the trace, in Eq. (8.51), and second,
the fact that Hamiltonians of different times commute under a time-
ordered product of equal type, so we could commute the two evolution
operators, Eq. (8.52), to apply the group property. Since t1| was arbitrary,
we found the interesting relation:

〈

Â
〉

(t0+ − iτ) =
〈

Â(t0)
〉

, ∀ τ1 ∈ [0, β] . (8.55)

That means the contour time-dependent average
〈

Â
〉

(z) will always

be the average of the unperturbed system
〈

Â
〉

(t0) when z lies on the

imaginary branch.
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iv ) It is crucial not to confuse
〈

ÂH

〉

(z) with
〈

ÂH

〉

(t) because mathema-

tically these are completely different functions. The link between them

is given by Eqs. (8.55) and (8.47). Furthermore23,
〈

ÂH

〉

(z) can be con-

sidered the simplest form of a contour-ordered function. In general these
are of the form:

〈

T̂C

{

Â1,H(z1)Â2,H(z2) . . . Ân,H(zn)
}〉

, (8.56)

i.e. an average of a contour-ordered product of Heisenberg operators24. In
that case, relation (8.55) holds only for equal times (z1 = z2 = . . . = zn),
where z1 lies on the imaginary branch. If the times are different, the
operators will separate the evolution along the imaginary branch into
more than just two parts (cf. Eq. (8.49)), so we could not reconstruct
the equilibrium density matrix by using the cyclic invariance of the trace.
Nevertheless, if a physical observable, described by a single first quantized
operator, is generalized to the contour, as done in this chapter, relation
(8.55) holds.

v ) Naturally, in case of a time-independent Hamiltonian (equilibrium), it
is

〈

Â
〉

(z) =
〈

ÂH(z)
〉

=
〈

Â
〉

(t0), ∀ z, (8.57)

i.e. the expectation value of a time-dependent Heisenberg operator is
always time-independent in equilibrium. This is readily seen in Eq. (8.43),
if one uses again the cyclic invariance of the trace and the fact that

[

eβµN̂SÛ0(t0 − i~β, t0), Û(t0, t1)
]

−
=
[

e−β(ĤS,0−µN̂S), e−
i
~
ĤS,0(t0−t1)

]

−
= 0 .

(8.58)

vi ) The presence of the Keldysh contour assesses a contour algebra which
was described in detail by DuBois [DuB67] and Langreth [64] and which
culminates in the application of the Langreth-Wilkins rules [65], see Ta-
ble 8.1.

23Note that
〈

ÂS

〉

(z) =
〈

ÂH

〉

(z). The difference lies only in the averaging, i.e. the

Schrödinger operator is averaged with ρ̂(t) whereas the Heisenberg operator is averaged

with ρ̂(t0). That is why we did not write a subscript in
〈

Â
〉

(z) for they both refer to the

same expression when writing the averaging explicitly (cf. Eq. (8.34).
24
〈

T̂CÂH(z)
〉

=
〈

ÂH(z)
〉

=
〈

Â
〉

(z)
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8.2.3 One-Particle Nonequilibrium Green Function

In Sec. 8.2.1 we have introduced the contour formalism for the computation
of the time-dependent expectation value of an arbitrary operator Â in first
quantization. Now, we will combine the contour formalism with the second
quantization, which directly brings us to the Nonequilibrium Green Functions
(NEGF). Let us write a general operator Â of one-particle type in second
quantization in the Heisenberg picture:

ÂH(t) = Û(t0, t)ÂSÛ(t, t0)

=
∑

j,i

ajiÛ(t0, t)f̂
†
j,Sf̂i,SÛ(t, t0)

=
∑

j,i

ajiÛ(t0, t)f̂
†
j,S Û(t, t0)Û(t0, t)
︸ ︷︷ ︸

1̂

f̂i,SÛ(t, t0)

=
∑

j,i

ajif̂
†
j,H(t)f̂i,H(t) . (8.59)

[If the Schrödinger operator is time-dependent we have to replace aji(t) →
aHji(t) = U(t0, t)aji(t)U(t; t0).] Ensemble averaging over the equilibrium density
operator, ρ̂(t0), yields:

〈

ÂH

〉

(t) =
∑

j,i

aji

〈

f̂ †
j,H(t)f̂i,H(t)

〉

=
∑

j,i

ajinji(t) =
〈

Â
〉

(t). (8.60)

Thus, if we know the time-dependent 1pRDM, we can compute all non-equilib-
rium observables of one-particle type which is our goal. One way to do this is
to derive the equation of motion for the 1pRDM nji(t) which follows e.g. from
the BBGKY-hierarchy, as we discussed in chapter 6.

The alternative we consider here is the NEGF formalism which is based
on two main ideas. First, we generalize the expectation value of the creation
and annihilation operator product in Eq. (8.60) to a contour function, cf. Eq.
(8.34):

〈

f̂ †
j,H(z)f̂i,H(z)

〉

=
1

Z0

Tr
{

eβµN̂ST̂C

{

e−
i
~

∫

Cdz̄ ĤS(z̄)f̂ †
j,S|zf̂i,S|z

}}

, (8.61)

and second, we further generalize this function by also allowing for different
contour time arguments. For a better analysis of the resulting function later
on, it is convention to add another contour time-ordering operator and in-
terchange the creation and annihilation operator, which leads to a so called
contour-ordered function. After multiplying by − i

~
, we arrive at the definition
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of the contour-ordered, one-particle nonequilibrium Green function
(1pNEGF):

G
(1)
ij (z, z

′) := − i

~

〈

T̂C f̂i,H(z)f̂
†
j,H(z

′)
〉

. (8.62)

To make the relation between Eq. (8.61) and the definition (8.62) more obvious,
we again write the averaging explicitly:

G
(1)
ij (z, z

′) = − i

~

1

Z0

Tr
{

eβµN̂ST̂C

{

e−
i
~

∫

Cdz̄ ĤS(z̄)T̂C

{

f̂i,S|zf̂ †
j,S|z′

}}}

= − i

~

1

Z0

Tr
{

eβµN̂ST̂C

{

e−
i
~

∫

Cdz̄ ĤS(z̄)f̂i,S|zf̂ †
j,S|z′

}}

, (8.63)

where we have taken advantage of the fact that a time-ordered product does
not change under the action of a time-ordering operator, i.e. T̂CT̂C = T̂C. Until
now, the 1pNEGF, Eq. (8.62), seems to be just an even more complex object
than the 1pRDM. The main advantage of this two-time formalism lies in the
new possibilities of calculating the 1pNEGF directly from its own equation of
motion.

From now on, we will drop the subscripts S and H, i.e. f̂i|z and f̂i are
Schrödinger operators whereas f̂i(z) denotes a Heisenberg operator. We will
now express the 1pNEGF by two new quantities by explicitly writing out the
definition of the time-ordering operator:

G
(1)
ij (z, z

′) = − i

~

〈

T̂C f̂i(z) f̂
†
j (z

′)
〉

= (8.64)

= θC(z − z′)G
(1)>
ij (z, z′) + θC(z

′ − z)G
(1)<
ij (z, z′) ,

where the lesser and greater components25 are,

G
(1)>
ij (z, z′) := − i

~

〈

f̂i(z) f̂
†
j (z

′)
〉

, (8.65)

G
(1)<
ij (z, z′) := ∓ i

~

〈

f̂ †
j (z

′) f̂i(z)
〉

.

Note that G(1)< carries a negative (positive) sign for bosons (fermions)26, which
is motivated by the equal time (anti-)commutation relations27

[f̂i(z), f̂
†
j (z)]∓ = δij , [f̂

(†)
i (z), f̂

(†)
j (z)]∓ = 0 . (8.66)

25The greater and lesser components are also called correlation functions.
26There exist also “anomalous” Green functions containing two annihilation or two crea-

tion operators that are relevant for quantum coherence phenomena such as superfluidity or
superconductivity [66, 67] which will not be considered here.

27Writing f̂
(†)
j (z2) means that the equation is true for both f̂

†
j (z2) and f̂j(z2) respectively.
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Since we have (by convention) not separated in Eq. (8.64) a singular contri-
bution proportional to δ(z − z′), we will lateron encounter a discontinuity at
equal times in the 1pNEGF.

Furthermore, in agreement with Eq. (8.64) and (8.65), we have to redefine
our contour time-ordering operator for bosonic and fermionic creation and
annihilation operators:

T̂C

{

f̂
(†)
1 (z1) . . . f̂

(†)
n (zn)

}

:=
∑

P

(±1)P θC(zP(1) − zP(2)) . . . θC(zP(n−1) − zP(n))

× f̂
(†)
P(1)(zP(1)) . . . f̂

(†)
P(n)(zP(n)) , (8.67)

where P denotes the number of pair permutations (the parity) of field operators
in P . In other words, from now on, we will have a sign change whenever we
commute two fermionic field operators [creation (annihilation) with creation
(annihilation) or creation with annihilation] to obtain a proper contour ordered
product. Thus, interchanging an operator Â(z) consisting of an equal number
of creation and annihilation operators (e.g. n̂ij(z) = f̂ †

i (z)f̂j(z)) with a single
field operator will not cause a sign change. For example, for fermions (for
bosons there is no change in signs) it is

T̂C{f̂i(z1)f̂ (†)
j (z2)n̂kl(z3)} =θC(z1 − z2)θC(z2 − z3)f̂i(z1)f̂

(†)
j (z2)n̂kl(z3) (8.68)

+ θC(z1 − z3)θC(z3 − z2)f̂i(z1)n̂kl(z3)f̂
(†)
j (z2)

+ θC(z3 − z1)θC(z1 − z2)n̂kl(z3)f̂i(z1)f̂
(†)
j (z2)

− θC(z3 − z1)θC(z1 − z2)f̂
(†)
j (z2)f̂i(z1)n̂kl(z3)

− θC(z2 − z3)θC(z3 − z1)f̂
(†)
j (z2)n̂kl(z3)f̂i(z1)

− θC(z3 − z2)θC(z2 − z1)n̂kl(z3)f̂
(†)
j (z2)f̂i(z1) ,

where, in the last three terms, f̂i(z1) and f̂
(†)
j (z2) have been interchanged,

which caused the sign change. In agreement with the above definitions, we
further have:

T̂C

{

f̂i(z1)f̂
(†)
j (z2)n̂kl(z3)

}

=T̂C

{

f̂i(z1)n̂kl(z3)f̂
(†)
j (z2)

}

(8.69)

=T̂C

{

n̂kl(z3)f̂i(z1)f̂
(†)
j (z2)

}

,

and

T̂C

{

f̂i(z1)f̂
(†)
j (z2)n̂kl(z3)

}

= ±T̂C

{

f̂
(†)
j (z2)f̂i(z1)n̂kl(z3)

}

. (8.70)
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Relations (8.68)–(8.70) are of utmost importance in the following sections,
especially when it comes to the derivation of the Contour Keldysh-Kadanoff-
Baym Equations (KBE), which represent the main equations of the NEGF-
formalism.

Note that the time-ordering operator defined in Eq. (8.67) is linear, i.e. for
arbitrary operators Â, B̂, Ĉ in Fock-space, it is

T̂C

{

(Â+ B̂)Ĉ
}

= T̂C

{

ÂĈ
}

+ T̂C

{

B̂Ĉ
}

, (8.71)

and, since any operator in Fock-space possesses a series expansion of the form

Â =
∑

i

(

aif̂i + bif̂
†
i

)

+
∑

ij

(

aij f̂if̂
†
j + bij f̂

†
i f̂

†
j + cij f̂if̂j + dij f̂

†
i f̂j

)

+ . . . ,

(8.72)

the definition (8.67) is sufficient to define the time-ordering for arbitrary Fock
operators.

Equal time limite of the 1pNEGF. In fact, the 1pNEGF has not been
defined for equal times until now, since we have not defined T̂C for equal times.
To reproduce the 1pRDM (8.61) in the equal time case, we proceed as follows:

±i~G
(1)
ij (z, z

+) := ±i~ lim
ǫ→0

G
(1)
ij (z, z + ǫ)

= ±i~G
(1),<
ij (z, z) = (±)i~(∓)

i

~

〈

f̂ †
j (z) f̂i(z)

〉

= nji(z). (8.73)

Thus, we use the trick with the time argument z+ to enforce the desired order
of the two field operators.

As an illustration, we consider the coordinate representation of the 1pNEGF,
i.e. we replace |i〉 → |r〉, 〈r|i〉 = Φi(r), f̂i(z) → Ψ̂(r, z) =

∑

i Φi(r)f̂i(z):

G(1)(r, z, r′, z′) = − i

~

〈

T̂CΨ̂(r, z)Ψ̂†(r′, z′)
〉

(8.74)

= − i

~

∑

i,j

Φi(r)Φ
∗
j(r

′)
〈

T̂C f̂i(z)f̂
†
j (z

′)
〉

=
∑

i,j

Φi(r)Φ
∗
j(r

′)G
(1)
ij (z, z

′). (8.75)

Now let us consider how important quantities can be computed from the
1pNEGF. The total spatial and current density are given by (for bosons/fermions
of mass m and no external vector potential applied),

n(r, z) = ±i~G(1)(rz, r, z+) , (8.76)

j(r, z) = ±i~

{
~

2mi
(∇r −∇r′) G

(1)(r z, r′, z+)

}

r′=r

.
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From the last section [cf. Eq. (8.47) and (8.55)], we know the relation between
these contour observables and the real-time observables, e.g., for the contour
spatial density, is

n(r, t−) = n(r, t), ∀ t− ∈ [t0−,∞],

n(r, t+) = n(r, t), ∀ t+ ∈ [∞, t0+],

n(r, t0+ − i~τ) = n(r, t0), ∀ τ ∈ [0, β] . (8.77)

It can be shown that not only observables of one-particle type can be calculated
from the 1pNEGF, but also the interaction energy can be computed from its
dynamics.

Finally, another important quantity is the spectral function defined by:

Aij(z, z
′) = i~

{

G
(1),>
ij (z, z′)−G

(1),<
ij (z, z′)

}

, (8.78)

which gives access to the local density of states and the addition, and removal
energies. Another important quantity that can be obtained from the single-
particle NEGF is the mean interaction energy which is given by (in momentum
representation)

〈V̂12〉(t) = ± i
V
4

∫
d~p

(2π~)3

{

(i ∂t − i ∂t′)−
p2

m

}

G<(~p, t, t′)|t=t′ , (8.79)

where V denotes the volume, and the definition of G< for real time arguments
will be introduced below. Recall that, with density operators we needed the
two-particle density operator to compute expectation values of two-particles
observables such as the mean interaction energy. Together with the spectral
function, this example demonstrates the advantage of the two-time formalism.

