
Kapitel 6

BBGKY-hierarchy

The reduced density operators obey a coupled system of equations–the BBGKY
hierarchy. The derivation and extensive discussion of this hierarchy are given
in the text book [Bon98] and are briefly summarized here. In order to make
the following considerations more transparent, we will consider first a quantum
system of spinless particles.1 The effects of the spin statistics will be included
explicitly into the final equations of motion below, see Sec. 6.62

6.1 Nonequilibrium N-particle

density operator

The idea of how to extend a quantum-mechanical pure state description (in
terms of wave functions |Ψ〉) to a mixed state description, in case of a system
coupled to a bath, is due to Landau and von Neumann. They defined an
incoherent superposition of solutions of the Schrödinger equation which we
assume to be orthonormalized. In case of an externally driven system the
problem is formulated based on solutions of the time-dependent Schrödinger

1In principle, the equations derived below, are applicable to Bose or Fermi particles also.
We would only have to define the trace operations to be performed respectively in the
symmetric or antisymmetric subspace of the Hilbert space.

2An alternative derivation which includes the spin symmetry from the beginning considers
equations of motion of time-dependent field operator products such as a†a, a†a†aa and so on,
using the results of Sec. 5.2, with a subsequent ensemble average. This, however, generates
very lengthy results and the meaning of the different terms is more difficult to identify.
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equation3,

ρ̂N(t) =
M
∑

α=1

Wα |Ψα
N(t)〉〈Ψα

N(t)| , Tr ρ̂N = 1 , (6.1)

0 ≤ Wα ≤ 1 ,
M
∑

α=1

Wα = 1 ,

i~
∂

∂t
|Ψα

N〉 = ĤN |Ψα
N〉 , 〈Ψα

N |Ψβ
N〉 = δα,β , (6.2)

with the coefficients being standard real probabilities. The density operator is
normalized to unity and is the straightforward generalization of the N-particle
probability distribution of classical statistical mechanics to the quantum ca-
se. The present definition applies to thermodynamic equilibrium (special cases
are the canonical or grand-canonical density operator) and to nonequilibrium
as well. In the latter case the time dependence enters via the wave functions,
cf. Eq. (6.2). The resulting equation of motion of ρN(t) – the von Neumann
equation – will be discussed in Sec. 6.3.

Our ultimate goal, in most cases, is the computation of time-dependent
averages of s-particle operators. In quantum statistics this can now be done
with the density operators,

〈B̂s〉(t) = Tr1...N B̂s ρN(t) = Tr1...sB̂s Trs+1...N ρN(t) , (6.3)

where, in the last expression, we split the trace in two contributions. Evident-
ly, for the s-particle average the full N-particle density operator is not needed,
but only its trace over the remaining indices s+1, . . . N , which constitutes an
s-particle operator. This suggests to introduce additional simpler quantities –
the reduced density operators.

Problem: prove the normalization of the density operator by using the
coordinate representation for computing the trace.

3The (anti-)symmetrization of theses states will be considered later, in Sec. 6.6.
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6.2 Reduced density operators

6.2.1 Main definitions

We define the reduced s-particle density operator by a partial trace of the full
N -particle density operator, the latter being normalized to unity,

F1...s =
N !

(N − s)!Trs+1...NρN , Tr1...sF1...s =
N !

(N − s)! . (6.4)

Note that Fs is an ensemble-averaged quantity since it is computed from ρN
that, in general, incorporates a mixed state description with given probabilities
of the individual N -particle states. The three lowest operators are

F1 = NTr2...N ρN , Tr1F1 = N , (6.5)

F12 = N(N − 1)Tr3...N ρN , Tr12F12 = N(N − 1) , (6.6)

F123 = N(N − 1)(N − 2)Tr4...N ρN , Tr123F123 = N(N − 1)(N − 2) . (6.7)

The normalization of these operators differs from a probability density. It is
chosen such that it accounts for statistical factors – the number of possibilities
to select one particle (F1), particle pairs (F12) and so on.