For completeness, we give the definition of the N-particle contour or-
dered NEGF:

G
(n)
i1,i2,...,in,j1,j2,...,jn

(z1, . . . , zn, z
′
1, . . . , z

′
n) :=

(

− i

~

)n 〈

T̂C

{

f̂i1(z1), . . . , f̂in(zn), f̂
†
jn
(z′n), . . . , f̂

†
j1
(z′1)

}〉

. (8.80)

8.2.4 Matrix Representation of the Green Function

Instead of the prevailing definition (8.62), also matrix representations with re-
spect to the contour time arguments of the 1pNEGF have emerged [68, 69].
These representations are needed for the solution of the equations of motion of
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the 1pNEGF, which we will derive later on. As there are generally nine possi-
bilities to distribute the two time arguments along the three contour branches
a), b) and c) of Fig. 8.2, we will have to deal with 3 by 3 matrices of the form

G
(1)
ij (z, z

′) ∼=






G
(1)
ij (t−, t

′
−) G

(1)
ij (t−, t

′
+) G

(1)
ij (t−, t

′
|)

G
(1)
ij (t+, t

′
−) G

(1)
ij (t+, t

′
+) G

(1)
ij (t+, t

′
|)

G
(1)
ij (t|, t

′
−) G

(1)
ij (t|, t

′
+) G

(1)
ij (t|, t

′
|)




 = G

(1)
ij (z, z

′) . (8.81)

The first equality has to be understood in the way that the contour 1pNEGF is
completely defined by the components of the matrix on the r.h.s. From now on,
the bold notation G

(1)
ij (z, z

′) refers to the 1pNEGF in matrix representation28.
In the following, we will analyze this matrix and express its components in
terms of some new quantities that depend only on the corresponding real
times. For that purpose it is useful to keep in mind Fig. 8.2.

We will start with G
(1)
ij (t+, t

′
−), where the first argument lies on the lower

and the second on the upper branch. Since t+ and t′− are contour times it is
t+ > t′−:

G
(1)
ij (t+, t

′
−) = − i

~

〈

T̂C{f̂i(t+)f̂ †
j (t

′
−)}
〉

= − i

~

〈

f̂i(t+)f̂
†
j (t

′
−)
〉

= − i

~

〈

f̂i(t)f̂
†
j (t

′)
〉

:= G
(1)>
ij (t, t′) . (8.82)

First, we have applied the contour time ordering operator and afterwards in-
serted the definition of the contour Heisenberg operators (cf. Eq. 8.28). The
second line in Eq. (8.82) defines one of the real-time correlation functions,
which must not be confused with the contour correlation function (cf. Eq.

8.65), for these are completely different quantities [θC(z − z′)G
(1)>
ij (z, z′) pos-

sesses itself a matrix representation of the form of Eq. (8.81))]. We will now

28Note that the Green function possesses a matrix representation in two ways, first, con-
cerning the spin-orbitals i and j and second, concerning the contour time.
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carry on in the same way with the rest of the components,

G
(1)
ij (t−, t

′
+) = − i

~

〈

T̂C{f̂i(t−)f̂ †
j (t

′
+)}
〉

= − i

~
(±)

〈

f̂ †
j (t

′
+)f̂i(t−)

〉

= ∓ i

~

〈

f̂ †
j (t

′)f̂i(t)
〉

:= G
(1)<
ij (t, t′), (8.83)

G
(1)
ij (t−, t

′
−) = − i

~

〈

T̂C{f̂i(t−)f̂ †
j (t

′
−)}
〉

= − i

~

〈

T̂{f̂i(t)f̂ †
j (t

′)}
〉

= − i

~

(

Θ(t− t′)
〈

f̂i(t)f̂
†
j (t

′)
〉

±Θ(t′ − t)
〈

f̂i(t)f̂
†
j (t

′)
〉)

= Θ(t− t′)G
(1)>
ij (t, t′) + Θ(t′ − t)G

(1)<
ij (t, t′)

=: G
(1)c
ij (t, t′) (8.84)

G
(1)
ij (t+, t

′
+) = − i

~

〈

T̂C{f̂i(t+)f̂ †
j (t

′
+)}
〉

= − i

~

〈
ˆ̃T{f̂i(t)f̂ †

j (t
′)}
〉

= − i

~

(

Θ(t′ − t)
〈

f̂i(t)f̂
†
j (t

′)
〉

±Θ(t− t′)
〈

f̂i(t)f̂
†
j (t

′)
〉)

= Θ(t′ − t)G
(1)>
ij (t, t′) + Θ(t− t′)G

(1)<
ij (t, t′)

=: G
(1)a
ij (t, t′). (8.85)

The components G
(1)c
ij (t, t′) and G

(1)a
ij (t, t′) are called causal (c) and anti-causal

(a) Green function. Obviously, only two of these four components are inde-
pendent since the causal and anti-causal Green function are defined by the
correlation functions. Moreover, it is common to express the components in
terms of the retarded (R) and advanced (A) Green functions,

G
(1),R/A
ij (t, t′) : = ±Θ(±[t− t′])

{

G
(1),>
ij (t, t′)−G

(1),<
ij (t, t′)

}

, (8.86)

G
(1)c
ij (t, t′) = Θ(t− t′)G

(1)>
ij (t, t′) + Θ(t′ − t)G

(1)<
ij (t, t′)

= G
(1),R
ij (t, t′) + [Θ(t− t′) + Θ(t′ − t)]

︸ ︷︷ ︸

1

G
(1),<
ij (t, t′)

= G
(1),<
ij (t, t′) +G

(1),R
ij (t, t′) , (8.87)

G
(1)a
ij (t, t′) = G

(1),>
ij (t, t′)−G

(1),R
ij (t, t′) . (8.88)

Consider now the four components with one argument on the upper (or lower)
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branch and the other on the imaginary branch,

G
(1)
ij (t|, t

′
−) = − i

~

〈

T̂C f̂i(t|)f̂
†
j (t

′
−)
〉

= − i

~

〈

f̂i(t0 − i~τ)f̂ †
j (t

′)
〉

=: G(1)⌈(t0 − i~τ, t′) (8.89)

G
(1)
ij (t|, t

′
+) = G(1)⌈(t0 − i~τ, t′) (8.90)

G
(1)
ij (t−, t

′
|) = − i

~

〈

T̂C f̂i(t−)f̂
†
j (t

′
|)
〉

= − i

~
(±)

〈

f̂ †
j (t0 − i~τ ′)f̂i(t)

〉

:= G
(1)⌉
ij (t, t0 − i~τ ′) (8.91)

G
(1)
ij (t+, t

′
|) = G

(1)⌉
ij (t, t0 − i~τ ′) , (8.92)

where, again, only two of these four components are independent. The su-
perscripts ⌈ and ⌉ are quite intuitive when reading them from left to right
(regarding the position of the arguments on the contour). Finally, we have
the Matsubara Green function (MGF) with both arguments on the imaginary
branch29,

G
(1)
ij (t|, t

′
|) = − i

~

〈

T̂C f̂i(t|)f̂
†
j (t

′
|)
〉

= − i

~

〈
ˆ̃TI f̂i(t0 − i~τ)f̂ †

j (t0 − i~τ ′)
〉

= − i

~

{

Θ(τ − τ ′)
〈

f̂i(t0 − i~τ)f̂ †
j (t0 − i~τ ′)

〉

±Θ(τ ′ − τ)
〈

f̂ †
j (t0 − i~τ ′)f̂i(t0 − i~τ)

〉}

= Θ(τ − τ ′)G
(1)>
ij (t0+ − i~τ, t0+ − i~τ ′)

+ Θ(τ ′ − τ)G
(1)<
ij (t0+ − i~τ, t0+ − i~τ ′)

=: G
(1)M
ij (t0 − i~τ, t0 − i~τ ′). (8.93)

Having obtained these relations, the matrix representation, Eq. (8.81), of
the 1pNEGF can now be rewritten as follows: The four components with real
arguments (c, <,>, a) form the non-equilibrium block, the Matsubara Green
(M) function the equilibrium “block” and the four functions with mixed argu-
ments (⌉, ⌈) the coupling elements, which are the linkage between equilibrium
and non-equilibrium.

In matrix representation, we map the contour time-dependent 1pNEGF on
to nine functions depending on real (physical) times and arguments τ ∈ [0, β].

29One has to be careful with the time-ordering on the imaginary branch. If τ > τ ′ then
t0− i~τ < t0− i~τ ′ which is anti-chronologically ordered, because the contour extends along
the negative imaginary axis. Therefore, we have a chronological time ordering with respect
to τ ∈ [0, β].
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Collecting the obtained results for the components [Eqs. (8.82)–(8.93)], we
know there can be no more than five independent components/functions. In
Section 8.2.6, we will show that

G
(1),M
ij (t0 − iτ, t0 − i~τ ′) = G

(1),⌈
ij (t0 − i~(τ − τ ′), t0), (8.94)

and, therefore, we are left with only four independent components, e.g., one
can choose G

(1)<
ij (t, t′), G

(1)>
ij (t, t′), G

(1)⌉
ij (t, t′) and G

(1)⌈
ij (t, t′) or G

(1)R
ij (t, t′),

G
(1)A
ij (t, t′), G

(1)⌉
ij (t, t′) and G

(1)⌈
ij (t, t′), as a linear independent subset.

Actually, to simplify the calculus on the contour, there exist different matrix
representations which are connected by linear transformations called “Keldysh
rotations”, see Ref. [65] and Ref. [68]. These different representations are often
over-complete. As an illustration the rak -representation will is given below
(omitting the arguments):

L =
1√
2





1 −1 0
1 1 0

0 0
√
2



 M =





1 0 0
0 −1 0
0 0 1





Grak := LMGL† =





GR GK
√
2G⌉

0 GA 0

0
√
2G⌈ GM

ij



 ,

where GK is the Keldysh Green function defined by:

G
(1)K
ij (t, t′) := G

(1)>
ij (t, t′) +G

(1)<
ij (t, t′) . (8.95)

When using the adiabatic switching instead of the equilibrium computation
within the Grand ensemble to prepare a proper initial state at time t = t0, one
has to deal only with the non-equilibrium block, for which another important
representation exists (Langreth and Wilkins):

L̃ =

[
1 0
1 1

]

M̃ =

[
1 0
0 −1

]

GLW := LMG2×2L
−1 =

[
GR G<

0 GA

]

.

Finally, the matrix representation of the contour step function θC(z − z′) and
the contour delta function δC(z−z′) := d

dz
θC(z−z′) shall be given. By definition
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these are

θC(z − z′) =





Θ(t− t′) 0 0
1 Θ(t′ − t) 0
1 1 Θ[i~(τ − τ ′)]



 , (8.96)

δC(z − z′) =





δ(t− t′) 0 0
0 −δ(t− t′) 0
0 0 δ[i~(τ − τ ′)]



 . (8.97)

8.2.5 Langreth-Wilkins Rules

Actually, the 1pNEGF is a member of a larger class of two-time contour ordered
functions, which belong to a space referred to as Keldysh space. These functions
are of the general form:

Fij(z, z
′) = F δ

ij(z)δC(z − z′) + θC(z − z′)F>
ij (z, z

′) + θC(z
′ − z)F<

ij (z, z
′) .

(8.98)

In contrast to the self energy Σ(z, z′), which we will introduce later on, by de-
finition, the Green function has been defined without a singular contribution.
Obviously, any function on Keldysh space possesses a matrix representation
similar to that of the Green function, Eq. (8.81). Using the matrix represen-
tation of the contour delta function, one only has to add the proper singular
term in the definition of the diagonal components (F c, F a, FR, FA).

In the following part, we will have to deal repeatedly with the following
product of two contour ordered functions Aij(z, z

′) and Bij(z, z
′) defined by:

{AB}ij (z, z′) :=
∫

C

dz̄
∑

k

Aik(z, z̄)Bkj(z̄, z
′) . (8.99)

It is straightforward to show that this product again belongs to Keldysh space
and, therefore, possesses a matrix representation denoted by C(z, z′). Now,
we will express the components of C(z, z′) in terms of the matrix elements of
A(z, z′) and B(z, z′). For a simplified notation, we use the Einstein summation
convention and omit the spin-orbital arguments of the functions. Thus, we are
left with,

C(z, z′) =

∫

C

dz̄ A(z, z̄)B(z̄, z′) . (8.100)
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Abbildung 8.3: Illustration of the four parts of the integration in the calculation
of C(t+, t

′
−) = C>(t, t′).

As an illustration, we do the whole calculation for the component30 C>(t, t′):

C>(t, t′) = C(t+, t
′
−) =

∫

C

dz̄ A(t+, z̄)B(z̄, t′−) (8.101)

=

∫

C

dz̄
[
Aδ(t+)δC(t+ − z̄) + θC(t+ − z̄)A>(t+, z̄) + θC(z̄ − t+)A

<(t+, z̄)
]

×
[
Bδ(t′−)δC(z̄ − t′−) + θC(z̄ − t′−)B

>(z̄, t′−) + θC(t
′
− − z̄)B<(z̄, t′−)

]
.

The two singular contributions in Eq. (8.101) are evaluated trivially since they
contain a contour delta function:

∫

C

dz̄ Aδ(t+)δC(t+ − z̄)B(z̄, t′−) = Aδ(t+)B(t+, t
′
−) = Aδ(t)B>(t, t′)

∫

C

dz̄ A(t+, z̄)B
δ(t′−)δC(z̄ − t′−) = Bδ(t′)A>(t, t′) . (8.102)

For the remaining four terms, each with two step functions, we can either
evaluate all the terms separately or we can decompose the contour integral in
Eq. (8.101) into four parts, as shown in Fig. 8.3, and identify the corresponding
contour correlation functions on each integration part, which is a little faster31,

30Again, do not confuse real time correlation functions F>/<(t, t′) with contour correlation
funcitons F>/<(z, z′).

31The evaluation of the step functions leads to the same decomposition.
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C(t+, t
′
−) =

∫ t′−

t0−

dt̄−A
>(t+, t̄−)B

<(t̄−, t
′
−)

︸ ︷︷ ︸

1

+

∫ t+

t′−

dz̄A>(t+, z̄)B
>(z̄, t′−)

︸ ︷︷ ︸

2

+

∫ t0+

t+

dt̄+A
<(t+, t̄+)B

>(t̄+, t
′
−)

︸ ︷︷ ︸

3

+

∫ t0+−i~β

t0+

dz̄A<(t+, z̄)B
>(z̄, t′−)

︸ ︷︷ ︸

4

+ Aδ(t)B>(t, t′) + Bδ(t′)A>(t, t′) . (8.103)

Next, we use the definitions of the real-time matrix elements [cf. Eqs. (8.82)-
(8.93)] to convert the contour integrals into real-time integrals,

C>(t, t′) =

∫ t′

t0

dt̄A>(t, t̄)B<(t̄, t′) +

∫ t

t′
dt̄A>(t, t̄)B>(t̄, t′)

+

∫ t0

t

dt̄A<(t, t̄)B>(t̄, t′) +

∫ t0−i~β

t0

dγ̄A⌉(t, γ̄)B⌈(γ̄, t′)

+ Aδ(t)B>(t, t′) + Bδ(t′)A>(t, t′) . (8.104)

After splitting the integration of the second term into

∫ t0

t′
dt̄A>(t, t̄)B>(t̄, t′) +

∫ t

t0

dt̄A>(t, t̄)B>(t̄, t′) ,

we can recast Eq. (8.104) as

C>(t, t′) =−
∫ t′

t0

dt̄ {A>(t, t̄) [B>(t̄, t′)− B<(t̄, t′)]}+Bδ(t′)A>(t, t′)

+

∫ t

t0

dt̄ {[A>(t, t̄)− A<(t, t̄)]B>(t̄, t′)}+ Aδ(t)B>(t, t′)

+

∫ t0−i~β

t0

dγ̄A⌉(t, γ̄)B⌈(γ̄, t′) . (8.105)

With the definition of the retarded and advanced component,

FR/A(t, t′) : = F δ(t)δ(t− t′)±Θ(±[t− t′]) {F>(t, t′)− F<(t, t′)} , (8.106)

and a transformation of the integration variable in the third term (γ̄ → τ̄ =
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Tabelle 8.1: Langreth-Wilkins rules for the two different types of multiplication
of two contour-ordered functions A(z, z′) and B(z, z′). The result C(z, z′) is
again a function on the Keldysh space and has the indicated components. The
operations denoted by ⋆ and ◦ are defined by Eqs. (8.108) and (8.109).

C(z, z′)=A(z, z′)B(z′, z) C(z, z′)=
∫

C
dz̄ A(z, z̄)B(z̄, z′)

CM AM BM AM ⋆ BM

C⌈ A⌈ B⌉ A⌈ ◦BA + AM ⋆ B⌈

C⌉ A⌉ B⌈ AR ◦B⌉ + A⌉ ⋆ BM

C> A> B< AR ◦B> + A> ◦BA + A⌉ ⋆ B⌈

C< A< B> AR ◦B< + A< ◦BA + A⌉ ⋆ B⌈

CR AR B> + A> BA AR ◦BR

CA AA B< + A< BR AA ◦BA

γ̄−t0
−i~

), we end up with,

C>(t, t′) =

∫ ∞

t0

dt̄A>(t, t̄)
[
Bδ(t′)δ(t̄− t′)−Θ(t′ − t̄)B>(t̄, t′)− B<(t̄, t′)

]

︸ ︷︷ ︸

BA(t̄,t′)

+

∫ ∞

t0

dt̄
[
Aδ(t)δ(t̄− t) + Θ(t− t̄)A>(t, t̄)− A<(t, t̄)

]

︸ ︷︷ ︸

AR(t,t̄)

B>(t̄, t′)

− i~

∫ β

0

dτ̄A⌉(t, t0 − i~τ̄)B⌈(t0 − i~τ̄ , t′)

= {A> ◦BA}(t, t′) + {AR ◦B>}(t, t′) + {A⌉ ⋆ B⌈}(t, t′) , (8.107)

where, in the last line, a common short hand notation was introduced:

{f ◦ g}(t, t′) :=

∫ ∞

t0

dt̄ f(t, t̄) g(t̄, t′) , (8.108)

{f ⋆ g}(t, t′) := −i~

∫ β

0

dτ̄ f(t, t0 − i~τ̄) g(t0 − i~τ̄ , t′) . (8.109)

In combination with the proper components32 f and g, this notation is also
used for imaginary arguments (t0 − i~τ and t0 − i~τ ′).

The derivation of the remaining matrix elements of C(z, z′) can be done
in the same way as presented here. The result for all components is called

32Meaning, they have to be defined for imaginary arguments.
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Langreth-Wilkins rules [64] and is shown in the third column of Tab. 8.1. If
one uses the special matrix representation

F(z, z′) =





FR F< F ⌉

0 FA 0
0 F ⌈ FM



 , (8.110)

for the Keldysh functions A(z, z′) and B(z, z′), then the Langreth-Wilkins ru-
les follow trivially from common matrix multiplication: Therefore, this matrix
representation allows us to treat functions on Keldysh space like normal ma-
trices, when calculating products of the form (8.100). One only has to insert
the proper operations ◦ or ⋆ into the components of the resulting matrix. Of
course, this is not true for other matrix representations!

When dealing with Green functions, there is another product of two Kel-
dysh functions that frequently occurs:

C(z, z′) = A(z, z′)B(z′, z) . (8.111)

The second column of Tab. (8.1) shows the matrix elements of C(z, z′), which
are trivial, except for the advanced and retarded components. Assuming t 6= t′

we have

CR(t, t′) = θ(t− t′)
[

A>(t, t′)B<(t′, t)− A>(t, t′)B<(t′, t)
]

= θ(t− t′)
[

A>(t, t′)B<(t′, t)− A>(t, t′)B>(t′, t)

+ A>(t, t′)B>(t′, t)− A>(t, t′)B<(t′, t)
]

= A>(t, t′)BA(t′, t) + AR(t, t′)B>(t, t′) . (8.112)

8.2.6 Properties of the Nonequilibrium Green function

In this section, first, some important properties of the contour 1pNEGF will
be derived. After that, we will find the properties of its individual Keldysh
matrix elements.

1. Relations for equal contour time arguments. From the definition of
the contour 1pNEGF and the equal-time (anti-) commutation relations of the
creation and annihilation operators, we know that there exists a discontinuity



288 KAPITEL 8. NONEQUILIBRIUM GREEN FUNCTIONS

at equal contour times,

G
(1)>
ij (z, z) = − i

~

〈

f̂i(z)f̂
†
j (z)

〉

= − i

~

(〈

±f̂ †
j (z)f̂i(z) + δij

〉)

= ∓ i

~

〈

f̂ †
j (z)f̂i(z)

〉

− i

~
δij

= G
(1)<
ij (z, z)− i

~
δij

⇐⇒ G
(1)>
ij (z, z)−G

(1)<
ij (z, z) = − i

~
δij (8.113)

⇐⇒ lim
ǫ→0

G
(1)
ij (z + ǫ, z)−G

(1)
ij (z, z) = − i

~
δij . (8.114)

2. Kubo-Martin-Schwinger (KMS) condition. The following relations
hold:

G
(1)
ij (t0−, z

′) = ±eβµG
(1)
ij (t0+ − i~β, z′) ,

G
(1)
ij (z

′, t0−) = ±e−βµG
(1)
ij (z

′, t0+ − i~β) ∀ z′ ∈ C , (8.115)

or, equivalently,

G
(1)<
ij (t0−, z

′) = ±eβµG
(1)>
ij (t0+ − i~β, z′)

G
(1)>
ij (z′, t0−) = ±e−βµG

(1)<
ij (z′, t0+ − i~β) ∀ z′ ∈ C , (8.116)

The proof is based on the following operator identities:

f̂ie
βµN̂ = eβµ(N̂+1)f̂i , (8.117)

f̂ †
i e

βµN̂ = eβµ(N̂−1)f̂ †
i . (8.118)

The proof of Eqs. (8.117, 8.118) is simple. Let N̂ |N〉 = N |N〉. Since f̂i anni-
hilates a particle in the spin orbital i, we find the following two relations33,

f̂ie
βµN̂ |N〉 = eβµN f̂i|N〉 = eβµNc|N − 1〉

eβµ(N̂+1)f̂i|N〉 = eβµ(N̂+1)c|N − 1〉 = eβµNc|N − 1〉 .

This proves Eq. (8.117), and the identity (8.118) follows in the same way. With
that, the KMS-conditions follow directly from the definition of the 1pNEGF
[cf. Eq. (8.63)]. We have34

33c is the normalization constant for bosons or fermions (including the phase factor).
34In this proof we again use the subscript S to emphasise Schrödinger operators.
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G
(1)
ij (t0−, z

′) = − i

~

1

Z0

Tr
{

eβµN̂ST̂C

{

e−
i
~

∫

Cdz̄ ĤS(z̄)f̂i,S|t0− f̂ †
j,S|z′

}}

= (±)

(

− i

~

)
1

Z0

Tr
{

eβµN̂ST̂C

{

e−
i
~

∫

Cdz̄ ĤS(z̄)f̂ †
j,S|z′

}

f̂i,S

}

(8.119)

= (±)

(

− i

~

)
1

Z0

Tr
{

eβµ(N̂S+1)f̂i,ST̂C

{

e−
i
~

∫

Cdz̄ ĤS(z̄)f̂ †
j,S|z′

}}

(8.120)

= (±)eβµ
(

− i

~

)
1

Z0

Tr
{

eβµN̂ST̂C

{

e−
i
~

∫

Cdz̄ ĤS(z̄)f̂i,S|t0+−i~β
f̂ †
j,S|z′

}}

= (±)eβµG
(1)
ij (t0+ − i~β, z′).

Here, we took advantage of the fact that t0− is the earliest time on C (Eq.
8.119). Thereby, we have a sign change for fermions from the definition of
the time-ordering operator. Second, the cyclic invariance of the trace and Eq.
(8.117) were used in Eq. (8.120). Finally, we could reinsert the annihilation
operator under the time ordering operator since (t0+−i~β) is the latest contour
time35.

The proof of the second KMS-condition [second line of Eq. (8.115)] and
also for higher Green functions works the same way, e.g., it is

G
(n)
i1,i2,...,in,j1,j2,...,jn

(z1, t0−, z3 . . . , zn, z
′
1, z

′
2, z

′
3, . . . , z

′
n)

= ±eβµG
(n)
i1,i2,...,in,j1,j2,...,jn

(z1, t0+ − i~β, z3 . . . , zn, z
′
1, z

′
2, z

′
3, . . . , z

′
n) . (8.121)

3. Time transposition symmetries. Now, we will give some useful re-
lations of the matrix elements that are related to an exchange of the two time
arguments.
A.) We begin with the real-time correlation functions, for which the relation

G
(1)≷
ij (t, t′) = −

[

G
(1)≷
ji (t′, t)

]∗

, (8.122)

holds. Therefore, in practice36, we have to calculate the correlation functions
G

(1)≷
ij (t, t′) only in one half of the time plane, e.g., only for t ≥ t′ since for

t < t′ we can use the value of −
[

G
(1)≷
ji (t′, t)

]∗

. We will prove this relation for

35Recall that the field operators are Schrödinger operators, and we only need to make sure
that the ordering of the operators under T̂C remains unchanged.

36Of course, we always have to calculate the Green functions Gij(z, z
′) (matrix with re-

spect to time) for all basis indices i, j ∈ 1 . . . NB , where NB is the basis size (approximation).
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the greater component:

G
(1)>
ij (t, t′) = − i

~

〈

f̂i(t)f̂
†
j (t

′)
〉

= −
(

− i

~

)∗〈[

f̂j(t
′)f̂ †

i (t)
]†
〉

=

=

[

− i

~

〈

f̂j(t
′)f̂ †

i (t)
〉]∗

= −
[

G
(1)>
ji (t′, t)

]∗

. (8.123)

B.) From this we also obtain a symmetry relation for the retarded and advan-
ced function defined by Eq. (8.86):

G
(1)R
ij (t, t′) =

[

G
(1)A
ji (t′, t)

]∗

, (8.124)

which is straightforwardly proven by using the definition (8.86) and the sym-
metry properties of G≷, Eq. (8.122).
C.) Further, there is a similar relation for the two mixed elements with real
and imaginary time arguments:

∓G
(1)⌈
ij (t0 − i~τ, t′) =

[

G
(1)⌉
ji (t′, t0 − i~(β − τ))

]∗

. (8.125)

For the proof, we will start from the r.h.s of Eq. (8.125) and show the equalitiy
to the l.h.s:
[

G
(1)⌉
ji (t′, t0 − i~(β − τ))

]∗

=

[

∓ i

~

〈

f̂ †
i (t0 − i~(β − τ))f̂j(t

′)
〉]∗

= ± i

~

〈[

f̂ †
i (t0 − i~(β − τ))f̂j(t

′)
]†
〉

= ± i

~

〈

f̂ †
j (t

′)
[

f̂ †
i (t0 − i~(β − τ))

]†
〉

. (8.126)

Remembering that the evolution operator along the imaginary axis is not uni-
tary [cf. Eq. (8.28)], we have to be careful with the hermitian conjugate of a
Heisenberg operator, if it has a complex time argument. It is
[

f̂ †
i (t0 − i~(β − τ))

]†

=
[

Û0(t0, t0 − i~(β − τ))f̂ †
i,S Û0(t0 − i~(β − τ), t0)

]†

=
[

eĤS(t0)(β−τ)f̂ †
i,S e

−ĤS(t0)(β−τ)
]†

= e−ĤS(t0)(β−τ)f̂i,S e
ĤS(t0)(β−τ)

= Û0(t0 − i~β, t0) Û0(t0, t0 − i~τ)f̂i,S Û0(t0 − i~τ, t0)
︸ ︷︷ ︸

f̂i(t0−i~τ)

× Û0(t0, t0 − i~β)
(

6= f̂i(t0 − i~(β − τ))
)