6.2.2 Trace consistency

The definitions of different reduced density operators have to be consistent
with each other because they all follow from the same N-particle operator.
Therefore, for k, s ≥ 1, the different operators have to satisfy4

F1...s = [(N − s+ 1) . . . (N − s+ k − 1)]−1 Trs+1...s+k F1...s+k. (6.9)

In particular, the lowest order operators are related by

F1 = (N − 1)−1 Tr2 F12 = (N − 1)−1(N − 2)−1 Tr23 F123 . (6.10)

F12 = (N − 2)−1 Tr3 F123 . (6.11)

4From the normalization conditions for the two operators it follows:

Tr1...sF1...s =
N !

(N − s)!

Tr1...s+kF1...s+k =
N !

(N − s− k)!

and, therefore,

N ! = (N − s)!F1...s = (N − s− k)! Trs+1...s+kF1...s+k . (6.8)
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Trace consistency is obvious for the exact density operators whereas, for ap-
proximations, it provides an important consistency criterion. For example, for
independent particles, we will show below that

F1...s → F ideal
1...s = F1 · F2 · · · · · Fs , (6.12)

where the subscripts refer to the Hilbert spaces of the different particles. Then
relations (6.10) and (6.11) turn into

(N − 1)F1 = F1Tr2 F2 = NF1 , (6.13)

(N − 2)F1F2 = F1F2Tr3 F3 = NF1F2 , (6.14)

i.e. trace consistency is violated. This is surprising because the approximation
(6.12) is a physically reasonable choice. We will return to the discussion of
trace consistency after we have restored spin symmetry in the operators in
Sec. 6.6.

6.3 Derivation of the quantum BBGKY-

hierarchy for spinless particles

We now consider the general nonequilibrium case where a quantum system
is excited by a time-dependent hamiltonian. We first derive the equation of
motion for the full N -particle density operator which will serve as the basis to
derive the equations of motion for the reduced density operators.

6.3.1 BBGKY hierarchy

The time evolution of ρ̂N follows from the time evolution of the underlying N -
particle wave functions, cf. the definition (6.1). Differentiating this definition
with respect to time, we easily derive the von Neumann equation,

i~
d

dt
ρN − [HN , ρN ] = 0 , (6.15)

ρN(t0) = ρ0N ≡
∑

k

Wk |Ψk
N(t0)〉〈Ψk

N(t0)| ,

supplemented by an initial condition. Here it is assumed that Ẇk = 0. We
briefly outline the main steps in the derivation of the equations of motion for
the reduced density operators F1...s. First, the hamiltonian is split into three
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parts for the two subsystems, ĤN = H1...s+Hs+1...N +H int, where the coupling
part contains all pair interactions of two particles from the two parts,

H int =
s

∑

i=1

N
∑

k=s+1

V (ri, rk) ,

Now we compute the partial trace over s + 1 . . . N in all terms of Eq. (6.15).
Taking into account the invariance of the trace it is easy to understand that
the hamiltonian Hs+1...N vanishes under the commutator. The trace with H int

leads to N − s identical terms. Taking the definitions of F1...s and F1...s+1 into
account this factor cancels, and we arrive at5 the hierarchy of equations of
motion for the reduced density operators, the quantum BBGKY-hierarchy,

i~
∂

∂t
F1...s − [H1...s, F1...s] = Trs+1[V

(1...s),s+1, F1...s+1] , (6.16)

V (1...s),s+1 =
s

∑

α=1

V α,s+1, (6.17)

F1...s(t0) = F 0
1...s =

N !

(N − s)!Trs+1...N ρ
0
N . (6.18)

Here, H1...s is the s-particle Hamilton operator which follows from H1...N by
substituting N → s. The equations of the hierarchy differ from the von Neu-
mann equation due to the terms on the r.h.s, which contain the coupling of the
s particles to the remainder of the system via all possible binary interactions.
The complete hierarchy is, obviously, equivalent to the von Neumann equati-
on and, therefore, has the same properties. In particular, the system (6.16) is
time reversible and conserves the total energy. The individual equations are
also connected via the trace relation, Eq. (6.9). This means, by computing a
partial trace, a higher order equation can be reduced to a lower-order one.
This is trivial for the exact system, however, for approximate solutions, this
represents an important consistency criterion, see Sec. 6.3.2.

Each equation of the hierarchy, for s < N , is an inhomogeneous first or-
der differential equation which can be solved formally using the time evolu-
tion operators, U1...s, corresponding to the hamiltonian H1...s, for details see
Ref. [Bon98]. Finally, we may ask at what place in our derivation the neglect
of Fermi or Bose statistics was required. It is easy to understand that imposing
the subdivision into a system of s particles and a second one of N −s particles
we implicitly assumed that the two groups are distinguishable. In contrast,
for a system of fermions or bosons the interaction between the two subgroups

5See problem 5.5.
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will also give rise to exchange effects where particles, in the course of their
interaction, will change their association with the two subsystems.

6.3.2 Trace consistency of the equations
of the BBGKY-hierarchy

Due to the expected trace consistency between different reduced density ope-
rators [cf. Eq. (6.9)] there should also exist a consistency between different
equations. For example, the second equation should reduce, via a partial trace
over one variable to the first equation. Again, this is fulfilled for the exact so-
lution. On the other hand, if approximations are being used, this consistency
is an important criterion of the quality of the approximation. We demonstrate
this for the two lowest equations that directly follow from the hierarchy (6.16),

i~
∂

∂t
F1 − [H1, F1] = Tr2[V

(12), F12] . (6.19)

i~
∂

∂t
F12 − [H12, F12] = Tr3[V

(12),3, F123] . (6.20)

We now compute (N − 1)−1Tr2 . . . of Eq. (6.20) and use relation (6.10), with
the result

i~
∂

∂t
F1 − [H1, F1] =

1

N − 1
Tr2[V

(12), F12] +
1

N − 1
Tr23[V

(12),3, F123] .

where we took into account that [H2, F12] vanishes under the trace. Comparing
the right hand side of this equation to the r.h.s. of (6.19) we find the consistency
requirement

(N − 2)Tr2[V
(12), F12] = Tr23[V

(13), F123] , (6.21)

where, on the r.h.s., the contribution with V (23) vanishes under the trace. This
can be reformulated as a condition on F123. To this end we eliminate F12 with
the help of Eq. (6.11),

Tr23[V
(12), F123] = Tr23[V

(13), F123] . (6.22)

The sufficient condition for this to hold is the permutation symmetry

F123 = F132 . (6.23)

Since this condition follows from the first hierarchy equation it does not involve
any requirement on subscript “1”. We can make this more transparent by
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choosing a representation in terms of a complete orthonormal set of three-
particle states, {|123〉}, and by denoting V ′ = V (12) − V (13). Then we can
rewrite Eq. (6.22) as

0 = Y (1, 1′) =
∑

23

∑

1̄2̄3̄

{

〈123|V ′|1̄2̄3̄〉〈1̄2̄3̄|F123|1′23〉−

〈123|F123|1̄2̄3̄〉〈1̄2̄3̄|V ′|1′23〉
}

.

Using the coordinate representation and assuming a distance-dependent inter-
action with 〈r1r2r3|V (12)|r′1r′2r′3〉 = V (r1− r2)δ(r1− r′1)δ(r2− r′2)δ(r3− r′3), this
result becomes

0 = Y (r1, r
′
1) =

∫

dr2dr3 F (r1, r2, r3; r
′
1, r2, r3)× (6.24)

×
{

V (r1 − r2)− V (r1 − r3)− V (r′1 − r2) + V (r′1 − r3)
}

.

Again, we confirm the previously found sufficient condition (6.23) (but there
can be others)

F (r1, r2, r3; r
′
1, r2, r3) = F (r1, r3, r2; r

′
1, r3, r2) . (6.25)

It is interesting to compare this condition to the condition for total energy
conservation which reads [Bon98]:

0 =Tr123V
(12)[V (13) + V (23), F123] (6.26)

=Tr123
{

V (12)(V (13) + V (23))F123 − F123(V
(13) + V (23))V (12)

}

.

A sufficient condition for this to hold is P123F123 = F123, i.e. a complete permu-
tation symmetry in all indices. Alternatively, energy conservation is fulfilled if
the interaction is diagonal in a given basis. An example is, again a distance-
dependent potential in the coordinate representation. In this case energy is
conserved for any approximation for F123, even if trace consistency, Eq. (6.25),
is violated.

Trace consistency between the two first equations of the hierarchy is, of
course, fulfilled for the exact solution for F123. On the other hand, this issue is
not trivial for approximations. Two contributions to F123 that obviously fulfill
condition (6.23) are

F123 = F1F2F3 + F1g23 .

We will return to the question of trace consistency of important approximations
below, in Sec. 6.5.