. (8.127)
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Inserting this into Eq. (8.126) and again making use of the cyclic invariance
of the trace, we find

[

G
(1)⌉
ji (t′, t0 − i~(β − τ))

]∗

= ± i

~

1

Z0

Tr
{

eβµN̂SÛ0(t0 − i~β, t0)f̂
†
j (t

′)

× Û0(t0 − i~β, t0)f̂i(t0 − i~τ)Û0(t0, t0 − i~β)
}

= ± i

~

1

Z0

Tr
{

eβµN̂S Û0(t0, t0 − i~β)Û0(t0 − i~β, t0)
︸ ︷︷ ︸

1̂

× f̂ †
j (t

′)Û0(t0 − i~β, t0)f̂i(t0 − i~τ)
}

= ± i

~

1

Z0

Tr
{

eβµN̂SÛ0(t0 − i~β, t0)f̂i(t0 − i~τ)f̂ †
j (t

′)
}

= ± i

~

〈

f̂i(t0 − i~τ)f̂ †
j (t

′)
〉

= ∓G
(1)⌈
ij (t0 − i~τ, t′) . (8.128)

Now, we investigate the Matsubara Green function. First, the MGF is connec-
ted to the real time correlation functions in the following way:

G
(1)M
ij (t0 − i~0, t0 − i~0+) = − i

~
lim
ǫ→0

G
(1)M
ij (t0 − i~0, t0 − i~ǫ)

= − i

~
lim
ǫ→0

[

Θ(0− ǫ)
〈

f̂i(t0 − i~0)f̂ †
j (t0 − i~ǫ)

〉

+Θ(ǫ− 0)
〈

f̂ †
j (t0 − i~ǫ)f̂i(t0 − i~0)

〉 ]

= − i

~
lim
ǫ→0

〈

f̂ †
j (t0 − i~ǫ)f̂i(t0 − i~0)

〉

= G
(1)<
ij (t0, t0) , (8.129)

and naturally,

G
(1)M
ij (t0 − i~0+, t0 − i~0) = G

(1)>
ij (t0, t0) , (8.130)

holds. Second, the MGF dependents only on the difference of the imaginary
part of the complex arguments. Without loss of generality, we assume τ ≥ τ ′,
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it is,

G
(1)M
ij (t0 − i~τ, t0 − i~τ ′) = − i

~

〈

f̂i(t0 − i~τ)f̂ †
j (t0 − i~τ ′)

〉

= − i

~

1

Z0

Tr
{

eβµN̂ Û0(t0 − i~β, t0)Û0(t0, t0 − i~τ)f̂i

× Û0(t0 − i~τ, t0 − i~τ ′)
︸ ︷︷ ︸

=Û0(t0−i~(τ−τ ′),t0)

f̂jÛ0(t0 − i~τ ′, t0)
}

= − i

~

1

Z0

Tr
{

eβµN̂ Û0(t0 − i~τ ′, t0)Û0(t0 − i~β, t0)

× Û0(t0, t0 − i~τ)f̂iÛ0(t0 − i~(τ − τ ′), t0)f̂j

}

(8.131)

= − i

~

1

Z0

Tr
{

eβµN̂ Û0(t0 − i~β, t0)

× Û0(t0, t0 − i~(τ − τ ′))f̂iÛ0(t0 − i~(τ − τ ′), t0)f̂j

}

(8.132)

= − i

~

〈

f̂i(t0 − i~(τ − τ ′))f̂ †
j (t0)

〉

= G
(1)⌈
ij (t0 − i~(τ − τ ′), t0) .

From Eq. (8.131) to Eq. (8.132), we used the fact that

[

Û0(t1, t2), Û0(t3, t4)
]

−
= 0 . (8.133)

The same derivation for τ ≤ τ ′ yields37

G
(1)M
ij (t0 − i~τ, t0 − i~τ ′) = G

(1)⌉
ij (t0, t0+i~(τ − τ ′)) . (8.134)

Therefore, we can redefine the MGF by a continuous function depending on
τ̄ = τ − τ ′ only,

G
(1)M
ij (t0 − i~τ, t0 − i~τ ′) = G

(1)M
ij (τ̄) :=

{

G
(1)⌈
ij (t0 − i~τ̄ , t0), for τ̄ ≥ 0

G
(1)⌉
ij (t0, t0+i~τ̄), for τ̄ < 0 .

(8.135)

4. Summary of symmetry relations. Let us summarize all properties
of the 1pNEGF and its matrix elements, which we found until now, because

37In this case it is not possible to express G(1)M by G
(1)⌈
ij .
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those play an important role in the NEGF-formalism:

G
(1)>
ij (z, z)−G

(1)<
ij (z, z) = − i

~
δij (at equal times!) , (8.136)

G(1)(t0−, z
′) = ±eβµG(1)(t0+ − i~β, z′), ∀ z′ ∈ C a)

G(1)(z, t0−) = ±e−βµG(1)(z, t0+ − i~β), ∀ z ∈ C b) ,

G
(1)M
ij (t0 − i~0, t0 − i~0+) = G

(1)<
ij (t0, t0) c) ,

G
(1)M
ij (t0 − i~0+, t0 − i~0) = G

(1)>
ij (t0, t0) ,

G
(1)M
ij (t0 − i~τ, t0 − i~τ ′) = G

(1)M
ij (τ̄) d) ,

G
(1)≷
ij (t, t′) = −[G

(1)≷
ji (t′, t)]∗ ,

G
(1)R
ij (t, t′) =

[

G
(1)A
ji (t′, t)

]∗

,

G
(1)⌈
ij (t0 − i~τ, t′) = ∓

[

G
(1)⌉
ji (t′, t0 − i~(β − τ))

]∗

.

Further38, we can explicitly write down the KMS-conditions a) and b) for the

matrix elements (by inserting t
(′)
− , t

(′)
+ , t

(′)
| for z(

′)), which yields the following

relations (omitting arguments i and j):

G<(t0, t
′) = ±eβµG⌈(t0 − i~β, t′) , (8.137)

G⌉(t0, t0 − i~τ ′) = ±eβµGM(t0 − i~β, t0 − i~τ ′)

= ±eβµGM(β − τ ′) =
β−τ ′≥0

±eβµG⌈(t0 − i~(β − τ ′), t0) ,

(8.138)

G>(t, t0) = ±e−βµG⌉(t, t0 − i~β) , (8.139)

G⌈(t0 − i~τ, t0) = ±e−βµGM(t0 − i~τ, t0 − i~β)

= ±e−βµGM(τ − β) =
τ−β≤0

±e−βµG⌉(t0, t0 + i~(τ − β)) .

(8.140)

5. Fourier series representation of the Matsubara Green function.
Matsubara frequencies. Inserting G⌉(t0, t0−i~τ ′) = GM(t0−i~0, t0−i~τ ′) =
GM(τ̄ = −τ ′) into Eq. (8.138), we see that the MGF is periodic in terms of
the relative variable τ̄ with a periodicity length of β39:

GM
ij (τ̄) = ±eβµGM

ij (τ̄ + β) . (8.141)

38From now on, we will drop the superscript “(1)”, i.e., it is always the 1pNEGF. If we
refer to the 2pNEGF, we will point this out explicitly.

39with this notation of the argument the true time follows by multiplying with ~
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Therefore, the MGF possesses a discrete Fourier series of the form (τ now
denotes a relative variable)40:

GM
ij (τ) =

1

−i~β

∑

m

gij(zm)e
−izm(i~τ) . (8.142)

The zm’s are called Matsubara frequencies and are determined by Eq. (8.141).
We have

GM
ij (0)

!
= ±eβµGM

ij (β)

⇔ 1

−i~β

∑

m

gij(zm)e
0 !
= ±eβµ

1

−i~β

∑

m

gij(zm)e
−izm(i~β) ∀m

⇔ ±1
!
= e−i(zm(i~β)+iβµ)

⇔ mπ = zmi~β + iβµ ,

(8.143)

and finally41

zm =
mπ

i~β
− µ

~
, with m =







±0,±2,±4 . . . , for bosons.

±1,±3,±5 . . . , for fermions.
(8.144)

The Fourier representation of the MGF can be useful, if we want to solve
the equation of motion of the MGF (which we will find later on). Instead of
solving the equation for the continuous variable τ , we only have to find the
Fourier-coefficients g(zm) at the discrete Matsubara frequencies.

8.3 Equilibrium Spectral Function.

Kadanoff-Baym Ansatz (KBA)

In this section, we will assume the system to be in equilibrium, also for times
t ≥ t0 (i.e. the external potential v̂ in the Hamiltonian (8.1) does not depend

on time and ∂tĤ ≡ 0.). Then always
〈

Â
〉

(t) =
〈

Â
〉

(t0), and thus, there is no

evolution along the real time axis, but there may be a time-dependence along

40It is convention to factor out the constant 1
−i~β from the Fourier coefficients g(zm).

41The different sign of µ
~
compared to that in the book of Kadanoff and Baym comes from

the definition of the relative variable τ̄ := τ − τ ′ ∼ second minus first argument of the GF,
where in that book it is defined the other way round. The present definition coincides with
the one used in Ref. [BB13].
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the imaginary axis. Therefore, in equilibrium, the only independent matrix
element of the 1pNEGF is the MGF. Still, it is advantageous to investigate
the other matrix elements as well. For example, the additional assumption of
a spatially homogeneous system (i.e. the external potential v̂ has no space
dependence42), will bring us to the Kadanoff-Baym-Ansatz, which can serve as
a first approximation for the solution of the equations of motion later on. To
simplify the notation, we will set t0 = 0 in this section.

8.3.1 Equilibrium correlation functions G≷

First, let us examine one of the mixed elements in the equilibrium case43, it is

G⌈(−i~τ, t′) = − i

~

〈

f̂i(−i~τ)f̂ †
j (t

′)
〉

= − i

~

1

Z0

Tr
{

eβµN̂ Û0(−i~β, 0)Û0(0,−i~τ)

× f̂i Û0(−i~τ, 0)Û0(0, t
′)

︸ ︷︷ ︸

Û0(−i~τ−t′,0)

f̂ †
j Û0(t

′, 0)
}

(8.145)

= − i

~

1

Z0

Tr
{

eβµN̂ Û0(−i~β, 0) Û0(t
′, 0)Û0(0,−i~τ)

︸ ︷︷ ︸

Û0(−i~τ−t′,0)

× f̂iÛ0(−i~τ − t′, 0)Û0(0, 0)f̂
†
j Û0(0, 0)

}

= − i

~

〈

f̂i(−i~τ − t′)f̂ †
j (0)

〉

= G⌈(−i~τ − t′, 0) (8.146)

Starting from Eq. (8.145) and again using the cyclic invariance of the trace,
we can arrange the arguments in another way:

G⌈(−i~τ, t′) = − i

~

1

Z0

Tr
{

eβµN̂ Û0(−i~β, 0)Û0(0, 0)f̂iÛ0(0, 0)

× Û0(−i~τ, 0)Û0(0, t
′)

︸ ︷︷ ︸

Û0(0,i~τ+t′)

f̂ †
j Û0(t

′, 0)Û0(0,−i~τ)
︸ ︷︷ ︸

Û0(i~τ+t′,0)

}

= − i

~

〈

f̂i(t0)f̂
†
j (i~τ + t′)

〉

= G⌈(0, i~τ + t′) .

42In combination with thermodynamic equilibrium, the external potential can thus only
be a constant.

43Since the Hamiltonian is time-independent, we also use Û0 for the evolution operator
along the real axis.
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Together with Eq. (8.146), it is

G
⌈
ij(−i~τ, t′) = G

⌈
ij(−i~τ − t′, 0) = G

⌈
ij(0, i~τ + t′) . (8.147)

and it becomes obvious that the superscripts ⌉ and ⌈ do not make any sense in
the equilibrium case. The only important thing that has to be specified is the
order of the creation and annihilation operators. Hence, we define the following
Green functions for the equilibrium case:

Ḡ>
ij(x, x

′) := − i

~

〈

f̂i(x)f̂
†
j (x

′)
〉

, (8.148)

Ḡ<
ij(x, x

′) := ∓ i

~

〈

f̂ †
j (x

′)f̂i(x)
〉

, ∀ x, x′ ∈ M := [−i~β, 0] ∪ [0,∞] ,

and we will refer to them as Equilibrium Correlation Functions (ECFs)44 45.
The ECFs depend only on the difference variable x̄ := x− x′, and they fulfill
the following relations:

Ḡ≷
ij(x, x

′) = Ḡ≷
ij(x− x′, 0) = Ḡ≷

ij(x̄, 0)

= Ḡ≷
ij(0,−x̄) := Ḡ≷

ij(x̄) . (8.149)

Making use of the general property of the equilibrium evolution operator:

Û0(x, 0)Û0(0, x
′) = Û0(x, x

′) = Û0(x− x′, 0) ,

= Û0(0,−(x− x′)), ∀ x, x′ ∈ M ,

the proof of Eq. (8.149) is similar to that of relation (8.147). Trivially, the
ECFs also fulfill the KMS-conditions

Ḡ<
ij(0, x

′) = ±eβµḠ>
ij(−i~β, x′),

Ḡ>
ij(x, 0) = ±e−βµḠ<

ij(x,−i~β), (8.150)

and we can rewrite these in terms of the ECFs depending only on the relative
variable [cf. definition (8.149)]. It is

Ḡ<
ij(x̄) = Ḡ<

ij(0,−x̄) = ±eβµḠ>
ij(−i~β,−x̄)

= ±eβµḠ>
ij(−i~β + x̄, 0) = ±eβµḠ>

ij(x̄− i~β) . (8.151)

44Naturally, the values of the ECF completely define all matrix elements of the 1pNEGF
including the MGF.

45Note that the whole GF-formalism in the beginning of the book of Kadanoff and Baym
deals with the equilibrium case only. Therefore, the anti-chronological time ordering operator
does not exist in that approach and, as a consequence, there is no need to introduce a
contour. As a matter of fact it becomes quite hard to properly translate the equations of
that book into those valid for the contour formalism. One way is to introduce the ECFs
as presented here, because we cannot deal with the symbols ⌈ and ⌉, when it comes to the
Fourier transform of the ECFs.
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Multiplying Eq. (8.151) by ±e−βµ, one finds

Ḡ<
ij(x̄) = ±eβµḠ>

ij(x̄− i~β) ,

Ḡ>
ij(x̄) = ±e−βµḠ<

ij(x̄+ i~β) . (8.152)

Even though these relations include the periodicity of the MGF [cf. Eq. (8.141)],
one should not think of the ECFs as being periodic with respect to the relati-
ve variable x̄, which becomes clear, if we keep in mind the values that x̄ can
assume:

x̄ ∈ [−∞− i~β,∞+ i~β] .

8.3.2 Equilibrium Correlation functions in
frequency space. KBA

Now we define the Fourier transform of the real-time ECFs (i.e. x̄ = t ∈ R)
with respect to the relative time as follows:

Ḡ>
ij(ω) : =

∫ ∞

−∞

dt eiωtḠ>
ij(t) = − i

~

∫ ∞

−∞

dt eiωt
〈

f̂i(t)f̂
†
j (0)

〉

= − i

~

〈

f̂i(ω)f̂
†
j (0)

〉

Ḡ<
ij(ω) : =

∫ ∞

−∞

dt eiωtḠ<
ij(t) = ∓ i

~

∫ ∞

−∞

dt eiωt
〈

f̂ †
j (0)f̂i(t)

〉

= ∓ i

~

〈

f̂ †
j (0)f̂i(ω)

〉

(8.153)

With that, we can formulate the KMS-condition (8.152) in Fourier space46:

Ḡ<
ij(ω) =

∫ ∞

−∞

dt eiωtḠ<
ij(t)

= ±eβµ
∫ ∞

−∞

dt eiωtḠ>
ij(t− i~β)

= ±eβ(µ−~ω)

∫ ∞−i~β

−∞−i~β

dt̃ eiωt̃Ḡ>
ij(t̃)

≈± eβ(µ−~ω)

∫ ∞

−∞

dt̃ eiωt̃Ḡ>
ij(t̃) = ±eβ(µ−~ω)Ḡ>

ij(ω) , (8.154)

46Of course, if x̄ is real, the ECFs coincide with the real time correlation functions of
the contour formalism, but in that formalism G>

ij(t − i~β) is not defined (the real time
correlation functions, by definition, only allow for real time arguments). Moreover, in the
contour formalism the KMS for the real time correlation function takes the form of Eq.
(8.137). Therefore, in the derivation of the Kadanoff-Baym-Ansatz, one would have to define
the Fourier transform of the coupling elements.
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where in the third line we have made the substitution

t̃ = t− i~β, dt̃ = dt, t̃(±∞) = ±∞− i~β . (8.155)

The KMS-conditions in Fourier space thus read

Ḡ<
ij(ω) = ±eβ(µ−~ω)Ḡ>

ij(ω) ,

Ḡ>
ij(ω) = ±e−β(µ−~ω)Ḡ<

ij(ω) . (8.156)

In correspondence to the contour spectral function, we define the Fourier trans-
form of the real-time, equilibrium spectral function:

āij(ω) := i~
{
Ḡ>

ij(ω)− Ḡ<
ij(ω)

}
. (8.157)

Using the boundary condition (8.156), we can now express the ECFs in fre-
quency space by this spectral function. For the lesser ECF, we have

āij(ω) = i~
[
±e−β(µ−~ω) − 1

]
Ḡ<

ij(ω)

= ±i~

[
1

eβ(~ω−µ) ∓ 1

]−1

︸ ︷︷ ︸

[fEQ(~ω;β,µ)]−1

Ḡ<
ij(ω)

⇔ i~Ḡ<
ij(ω) = ±āij(ω)f

EQ(~ω; β, µ) . (8.158)

Recasting the greater ECF with the other boundary condition eventually yields

i~Ḡ<
ij(ω) = ±āij(ω)f

EQ(~ω; β, µ) ,

i~Ḡ>
ij(ω) = āij(ω)

[
1± fEQ(~ω; β, µ)

]
, (8.159)

where we have recovered the Bose/Fermi distribution fEQ, i.e. the average
occupation number in the GKE of a mode (one-particle state) with energy
~ω. The lesser ECF is, obviously, proportional to the mean occupation of the
mode with ~ω, whereas the greater function is proportional to the mean hole
occupation of that mode, thereby including the Pauli principle and the Bose
enhancement, respectively. Until now, we only made the assumption of the
system to be in thermodynamic equilibrium. Hence, the information about the
correlations and an eventually applied, external potential depending on space
must be contained in the spectral function. In equilibrium, we indeed only need
to find the spectral function.
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8.3.3 Spatially homogeneous system

Now, we additionally assume a homogeneous system (apart from a constant,
there is no external potential at all.). In that case, it will be useful to switch
from the discrete to the coordinate representation (neglecting the spin) [cf. Eq.
(8.74)], i.e.,

Ĥ = −
∫

d3rΨ̂†(r)
~
2∇2

2m
Ψ̂(r) +

1

2

∫

d3r

∫

d3r′Ψ̂†(r)Ψ̂†(r′)w(r, r′)Ψ̂(r′)Ψ̂(r) ,

Ḡ>
ij(ω) → Ḡ>(r, r′, ω) = − i

~

〈

Ψ̂(r, ω)Ψ̂†(r′, 0)
〉

,

Ḡ<
ij(ω) → Ḡ<(r, r′, ω) = ± i

~

〈

Ψ̂†(r′, 0)Ψ̂(r, ω)
〉

, (8.160)

where

Ψ̂(r, ω) =

∫ ∞

−∞

dt eiωtΨ̂(r, t) .

Further, we introduce relative and center of mass coordinates:

R :=
r+ r′

2
r̄ := r− r′ .

As a consequence of the spatial homogeneity, the Hamiltonian is transla-
tional invariant and thus, the ECFs depend only on the relative coordinates,
it is

Ḡ≷(r, r′, ω) = Ḡ≷

(

R+
1

2
r̄,R− 1

2
r̄, ω

)

= Ḡ≷(R, r̄, ω) =
homogen.

Ḡ≷(r̄, ω) ,

(8.161)

with47

Ḡ>(r̄, ω) = − i

~

〈

Ψ̂(r̄, ω)Ψ̂†(r̄, 0)
〉

,

Ḡ<(r̄, ω) = ∓ i

~

〈

Ψ̂†(r̄, 0)Ψ̂(r̄, ω)
〉

. (8.162)

47First, one has to actually show that Eq. (8.161) holds. Note that the spatial and time
homogeneity, obviously, cannot be treated in the same manner as their mathematical effect
on the GF is different. If these two assumptions would be equal, then, for example, it should

be Ḡ>(r̄, ω) = − i
~

〈

Ψ̂(r̄, ω)Ψ̂†(0, 0)
〉

. Verify whether this is correct and the derivation of

the spectral function for free particles holds.
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As in most cases, when dealing with a spatially homogeneous system, it is
advantageous to perform a Fourier transform to momentum space with respect
to the relative coordinates (r now denotes a relative coordinate.):

Ḡ>(p, ω) =

∫

d3r e−
i
~
pr Ḡ>(r, ω) = − i

~

〈

Ψ̂(p, ω)Ψ̂†(p, 0)
〉

Ḡ<(p, ω) =

∫

d3r e−
i
~
pr Ḡ<(r, ω) = ∓ i

~

〈

Ψ̂†(p, 0)Ψ̂(p, ω)
〉

. (8.163)

In momentum and frequency space, the relations (8.159) read

i~Ḡ<(p, ω) = ±ā(p, ω)fEQ(ω; β, µ),

i~Ḡ>(p, ω) = ā(p, ω)
[
1± fEQ(ω; β, µ)

]
, (8.164)

and this is the so-called Kadanoff-Baym-Ansatz. It is only an approximation,
if used for non-equilibrium and inhomogeneous systems, otherwise it is exact.

8.3.4 Properties of the spectral function: Sum rule.
Correlations.

Next, we will investigate the spectral function a little further since, in equili-
brium, the system is fully described by it. From the previous definitions [cf.
Eq. (8.157)], the spectral function in momentum and frequency space is given
by

ā(p, ω) = i~
{
Ḡ>(p, ω)− Ḡ<(p, ω)

}

=

∫

d3r

∫ ∞

−∞

dt e−
i
~
pr+iωt

(〈

Ψ̂(r, t)Ψ̂†(r, 0)
〉

∓
〈

Ψ̂†(r, 0)Ψ̂(r, t)
〉)

and since
∫∞

−∞
dω eiωt = 2πδ(t), the spectral function fulfils the sum rule:

∫ ∞

−∞

dω

2π
ā(p, ω) =

∫

d3r

∫ ∞

−∞

dt δ(t)e−
i
~
pr

(〈

Ψ̂(r, t)Ψ̂†(r, 0)
〉

∓
〈

Ψ̂†(r, 0)Ψ̂(r, t)
〉)

=

∫

d3r e−
i
~
pr

(〈

Ψ̂(r, 0)Ψ̂†(r, 0)
〉

∓
〈

Ψ̂†(r, 0)Ψ̂(r, 0)
〉)

︸ ︷︷ ︸

=[Ψ̂(r),Ψ̂†(r)]
∓
=δ(r)

= e0 = 1 .

Ideal System: The spectral function of a system of free particles with the
Hamiltonian

Ĥ =

∫

d3r Ψ̂† (r)

(

−~
2∇2

2m

)

Ψ̂(r) , (8.165)
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can be computed explicitly. For that purpose, we rewrite the Fourier transform
of the lesser ECF as follows

i~Ḡ<(p, ω) = ±
∫ ∞

−∞

dt eiωt
〈

Ψ̂†(p, 0)Ψ̂(p, t)
〉

. (8.166)

When acting on an N-particle state, Ψ̂(p) removes a particle with momentum

0
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√
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Abbildung 8.4: Equilibrium momentum distribution at zero temperature for an
ideal (blue curve) and an interacting (red), homogeneous system of fermions,
see also the PIMC result in Fig. 3.2.

p and thus with energy (free particles) E0 = p
2

2m
. Therefore, the following

operator identity holds48

Ψ̂(p, t) = Û0(0, t)Ψ̂(p, 0)Û0(t, 0)

= e+
i
~
ĤtΨ̂(p, 0)e−

i
~
Ĥt

= e−
i
~
E0tΨ̂(p, 0) . (8.167)

48The proof is similar to that of the identity (8.117). Instead of the eigenstates of the
number operator N̂ , one simply uses the eigenstates |E〉 of the Hamiltonian with Ĥ|E〉 =
E|E〉. Then, it is e− i

~
ĤtΨ̂(p, 0)|E〉 = e−

i

~
Ĥt|E − E0〉 = e−

i

~
(E−E0)t|E − E0〉.
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Inserting this into Eq. (8.166) and comparing the result with Eq. (8.164) yields
an explicit expression for the spectral function of free particles:

i~Ḡ<(p, ω) = ±
∫ ∞

−∞

dt e−
i
~
(E0−~ω)t

〈

Ψ̂†(p, 0)Ψ̂(p, 0)
〉

= ±2π~ δ(~ω − E0) 〈n̂(p)〉
!
= ±ā(p, ω)fEQ(~ω; β, µ)

⇔ ā0(p, ω) = 2π~ δ(~ω − E0) . (8.168)

Thereby, since it is ~ω = p2

2m
= E0 (delta function), we immediately identify

the momentum distribution function of free (non-interacting) particles:

〈n̂〉EQ0 (p; β, µ) = fEQ

(
p2

2m
; β, µ

)

=
1

e
β
(

p2

2m
−µ

)

∓ 1
, (8.169)

which is well known from statistical mechanics. Note that in equilibrium the
energy distribution is always a Fermi/Bose distribution49, whereas the momen-
tum distribution is only Fermi/Bose, if the particles are free (non-interacting).
Otherwise the correlations will deform the distribution in the vicinity of the
Fermi level even at zero temperature (see Fig. 8.4).

0
0 EHF (p) E0(p)

Energy ~ω

S
p
ec

tr
a
l
fu

n
ct

io
n
a
(p

,ω
)

p = fix
∆HF (p) āLo

āHF

ā0

Abbildung 8.5: Equilibrium spectral function for an ideal, homogeneous system
(blue delta peak) and an interacting homogeneous system treated either on the
Hartree-Fock level (green delta peak) or within the quasi-particle picture using
a Lorentzian line shape (red curve).

49Because Eq. (8.164) is true for an interacting system.
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Further, for an interacting system treated on Hartree-Fock level, the shape
of the spectral function still remains a sharp delta peak:

āHF(p, ω) = 2π~δ(~ω − EHF(p))

EHF(p) = E0 −∆HF(p), (8.170)

where ∆HF(p) is the (real) Hartree-Fock shift of the one-particle energy.
todo:

1. formula and figure for ∆HF(p) for UEG

2. plot energy dispersion in HF

3. extend to Fermi liquid theory, basic ideas

For an interacting system treated beyond Hartree-Fock level, one expects
the spectral function to be broadened, which can be approximated by a Lor-
entzian line shape (“quasi-particle picture”):

āLo(p, ω) =
2~2Γ(p)

[~ω − EHF(p)−∆cor(p)]2 + Γ2(p)

~Γ(p)→0−−−−−→ 2π~δ[~ω −∆E(p)] ,

(8.171)

where Γ(p) is proportional to the collision rate of particles, that defines the
width of the spectral function that determines the quasiparticle lifetime50, see
Fig. (8.5). For a detailed discussion of the equilibrium spectral functions, the
reader is referred to [27]. Note that the quasi-particle approximation neglects
the frequency dependence of the correlation contributions to the energy shift
and width. These effects emerge naturally from the NEGF analysis below.

50This can be visualized by plotting the spectral function vs. difference time.
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8.4 Keldysh-Kadanoff-Baym Equations (KBE)

In the last section, we have investigated the 1pNEGF for an equilibrium sy-
stem. Now, we will return to the general case of a non-equilibrium system that
is exposed to a time-dependent external perturbation and find the equations
of motion for the 1pNEGF. For that purpose, we first will obtain the time-
dependent equations of motion for the entire Keldysh (matrix) Green function
on the Keldysh contour from which we then will derive the equations of motion
for the relevant real-time components, using the Langreth-Wilkins rules.