224 KAPITEL 6. BBGKY-HIERARCHY

6.3.3 Matrix representation of the BBGKY-hierarchy

The BBGKY-hierarchy (6.16) is written in an abstract operator notation which
has the advantage of a simple and compact structure. At the same time, for
practical applications it is necessary to transform this result into a suitable
basis representation. Let us present such a result for a general complete ortho-
normal system of s-particle states, {|i1 . . . is〉} ∈ Hs. Without loss of generality,
we can assume that these are products of single-particle orbitals. For example,
an s+1-particle state can be produced from an s-particle state multiplied with
single-particle orbitals6. Denoting matrix elements of operators by

F
(s)
i1...is,j1...js

= 〈i1 . . . is|F1...s|j1 . . . js〉 , (6.27)

we obtain the basis representation of Eq. (6.16),

i~
∂

∂t
F

(s)
i1...is,j1...js

− [H(s), F (s)]i1...is,j1...js =
∑

is+1

[V (1...s),s+1, F (s+1)]i1...is+1,j1...js,is+1 ,

(6.28)

[A,B]i1...is,j1...js = (AB)i1...is,j1...js − (BA)i1...is,j1...js

(AB)i1...is,j1...js =
∑

k1...ks

Ai1...is,k1...ksBk1...ks,j1...js

V 1,s+1
i1...is+1,j1...js,js+1

= Vi1,is+1;j1,js+1δi2;j2 · δi2;j2 . . . δis;js
(6.29)

Note that the commutator term on the l.h.s. contains, in general an s-fold
sum, whereas the collision term on the r.h.s. contains two additional sums
that involve the matrix indices of the pair potential.

Important special cases of basis sets, including the coordinate, momentum
and Wigner representations, are discussed in Ref. [Bon98].

6.4 Decoupling of the BBGKY-hierarchy.

Cluster expansion. Correlation operators

The fruitfulness of the concept of the hierarchy is due to the fact, that the vast
majority of physical phenomena and observables of the N -particle system, can
be described by a quite limited number of reduced density operators, typically
not exceeding the order s=4. Therefore, it is reasonable to decouple the hier-
archy at some appropriate level, thereby drastically reducing the complexity

6Note that we do not use (anti-)symmetrized states [Slater determinants/permanents]
here because this would lead to more complicated expressions.
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of the problem. The influence of the higher order contributions is neglected or
treated approximately. Thus, in the following we will concentrate on the first
three equations:

i~
∂

∂t
F1 − [H1, F1] = Tr2[V12, F12], (6.30)

i~
∂

∂t
F12 − [H12, F12] = Tr3[V

(12),3, F123], (6.31)

i~
∂

∂t
F123 − [H123, F123] = Tr4[V

(123),4, F1234]. (6.32)

It is tempting to decouple the hierarchy by neglecting the right hand side of a
chosen equation, say for F1...s. Then we have a closed equation for F1...s which
can be solved and the result inserted into the r.h.s. of the equation for F1...s−1

and so on. While this is done by many authors, such a decoupling scheme has
to be questioned. Let us illustrate this on the example of the first hierarchy
equation, Eq. (6.30). In what cases will the r.h.s. be small? Low density (small
particle number N) is not a relevant case. F12 describes the joint probabilities
of two particles to be in certain two-particle states and it is normalized to
N(N − 1). On the other hand, F1 on the l.h.s. is normalized to N . So, even in
the limit of small particle number or low density, the r.h.s. will remain finite.

6.4.1 Mean field approximation. Hartree potential

The second case where it could be argued the r.h.s. of the system (6.30), (6.31),
6.32) might vanish is the case of weak interaction. However, in that case the
joint probability described by F12 does not vanish but, rather, the two particles
will not be correlated, i.e. behave independently. This means, obviously7, that
the ideal two-particle RDO has the form

F12 ≈ F id
12 = F1F2. (6.33)

In a spatially uniform system, this becomes, in the coordinate representation,

〈r1r2|F12|r1r2〉 ≈ F (r1)F (r2) , (6.34)

which is normalized to N2. By introducing center of mass and relative coor-
dinates, R = (r1 + r2)/2 and r = r1 − r2, this can also be related to the pair
distribution function (PDF) f12,

〈r1r2|F12|r1r2〉 = Cf12(R, r) ≈ Cf12(r) , (6.35)

7Recall that we have neglected the bosonic/fermionic nature of the particles. If this is
taken into account, in addition to the product, there appears an exchange term. This will
be considered in Sec. 6.6.
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which, is due to homogeneity. In the ideal case, this becomes, f id
12(r) = C

where the constant follows from the normalization. If we regard the PDF as a
probability density, the normalization is

∫

d3rf id
12(r) ≡ 1, therefore the constant

equals C = 1/V .