8.4.1 Derivation of the first equation of the Martin-
Schwinger hierarchy

Recall the definition of the 1pNEGF (we skip the superscript “1”) which we
rewrite as the expectation value of a NEGF operator without ensemble average,

Gij(z, z
′) := 〈Ĝij(z, z

′)〉 , (8.172)

Ĝij(z, z
′) := − i

~
T̂C f̂i(z) f̂

†
j (z

′) (8.173)

= θC(z − z′) Ĝ>
ij(z, z

′) + θC(z
′ − z) Ĝ<

ij(z, z
′) ,

Ĝ>
ij(z, z

′) := − i

~
f̂i(z) f̂

†
j (z

′) ,

Ĝ<
ij(z, z

′) := ∓ i

~
f̂ †
j (z

′) f̂i(z) .

Further, to shorten the notation, we choose a different writing of the step and
delta functions on the contour:

θC(z − z′) := θC(z, z
′), δ(z − z′) := δ(z, z′) . (8.174)

Since the contour variable z ∈ C is continuous, we can compute the derivative of
the 1pNEGF operator with respect to z and z′ to find its equation of motion51.
We start with z:

i~
∂

∂z
Ĝij(z, z

′) = i~δC(z, z
′)
{

Ĝ>
ij(z, z

′)− Ĝ<
ij(z, z

′)
︸ ︷︷ ︸

=
z=z′

− i
~
δij

}

(8.175)

+ θC(z, z
′) i~

∂

∂z
Ĝ>

ij(z, z
′) + θC(z

′, z) i~
∂

∂z
Ĝ<

ij(z, z
′)

= δC(z, z
′)δij + θC(z, z

′)
∂f̂i(z)

∂z
f̂ †
j (z

′)± θC(z
′, z)f̂ †

j (z
′)
∂f̂i(z)

∂z
.

51Since the ensemble average is with the unperturbed density operator ρ̂0, the time deri-
vatives of the 1pNEGF and the 1pNEGF operator coincide.
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Due to the contour delta function, we could use the discontinuity property of
the 1pNEGF operator [cf. Eq. (8.136) a)] in the first line. Now we make use of
the equation of motion of the field operators in an arbitrary basis52 which we
obtained in Ch. 5 [cf. Eq. (5.34)]:

∂f̂i(z)

∂z
= − i

~

[

f̂i(z), Ĥ(z)
]

−

= − i

~

{
∑

k

tik + vik(z)
︸ ︷︷ ︸

hik(z)

f̂k(z) +
∑

j′kl

wij′kl(z)f̂
†
j′(z)f̂l(z)f̂k(z)

}

, (8.176)

where the pair interaction is allowed to be time-dependent, e.g. to simulate
an interaction quench or to describe the adiabatic switch-on of correlations.
Inserting this into Eq. (8.175) yields:

i~
∂

∂z
Ĝij(z, z

′) = δC(z, z
′)δij (8.177)

+
∑

k

hik(z)
{

θC(z, z
′)

(

− i

~

)

f̂k(z)f̂
†
j (z

′) + θC(z
′, z)

(

± i

~

)

f̂ †
j (z

′)f̂k(z)
}

︸ ︷︷ ︸

Ĝkj(z,z′)

− i

~

∑

j′kl

wij′kl(z)
{

θC(z, z
′) f̂ †

j′(z)f̂l(z)
︸ ︷︷ ︸

n̂j′l(z)

f̂k(z)f̂
†
j (z

′)± θC(z
′, z)f̂ †

j (z
′) f̂ †

j′(z)f̂l(z)
︸ ︷︷ ︸

n̂j′l(z)f̂k(z)

}

︸ ︷︷ ︸

=:Îij(z,z′)

.

While, in the second term on the r.h.s., we could re-substitute the 1pNEGF
operator, Ĝkj(z, z

′), the last term is more complicated involving averages over

four operators. This term is also called operator collision term, Îij(z, z
′), and

we identified the 1pRDM operators n̂j′l(z) within the four operator products.
In order to identify the contour-ordered two-particle nonequilibrium Green
function (2pNEGF) operator [cf. Eq. (8.80)]

Ĝ
(2)
ij,kl(t1, t2; t

′
1, t

′
2) = − 1

~2
T̂C f̂i(t1) f̂j(t2) f̂

†
l (t

′
2) f̂

†
k(t

′
1) , (8.178)

in the collision term, we introduce the generalized (two-time but instantaneous)
two-body interaction,

ŵ(z, z̄) := δC(z, z̄) ŵ(z) ⇒ wij′kl(z.z̄) = δC(z, z̄)wij′kl(z) . (8.179)

52Since it is
[

f̂i(t0 −− i
~
τ), Ĥ(t0 −− i

~
τ)
]

−
= Û0(t0, t0 − − i

~
τ)
[

f̂i, Ĥ
]

−
Û0(t0 − − i

~
τ, t0)

and Û0 fulfils the group property, one readily checks that the equation of motion not only
holds for real times t, but also for imaginary times t0 − i~τ , τ ∈ [0, β] and thus also for
contour Heisenberg operators.
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With that, we rewrite the collision term as

Îij(z, z
′) = − i

~

∑

j′kl

∫

C

dz̄ wij′kl(z, z̄)
{

θC(z, z
′)n̂j′l(z̄)f̂k(z)f̂

†
j (z

′)

± θC(z
′, z)f̂ †

j (z
′)n̂j′l(z̄)f̂k(z)

}

,

and we notice that n̂j′l(z̄) is always left of f̂k(z). Therefore, we write

Îij(z, z
′) = − i

~

∑

j′kl

lim
ǫ→0

∫

C

dz̄ wij′kl(z + ǫ, z̄)
{

θC(z, z
′)n̂j′l(z + ǫ)f̂k(z)f̂

†
j (z

′)

± θC(z
′, z)f̂ †

j (z
′)n̂j′l(z + ǫ)f̂k(z)

}

= − i

~

∑

j′kl

∫

C

dz̄ wij′kl(z
+, z̄)

{

θC(z, z
′)n̂j′l(z

+)f̂k(z)f̂
†
j (z

′) (8.180)

± θC(z
′, z)f̂ †

j (z
′)n̂j′l(z

+)f̂k(z)
}

= − i

~

∑

j′kl

∫

C

dz̄ wij′kl(z
+, z̄)T̂C

{

n̂j′l(z
+)f̂k(z)f̂

†
j (z

′)
}

(8.181)

= − i

~

∑

j′kl

∫

C

dz̄ wij′kl(z
+, z̄)T̂C

{

n̂j′l(z̄)f̂k(z)f̂
†
j (z

′)
}

(8.182)

= − i

~

∑

j′kl

∫

C

dz̄ wij′kl(z
+, z̄)T̂C

{

f̂k(z)n̂j′l(z̄)f̂
†
j (z

′)
}

. (8.183)

From line (8.180) to (8.181), we used that, by definition, z+ is greater than
z on C and thus, there are only two cases left for the time ordering of the
three arguments: First, z+ > z > z′ and second, z′ > z+ > z. The sign
change for fermions, in the second term, is due to the interchange of f̂k(z)
and f̂j(z

′) [cf. Eq. (8.68)]. In line (8.182) we could change the argument of the
1pRD operator, for it is z+ = z̄ under the integral (delta function in wij′kl)
and finally, we took advantage of the fact that the 1pRD operator commutes
with the field operators under the time-ordering operator, cf. Eq. (8.69). After
recasting the 1pRD operator as

n̂j′l(z̄) = f̂ †
j′(z̄)f̂l(z̄) = ±T̂C

{

f̂l(z̄)f̂
†
j′(z̄

+)
}

,
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we can identify the 2pNEGF operator:

Îij(z, z
′) = ∓ i

~

∑

j′kl

∫

C

dz̄ wij′kl(z
+, z̄)T̂C

{

f̂k(z)T̂C

{

f̂l(z̄)f̂
†
j′(z̄

+)
}

f̂ †
j (z

′)
}

= ∓ i

~

∑

j′kl

∫

C

dz̄ wij′kl(z
+, z̄) T̂C

{

f̂k(z)f̂l(z̄)f̂
†
j′(z̄

+)f̂ †
j (z

′)
}

︸ ︷︷ ︸

=−~2Ĝ
(2)

kljj′
(z,z̄;z′,z̄+)

= ±i~
∑

j′kl

∫

C

dz̄ wij′kl(z
+, z̄)Ĝ

(2)
kljj′(z, z̄; z

′, z̄+) . (8.184)

Together with Eq. (8.177), and after performing the ensemble averaging, we
arrive at the first equation of motion of the 1pNEGF, the first equation of the
Martin-Schwinger hierarchy:

i~
∂

∂z
Gij(z, z

′) = δC(z, z
′)δij +

∑

k

hik(z)Gkj(z, z
′)

± i~
∑

j′kl

∫

C

dz̄ wij′kl(z
+, z̄)G

(2)
kljj′(z, z̄; z

′, z̄+) . (8.185)

8.4.2 Adjoint of the first equation of the Martin-Schwinger
hierarchy

The second equation of motion is obtained in a similar way. We just have to
compute the derivative of the 1pNEGF operator with respect to z′:

i~
∂

∂z′
Ĝij(z, z

′) = −i~δC(z, z
′)
{

Ĝ>
ij(z, z

′)− Ĝ<
ij(z, z

′)
︸ ︷︷ ︸

=
z=z′

− i
~
δij

}

+ θC(z, z
′)f̂i(z)

∂f̂ †
j (z

′)

∂z′
± θC(z

′, z)
∂f̂ †

j (z
′)

∂z′
f̂i(z) .

After inserting the equation of motion of the creation operator f̂ †
j (z

′),

∂f̂ †
j (z

′)

∂z′
=

i

~

{∑

k

hkj(z
′)f̂ †

k(z
′) +

∑

j′kl

wkljj′(z
′)f̂ †

k(z
′)f̂ †

l (z
′)f̂j′(z

′)
}

,
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which is the adjoint equation of (8.176), with z → z′ (h∗
jk = hkj, w

∗
jj′kl = wkljj′),

we have

i~
∂

∂z′
Gij(z, z

′) = −δC(z, z
′)δij (8.186)

−
∑

k

hkj(z
′)

{

θC(z, z
′)

(

− i

~

)

f̂i(z)f̂
†
k(z

′) + θC(z
′, z)

(

∓ i

~

)

f̂ †
k(z

′)f̂i(z)

}

︸ ︷︷ ︸

=Ĝik(z,z′)

+
i

~

∑

j′kl

wkljj′(z
′)

{

θC(z, z
′)f̂i(z)f̂

†
k(z

′) f̂ †
l (z

′)f̂j′(z
′)

︸ ︷︷ ︸

n̂lj′ (z
′)

± θC(z
′, z)f̂ †

k(z
′) f̂ †

l (z
′)f̂j′(z

′)
︸ ︷︷ ︸

=n̂lj′ (z
′)

f̂i(z)

}

.

Again, we could identify the 1pNEGF operator in the first line, and we defined
the last line as the negative of the second collision operator, Ĩij(z, z

′). Using
the generalized two-body interaction [Eq. (8.179)], we rewrite this collision
term in a similar way as we did with the first one to re-substitute the 2pNEGF
operator:

−Ĩij(z, z
′) =

i

~

∑

j′kl

∫

C

dz̄ wkljj′(z
′, z̄)
{

θC(z, z
′)f̂i(z)f̂

†
k(z

′)n̂lj′(z̄)

± θC(z
′, z)f̂ †

k(z
′)n̂lj′(z̄)f̂i(z)

}

.

Now, the 1pRD operator n̂lj′(z̄) is always to the right of f̂k(z
′) and, therefore,

we can write

−Ĩij(z, z
′) =

i

~

∑

j′kl

∫

C

dz̄ wkljj′(z
′−, z̄)T̂C

{

f̂i(z)f̂
†
k(z

′)n̂lj′(z̄)
}

=
i

~

∑

j′kl

∫

C

dz̄ wkljj′(z
′−, z̄)T̂C

{

f̂i(z)n̂lj′(z̄)f̂
†
k(z

′)
}

=
i

~

∑

j′kl

∫

C

dz̄ wkljj′(z
′−, z̄)T̂C

{

f̂i(z)(±)T̂C

{

f̂j′(z̄)f̂
†
l (z̄

+)
}

f̂ †
k(z

′)
}

= ± i

~

∑

j′kl

∫

C

dz̄ wkljj′(z
′−, z̄) T̂C

{

f̂i(z)f̂j′(z̄)f̂
†
l (z̄

+)f̂ †
k(z

′)
}

︸ ︷︷ ︸

=−~2Ĝ
(2)

ij′kl
(z,z̄,z′,z̄+)

Inserting this result into Eq. (8.186), performing the ensemble average and
then multiplying the whole equation by (−1), yields the second equation of
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motion:

−i~
∂

∂z′
Gij(z, z

′) = δC(z, z
′)δij +

∑

k

Gik(z, z
′)hkj(z

′) (8.187)

± i~
∑

j′kl

∫

C

dz̄ G
(2)
ij′kl(z, z̄, z

′, z̄+)wkljj′(z
′−, z̄) ,

where the Green functions now appear to the left (this yields proper matrix
multiplication).

It is convenient to write both equations of motion [Eqs. (8.185) and (8.187)]
in the following way:

∑

k

{

i~
∂

∂z
δik − hik(z)

}

Gkj(z, z
′) = δC(z, z

′)δij± (8.188)

±i~
∑

j′kl

∫

C

dz̄ wij′kl(z
+, z̄)G

(2)
kljj′(z, z̄; z

′, z̄+) ,

∑

k

Gik(z, z
′)

{

−i~
∂

∂z′
δkj − hkj(z

′)

}

= δC(z, z
′)δij± (8.189)

±i~
∑

j′kl

∫

C

dz̄ G
(2)
ij′kl(z, z̄, z

′, z̄+)wkljj′(z
′−, z̄) .

These equations form the extremely important equations of motion for the
two-time contour Nonequilibrium Green functions. Obviously, these equations
for G are not closed but couple to the two-particle Green functions. More
generally, these equations form the first of a chain of coupled equations for
the N -particle NEGF. This chain (or hierarchy) is called Martin-Schwinger
hierarchy (MSH) [56]. We will not write down the higher order equations but
mention that the first equation leads to the Keldysh-Kadanoff-Baym-Equations
(KBE). In these equations, the two-particle NEGF is eliminated in favor of the
selfenergy, as we will discuss in detail in Sec. 8.6.

Before we discuss the properties of the MSH, we notice, that the second
equation is the adjoint of the first one, i.e., we adjoin the first equation and
then interchange i ↔ j and z ↔ z′. In doing this, special care must be taken
with the infinitesimal larger times z+ and z̄+. For example, it is

[

G
(2)
kljj′(z, z̄; z

′, z̄+)
]∗

= − 1

~2

〈

T̂C

{[

f̂k(z)f̂l(z̄)f̂
†
j′(z̄

+)f̂ †
j (z

′)
]†
}〉

(8.190)

= ∓ 1

~2

〈

T̂C

{[

f̂k(z)n̂j′l(z̄)f̂
†
j (z

′)
]†
}〉

= ∓ 1

~2

〈

T̂C

{

f̂j(z
′)n̂†

j′l(z̄)f̂
†
k(z)

}〉

,
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and, since

n̂†
j′l(z̄) = f̂ †

l (z̄)f̂j′(z̄) = ±T̂C

{

f̂j′(z̄)f̂
†
l (z̄

+)
}

,

we further have
[

G
(2)
kljj′(z, z̄; z

′, z̄+)
]∗

= − 1

~2

〈

T̂C

{

f̂j(z
′)f̂j′(z̄)f̂

†
l (z̄

+)(z̄)f̂ †
k(z)

}〉

= G
(2)
jj′kl(z

′, z̄; z, z̄+) , (8.191)

which, after interchanging i ↔ j and z ↔ z′, leads to the correct 2pNEGF in
the collision term of the second equation53.

8.4.3 Properties of the Martin-Schwinger hierarchy

Let us now briefly discuss the properties of the Martin-Schwinger hierarchy.

i. The entire hierarchy is, of course, equivalent to the full many-body pro-
blem. Therefore, the solution for the 1pNEGF yields the exact dynamics
of the system in equilibrium and non-equilibrium (provided the exact
2pNEGF is used on the r.h.s.).

ii. The first equations of the MSH are a set of coupled (non-Markovian54)
integro-differential equations and are valid for imaginary and real ti-
mes defined on the round-trip Keldysh contour C. Thereby, the second
equation in (8.188) is just the adjoint of the first one with the times
interchanged, i.e., t ↔ t′, as we discussed above.

iii. The boundary (respectively, initial) conditions for the first equation of
the MSH are given by the Kubo-Martin-Schwinger (KMS) relations for-
mulated as properties a) and b) in Eq. (8.136), cf. [56, Kub57]. If the
equilibrium Matsubara Green function of the system is known, sufficient
KMS conditions are expressions c) and d) in Eq. (8.136).

53Note that we have to first perform the limit z̄+ = limǫ→0(z̄+ǫ), under the time-ordering
operator, before adjoining the product of field operators in line (8.190). Otherwise we would
have ended up with

[

G
(2)
kljj′(z, z̄; z

′, z̄+)
]∗

= G
(2)
jj′kl(z

′, z̄+; z, z̄) , (8.192)

which is, obviously, not the correct result. Therefore, when complex conjugating the collision
term of the first KBE equation, we first must perform the contour time integral and then
perform both time limits under T̂C . This will finally gives rise to the z′− in the generalized
two-body interaction.

54This means they involve a time integral that reflects memory effects.
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iv. As discussed above, Eqs. (8.188) are not closed, i.e., they do not uniquely
define the 1pNEGF without further knowledge. Instead, these equations
require the 2pNEGF which, in turn, satisfies its own equation of motion–
the Bethe-Salpeter equation, cf. Refs. [72, 73]. Generally, the equation of
motion for G(n) (n ≥ 2) requires information about G(n−1) and G(n+1),
cf. Refs. [73, 74]. The entire chain of equations for all G(n) forms the
Martin-Schwinger hierarchy.

v. In the special case of equal time arguments, t = t′, the MSH reduces
to the BBGKY (Bogolyubov-Born-Green-Kirkwood-Yvon) hierarchy for
the reduced density operators, cf., e.g., [Bon98]. The special case of the
dynamics of single-time quantities will be studied in Section 8.9 below.

8.5 Decoupling of the Martin-Schwinger

hierarchy

Since an exact solution of the hierarchy is, in general, not possible, approxima-
tions for the two-particle Green function are necessary. We start by discussing
the simplest ones.

8.5.1 One-particle case

In the case of an isolated particle, of course, G(2) = 0, and the equations
become modified versions of the time-dependent Schrödinger equation,

∑

k

{

i~
∂

∂z
δik − hik(z)

}

Gkj(z, z
′) = δC(z, z

′)δij , (8.193)

∑

k

Gik(z, z
′)

{

−i~
∂

∂z′
δkj + hkj(z

′)

}

= δC(z, z
′)δij , (8.194)

where the main differences are the formulation on the Keldysh contour and
the appearance of the delta functions on the right. The consequences of this
modification will be discussed below, in Sec. 8.7.

8.5.2 Mean field (Hartree) approximation

For any many-particle system, the neglect of G(2) is not justified. Even in the
case of non-interacting particles or particles that are very far from each other
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±

j, t2

i , t1

l , t ′
2

k, t ′
1

j, t2

i , t1

l , t ′
2

k, t ′
1

Abbildung 8.6: Hartree-Fock: the simplest conserving approximation for the
two-particle Green function G

(2)
ij,kl(t1, t2; t

′
1, t

′
2), cf. Eq. (8.199). The sign refers

to bosons (+) and fermions (−).

G(2) remains finite and assumes the limiting form of the case of independent
particles:

G
(2)
ij,kl(t1, t2; t

′
1, t

′
2) = Gik(t1, t

′
1)Gjl(t2, t

′
2) . (8.195)

The corresponding diagram is sketched in the left part of Fig. 8.6. When this
expression is inserted into the collision integral I on the right of Eq. (8.185),
we obtain again an effective single-particle equation with a one-particle hamil-
tonian that is modified by an additional potential energy term ΣH:

∑

k

{

i~
∂

∂z
δik − hik(z)− ΣH

ik(z)

}

Gkj(z, z
′) = δC(z, z

′)δij , (8.196)

ΣH
ik(z) = ±i~

∑

j′l

∫

C

dz̄ wij′kl(z̄
+, z̄)Glj′(z̄, z̄

+) . (8.197)

This result is nothing but the standard Hartree mean field (recall that the
Green function with identical time arguments is directly related to the density
matrix). As we will see below, this function is closely related to the Hartree
selfenergy which is defined as a two-time function

ΣH
ik(z, z

′) = ΣH
ik(z)δC(z, z

′) . (8.198)

Note that the contour integral in (8.197) is, in fact, not present because w(z, z′)
contains a contour delta function.

8.5.3 Hartree-Fock approximation

We now extend the result for the ideal two-particle NEGF, Eq. (8.195) to the
quantum case of particles with spin. This gives rise to exchange effects and
to permutations of identical particles which we discussed before for the many-
particle wave function and for the two-particle density operator. Consequently,
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also the ideal two-particle NEGF acquires an additional exchange contribution,
the Fock Green function,

G
(2)HF
ij,kl (t1, t2; t

′
1, t

′
2) = Gik(t1, t

′
1)Gjl(t2, t

′
2)±Gil(t1, t

′
2)Gjk(t2, t

′
1) , (8.199)

where the sign differs for bosons and fermions. As in the case of the two-particle
wave function, this ideal 2-particle NEGF can be written in form of a Slater
permanent/determinant. Inserting the ansatz (8.199) into the collision integral
we obtain

IFij (z, z
′) =

∑

k

(+i~)
∑

j′l

∫

C

dz̄ wij′,kl(z
+, z̄)Gkj′(z, z

+)Glj(z̄, z
′) =

:=
∑

k

ΣF
ik(z, z̄)Gkj(z, z

′) , (8.200)

ΣF
ik(z, z̄) = i~

∑

j′l

wj′i,lk(z, z̄)Gli(z, z̄) , (8.201)

where we introduced the Fock selfenergy. It is a function of two times, however,
due to the delta function in the potential, it is also time local.

Hartree-Fock approximation again translates into an effective single-particle
problem with an effective 1-particle hamiltonian, but involves operator for ΣHF.
Details will be given below, in Sec. 8.6.

8.5.4 Correlation effects in G(2)

The general form of two-particle NEGF can be written as an ideal part (Hartree-
Fock) plus an addition, the correlation part of the 2pNEGF:

G
(2)
ijkl(t1, t2; t

′
1, t

′
2) = G

(2)HF
ijkl (t1, t2; t

′
1, t

′
2) + Gijkl(t1, t2; t

′
1, t

′
2) , (8.202)

= G
(2)H
ijkl (t1, t2; t

′
1, t

′
2) + Lijkl(t1, t2; t

′
1, t

′
2) . (8.203)

Here the first line contains the correlated part of the 2pNEGF which resembles
the two-particle correlation operator (correlated part of the two-particle RDO).
The second line contains an alternative definition: here only the Hartree part
is separated, so the remainder contains Fock and correlation contributions.
The function L is, therefore, called exchange-correlation function. It is closely
related to the exchange correlation functional of density functional theory.

We already saw for the Hartree and Fock approximations that the collision
integral can be rewritten as an integral over an effective potential energy. This
structure of the collision integral suggests to look for a similar representation
also for the general case. This leads to the introduction of the one-particle
selfenergy which we discuss in the next section.
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8.6 Selfenergy. Keldysh-Kadanoff-Baym

equations

In order to transform the KBEs (8.188), (8.189) into a closed form avoiding
the MS hierarchy, we have to express the 2pNEGF in terms of the 1pNEGF.
However, in the presence of correlations, this can be done only by summing over
an infinite number of contributions. For this reason, we generally have to resort
to approximations when dealing with nonequilibrium Green functions. Highly
useful expansions are provided by many-body perturbation theory (MBPT).
To give details in this regard and to cover topics such as “self-consistency” and
“conserving approximations” is the task of Section 8.8.

8.6.1 Definition of the selfenergy

We now formally rewrite the contour integrals in Eqs. (8.188), (8.189) as convo-
lutions and include all interaction effects into a new one-particle quantity–the
“self-energy” (1pSE) Σ:

±i~
∑

j′kl

∫

C

dz̄ wij′kl(z
+, z̄)G

(2)
kljj′(z, z̄; z

′, z̄+) ≡
∑

k

∫

C

dz̄Σik(z, z̄)Gkj(z̄, z
′) ,

(8.204)

±i~
∑

j′kl

∫

C

dz̄ G
(2)
ij′kl(z, z̄, z

′, z̄+)wkljj′(z
′−, z̄) ≡

∑

k

∫

C

dz̄ Gik(z, z̄) Σkj(z̄, z
′) ,

(8.205)

These equations define the self-energy as a functional of the 1pNEGF and the
generalized two-body interaction w on the roundtrip contour, i.e. Σij(z, z

′) =
Σij[G,w](z, z′). It is, thereby, assumed that the selfenergy is the same in both
equations, which can be proven, in particular, for conserving approximations.
Note that, on the l.h.s. we could remove the contour integral, due to the del-
ta function in the potential. We keep it only in order to simplify selfenergy
derivations below.

With this substitution we obtain the Keldysh-Kadanoff-Baym equations
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(KBE) – two formally closed equations for the two-time 1pNEGF:

∑

k

{

i~
∂

∂z
δik − hik(z)

}

Gkj(z, z
′) = δC(z, z

′)δij+ (8.206)

+
∑

k

∫

C

dz̄Σik(z, z̄)Gkj(z̄, z
′) ,

∑

k

Gik(z, z
′)

{

−i~
∂

∂z′
δkj + hkj(z

′)

}

= δC(z, z
′)δij+ (8.207)

+
∑

k

∫

C

dz̄ Gik(z, z̄) Σkj(z̄, z
′) .

8.6.2 Hartree and Fock selfenergies

Using the Hartree and Fock approximations for the two-particle NEGF and
the definition of the selfenergy, Eq. 8.206, we immediately identify the corre-
sponding Hartree and Fock selfenergies where the contour integrations have
been performed: Inserting the HF approximation for G(2) into the first KBE,
we obtain,

{

i~
∂

∂z
δik − hik(z)

}

Gkj(z, z
′)− δC(z − z′) δij = (8.208)

= ±i~

∫

C

dz̄ wij′kl(z, z̄)
{
Glj′(z̄, z̄

+)Gkj(z, z
′)±Glj(z̄, z

′)Gkj′(z, z̄
+)
}

,

≡
∫

C

dz̄ΣHF
ik (z, z̄)Gkj(z̄, z

′) (8.209)

where we sum over repeating subscripts. If we express the integral on the
r.h.s. in the form of ((8.206)), we easily verify that the selfenergy has the form,

ΣHF
ij (z, z′) = ΣH

ij(z, z
′) + ΣF

ij(z, z
′) , (8.210)

where we identify the two contributions as

ΣH
ik(z, z̄) = ±i~ δC(z − z̄)wij′kl(z)Glj′(z, z

+) , (8.211)

ΣF
ik(z, z̄) = i~wij′lk(z, z̄)Glj′(z, z̄) .

The first term is the Hartree self-energy that involves the density matrix,
±i~Glj′(z, z

+) = nlj′(z), whereas the second term (the Fock contribution) ac-
counts for exchange effects, i.e., for the Pauli exclusion principle, in the case
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of fermions. Moreover, as w(t − t′) involves a contour delta function, we di-
rectly observe that the HF approximation leads to a regular (time-local) self-
energy and, thus, neglects correlation effects. Improvements of (8.199) beyond
Hartree-Fock are obtained by vertex corrections, e.g. Ref. [76], and will be dis-
cussed in the following. An important necessary criterion for the construction
of approximations is that they retain the symmetries and conservation laws of
the original (exact) Hamiltonian.

Basis representations.
Before we do this we briefly discuss how the above results depend on the
chosen single-particle basis. so far we considered a general basis where single-
particle and two-particle quantities are represented by two-dimensional and
four-dimensional matrices, respectively.

1. First we consider a more compact notation where orbital and time indices
are combined such as 1 = (i1, s1, t1). With a generalized interaction po-
tential [Joo22], w(12; 1′2′) = δC(z1, z2)δC(z1, z2′)δC(z1, z1′)wi1i2i′1i

′
2
(z1) we

can rewrite the Hartree and Fock selfenergies as

ΣHF(1, 1′) = ±i~

∫

w(12; 1′3)G(32) + i~

∫

w(12; 31′)G(32) , (8.212)

where integration over underlined times and summation over underlined
orbital indices is implied. Note that we exchanged the orbital indices
of the potential in the Fock term which allowed us to use the same
notation for the Green function. The corresponding Feynman diagrams
are presented in Ref. [Joo22]

2. Consider now a diagonal basis (for example the coordinate representa-
tion) where the potential is of the form wijkl(z) = δikδjlw(z). Then we
obtain for the Hartree and the Fock selfenergies

ΣH
i1,i′1

(z1, z
′
1) = ±i~δC(z1, z

′
1)δi1,i′1

∑

i2

wi1,i2Gi2i2(z1, z
+
1 ) , (8.213)

ΣF
ij(z1, z2) = i~δC(z1, z2)wij(z1)Gij(z1, z

+
1 ) . (8.214)

A detailed analysis of many different representations can be found in the
review [SHSB20].

8.6.3 Correlation and exchange-correlation selfenergies

As the two-particle NEGF, also the full selfenergy contains a Hartree-Fock and
a correlation contribution

Σik(z, z
′) = ΣHF

ik (z, z′) + Σcor
ik (z, z′) . (8.215)
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While the Hartree-Fock selfenergy is time-diagonal (or time-local), i.e.
ΣHF(z, z′) ∝ δC(z−z′), the correlation part is non-diagonal. Whereas the former
makes the KBEs trivial to solve as they become Markovian (the contour inte-
gral over the selfenergy can be taken), the latter preserves the non-Markovian
structure and accounts for memory effects, that are related to correlations.

8.7 Inverse Green Function. Nonequilibrium

Dyson equation

One of the main advantages of the two-time formalism is that the partial diffe-
rential equations for the 1pNEGF are easily converted into integral equations
for which effective approximations via iteration schemes exist.

8.7.1 Inverse Green function

We first demonstrate this for the non-interacting case where Σ → 0, cf.
Sec. 8.5.1. Then Eq. (8.206) has the form of a linear equation with a delta
inhomogeneity (here on the Keldysh contour) which is solved by the mathe-
matical Green function of this equation which we will call G0. Obviously, G0

can be used to explicitly construct the solution of Eq. (8.206) with an arbitrary
inhomogeneity (i.e. for Σ 6= 0).

The inverse Green function of the ideal system is obtained as

∑

k

{

i~
∂

∂z
δik − hik(z)

}

G0,kj(z, z
′) = δC(z, z

′)δij (8.216)

:=

∫

C

dz̄
∑

k

G−1
0,ik(z, z̄)G0,kj(z̄, z

′) ,

with G−1
0,ik(z, z̄) ≡

{

i~
∂

∂z
δik − hik(z)

}

δC(z, z̄) . (8.217)

Now we take into account the selfenergy term on the r.h.s. of Eq. (8.206) which
we move to the left allowing us to define the inverse of the correlated Green
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function:
∫

C

dz̄
∑

k

{[

i~
∂

∂z
δik − hik(z)

]

δC(z, z̄)− Σik(z, z̄)

}

Gkj(z, z
′) = δC(z, z

′)δij

(8.218)

:=

∫

C

dz̄
∑

k

G−1
ik (z, z̄)Gkj(z̄, z

′) ,

with G−1
ik (z, z̄) ≡ G−1

0,ik(z, z̄)− Σik(z, z̄) , (8.219)

where we have expressed the inverse Green function by the inverse of the
ideal case55. In the special mean field case (Hartree-Fock), with Σ(z, z′) →
ΣHF(z, z′) ∼ δC(z, z

′), the inverse Green function is time-diagonal, as for the
ideal system.

8.7.2 Dyson equation

In a similar way as for the inverse, we can express the full Green function
G in terms of the ideal Green function G0. This is achieved by multiplying
Eq. (8.206) with G0,li(z, z̄), summing over “i” and integrating over z̄. We sim-
plify the procedure by rewriting Eq. (8.206) with the combined orbital and
time arguments 1, 1′ etc. and renaming the arguments (recall that integration
and summation is implied over underlined arguments):

G−1
0 (1̃, 1̄)G(1̄, 1′) = δC(1̃, 1

′) + Σ(1̃, 1̄)G(1̄, 1′) . (8.220)

This we multiply by G0(1, 1̃) and integrate/sum over 1̃ taking into account
that G0(1, 1̃)G

−1
0 (1̃, 1̄) = δC(1, 1̄), with the result

G(1, 1′) = G0(1, 1
′) +G0(1, 1̃)Σ(1̃, 1̄)G(1̄, 1′) . (8.221)

This is the nonequilibrium Dyson equation for the one-particle Green function
which is fully equivalent to the Keldysh-Kadanoff-Baym equation. Often the
orbital summations and time integrations over repeating indices (time argu-
ments) are suppressed resulting in the matrix form

G = G0 +G0ΣG . (8.222)

This is actually a matrix equation on the Keldysh contour for 3× 3 (or 2× 2)
Keldysh matrices where the equations for the different Keldysh components

55Instead of the ideal Green function we could also use any other reference function, for
example, the Hartree-Fock Green function.
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follow straightforward from the Langreth rules, cf. Tab. 8.1:

{ ~A ~B}(t, t′) =
∫

C

dt̄ ~A(t, t̄) ~B(t̄, t′) . (8.223)

To specify the structure of the integral term on the r.h.s. of Eq. (8.221) in
terms of components of the 1pSE and the 1pNEGF, it is necessary to apply
the Langreth-Wilkins rules twice. We recall that the operations indicated by
⋆ and ◦ are defined by (x, y ∈ {A,R, >,<, ⌉, ⌈}),

{Ax ◦By}(t, t′) =
∫ ∞

t0

dt̄ Ax(t, t̄)By(t̄, t′) , (8.224)

and,

{AM ⋆ BM}(τ) =

∫ β

0

dτ̄ AM(τ − τ̄)BM(τ̄) , (8.225)

{AM ⋆ B⌈}(t0 − iτ, t) =

∫ β

0

dτ̄ AM(τ − τ̄)B⌈(t0 − iτ̄ , t) ,

{A⌉ ⋆ BM}(t, t0 − iτ) =

∫ β

0

dτ̄ A⌉(t, t0 − iτ̄)BM(τ̄ − τ) ,

{A⌉ ⋆ B⌈}(t, t′) = −i

∫ β

0

dτ̄ A⌉(t, t0 − iτ̄)B⌈(t0 − iτ̄ , t′) .

8.7.3 Equilibrium Limit of the Dyson Equation

The KBEs (8.206), (8.207) are valid for all times z and z′ on the contour
C. However, if the system Hamiltonian is time-independent (note that this is
assumed above for times t, t′ ≤ t0), the only independent matrix component
of the Green function is GM. As a consequence, the contour reduces to its
imaginary track, and the KBEs (8.206), (8.207) simplify to the Dyson equation
for the Matsubara Green function56, were we use the result (8.225)

{

i~
∂

∂τ
δik − hik

}

GM
kj(τ) = δ(τ) δij +

∫ β

0

dτ̄ ΣM
ik(τ − τ̄)GM

kj(τ̄), (8.226)

in which we have applied the transformation,

Xij(τ − τ ′) = −i~Xij(t0 − iτ, t0 − iτ ′) , (8.227)

56Summation over k is implied.
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to the 1pNEGF (X = GM) and the 1pSE (X = ΣM). In this notation, the time
difference τ − τ ′ generally ranges from −β to +β, and the equilibrium 1pRDM
is simply,

nij = GM
ij (0

−) . (8.228)

Further, the antiperiodicity properties a) and b) of Eq. (8.136) allow us to
restrict the solution of Eq. (8.226) to a half interval, e.g., [−β, 0] which includes
the reduced density matrix at the upper interval boundary57 58.

If we include the regular part of the self-energy [e.g. the Hartree-Fock sel-
fenergy],

ΣM
reg,ij(τ) = δ(τ) ΣM

0,ij , (8.229)

into an effectively non-interacting Green function59 GM
0 (τ), the Dyson equation

attains the form [compare with Eq. (8.221)],

GM
ij (τ) = GM

0,ij(τ) +

∫ β

0

dτ̄

∫ β

0

d¯̄τ GM
0,ik(τ − τ̄)Σcor

kl (τ̄ − ¯̄τ)GM
lj (¯̄τ) , (8.230)

Σcor
ij (τ) = ΣM

ij (τ)− ΣM
reg,ij(τ) .

It is important to note that here (aside from w) the self-energy ΣM
0 is

strictly a functional of the effectively non-interacting Green function, whereas
ΣM(τ) depends on the full Green function and includes, both, a regular and
an irregular part.

If the effectively non-interacting Green function GM
0 (τ) is known, equa-

tion (8.230) can be solved by iteration starting from setting GM(τ) = GM
0 (τ)

on the r.h.s. Eventually, a self-consistent Matsubara Green function is reached.
Together with transformation (8.227) and properties c) and d) of Eq. (8.136),
this solution serves as a proper initial condition for the real-time propagation
of the 1pNEGF. This means that, in this case, the many-body system will
remain stationary in time as far as no external field is applied and the same
“conserving” approximation is used for the self-energy, cf. Section 8.8.1.

57Sometimes, GM(τ) is considered on the symmetric interval [−β
2 ,

β
2 ], see, e.g., [75].

58Note that for τ̄ = τ − τ ′ ∈ [−β, 0] it is always τ ≥ τ ′ and therefore GM (τ̄) = G⌈(t0 −
i~τ̄ , t0)

59The corresponding Dyson equation is obtained by replacing the one-particle energy hij

in Eq. (8.226) by hij+ΣM
0,ij and setting the integration kernel to zero. Sometimes, one refers

to GM
0 as the “bare” Green function whereas the full Green function GM is the “dressed”

one.
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Before considering approximations for the correlation selfenergy we point
out that an explicit equilibrium solution of the Dyson equation (8.230) can be
obtained via Fourier transform, using the convolution theorem:

GM(ω) = GM
0 (ω) +GM

0 (ω)Σ
cor(ω)GM(ω) . (8.231)

If the Green functions and selfenergy are diagonal in orbital space (e.g. in case
of the momentum representation for a uniform system)60, this can be solved
to yield explicitly

GM(ω, p) =
GM

0 (ω, p)

1−GM
0 (ω, p)Σ

cor(ω, p)
. (8.232)

This is, however, only formally an explicit solution because Σcor also depends
on the unknown GM. For this diagonal case, it is also instructive to analy-
ze the inverse Green functions. Applying again the convolution theorem, the
definition of the inverse, Eqs. (8.217) and (8.219), becomes

GM,−1
0 (ω, p)GM

0 (ω, p) = 1 , (8.233)

GM,−1(ω, p)GM(ω, p) = 1 , (8.234)

i.e. the inverse is just one over the Green function. This can be used to simplify
the result (8.232) by multiplying with GM

0 /G
M
0 ,

GM(ω) =
1

GM,−1
0 (ω, p)− Σcor(ω, p)

. (8.235)

An explicit result is obtained after performing the time derivative of the Fourier
transform of the non-interacting (HF) Green function:

GM,−1
0 (ω, p) = ~ω − ǫ(p) , (8.236)

GM,−1(ω, p) = ~ω − ǫ(p)− Σcor(ω, p) . (8.237)

8.8 Many-Body Approximations

One of the key problems in solving the Kadanoff-Baym equations (8.206),
(8.207) as well as the Dyson equation (8.226) is that they contain an unknown
function – the selfenergy – or, equivalently, the two-particle Green function.
These functions are exactly known only in special model cases61. Therefore,
the standard way to proceed is to perform a truncation of the MS hierarchy
through a many-body approximation (MBA). The simplest truncation is, of
course, the Hartree-Fock approximation that was discussed in detail above.
Now we systematically go beyond that limit.

60Task: Extend this to the case of a matrix equation for GM
ij .

61Alternatively, one could use them, as an input, from computer simulations.



322 KAPITEL 8. NONEQUILIBRIUM GREEN FUNCTIONS

8.8.1 Requirements for a Conserving Scheme

If we analyze the HF approximation of the 2pNEGF, we realize that it obeys
a specific symmetry: It is invariant under the simultaneous exchange of the
first and the second pair of (spatial and temporal) arguments, cf. Eq. (8.199).
Also, we find that, when applying the HF approximation to the KBEs (8.206),
(8.207), the system’s total energy, particle number and momentum are pre-
served62. For this reason, HF is called a “conserving” approximation. In this
regard, we note that the 1pNEGF allows us to determine the total energy by
(we sum over i and j, i.e., take the trace),

〈

Ĥ
〉

(t) = −i~Gij(t, t
+)hji(t)−

i~

2

∫

C

dt̄Σij(t, t̄)Gji(t̄, t
+) , (8.238)

where the first part is the single-particle energy and the second part the inter-
action energy (including HF). The equilibrium limit of this is,

〈

Ĥ
〉

= GM
ij (0

−)hji +
1

2

∫ β

0

dτ ΣM
ij (−τ)GM

ji (τ) . (8.239)

In fact, it has been shown by Baym [77] that the symmetry of G(2) in
(8.199) is directly linked to important conservation laws and the preservation of
particle number. More precisely, an arbitrary MBA is automatically conserving
if,

i.) the approximate 1pNEGF simultaneously satisfies the first equation of
the MS hierarchy and its adjoint, i.e., Eqs. (8.188), (8.189), and

ii.) the approximation for G(2) satisfies the symmetry,

G
(2)
ij,kl(t1, t2; t

+
1 , t

+
2 ) = G

(2)
ji,lk(t2, t1; t

+
2 , t

+
1 ) . (8.240)

Conditions i.) and ii.) represent important criteria for the development of
self-consistent solutions of the KBEs beyond the HF level. Thereby, condition
ii.) is simple to verify if the analytical dependence of G(2) on G is known for a
chosen approximation. On the other hand, a condition equivalent to ii.) can be
formulated for the one-particle self-energy, cf. the discussion on “Φ-derivable”
approximations in the following Subsection.

Comment: Note that in single-time reduced density operator theory there
are similar conservation conditions. There energy conservation is fulfilled if the
three-particle density operator F123 is invariant with respect to index changes
[Bon98].

62For an analysis of conservation laws, we refer to Ref. [27].