Inserting expression (6.33) into the r.h.s of Eq. (6.30) leads, in general, to
a finite expression,

Tr2[V12, F1F2] = (Tr2V12F2)F1 − F1Tr2F2V12 =

=UH
1 F1 − F1U

H
1 , (6.36)

where we introduced an effective potential

UH
1 = Tr2V

(12)F2 , (6.37)

that will appear frequently below8. This potential can be understood as the
mean potential created by all particles (Hartree mean field).

i~
∂

∂t
F1 − [H̄1, F1] = 0 , (6.38)

where the effective single-particle hamiltonian is defined as H̄1 = H1+U
H
1 . For

now it is important to note that the case of non-interacting particles does not
lead to a vanishing r.h.s. of Eq. (6.30) but to an additional potential energy
that can, in general, not be neglected. The same argument applies to the three-
particle density operator F123 which, in the case of weak interaction, will not
vanish but retain an elementary contribution F1F2F3. The same applies to all
higher order density operators.

6.4.2 Cluster expansion of the reduced
density operators

The effect of a non-vanishing interaction then will be a deviation of the s-
particle density operator from the primitive factorization into s single-particle
operators. These deviations are called correlation operators. The corresponding
expansion of the density operators is called cluster expansion for the re-
duced density operators (or Ursell-Mayer expansion)9. This expansion will
turn out to be the proper starting point to develop systematic approximations

8In fact, this potential coincides with the induced potential that was discussed in the
dynamics of the field operators.

9We still neglect spin statistics, generalizations will be discussed below.
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to the BBGKY-hierarchy, Eq. (6.16). The cluster expansion is given by10

F12 = F1F2 + g12 , (6.39)

F123 = F1F2F3 + g23F1 + · · ·+ g123 , (6.40)

F1234 = F1F2F3F4 + g34F1F2 + · · ·+ g12g34 + · · ·+ g234F1 + · · ·+ g1234 .

. . .

The dots denote contributions arising from permutations of the particle indices
in the previous term. As one can see, the density operators F12, F123 etc. con-
tain one-particle and higher order contributions. As discussed above, products
of one-particle density operators F1F2 . . . Fs correspond to the uncorrelated
superposition of s particles, whereas g12, g123, . . . describe correlations of two,
three or more particles which are caused by their interaction [additional cor-
relations due to the spin statistics, entanglement and similar phenomena will
only emerge after (anti-)symmetrization of the hierarchy, cf. Sec. 6.6].

Before we proceed to the equations of motion for the correlation operators
let us consider some of their properties.

Normalization of the correlation operators. First, we consider the que-
stion how these operators are normalized. This follows directly from the norma-
lization of the reduced density operators, Eq. (6.4) and of operator products,

Tr1...sF1F2 . . . Fs = N s. (6.41)

In particular, we obtain for the two-particle correlation operator

Tr12 g12 = Tr12(F12 − F1F2) = N(N − 1)−N2 = −N . (6.42)

This can be used to compute the normalization of the three-particle correlation
operator

Tr123 g123 = Tr12(F123 − F1F2F3 − 3F1g23) =

= N(N − 1)(N − 2)−N3 − 3N(−N) = 2N , (6.43)

and so on. The results (6.42) and (6.43) are unexpected because the particle
number (norm) should not change with the interaction. This means the trace
of F1...s should coincide with the uncorrelated limit, i.e. the trace of F s. This is
indeed fulfilled in the thermodynamic limit because the correction of g12 (g123)
to the normalization is of order 1/N (1/N2). However, for finite systems the
normalization of the correlation operators has to be taken into account.11

10A modified cluster expansion is analyzed in Sec. ??.
11Again, this difficulty arises from the assumption of distinguishable particles and will be

naturally resolved when we consider fully (anti-)symmetrized versions of the reduced density
and correlation operators in Sec. 6.6.
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Trace consistency in terms of correlation operators. Another consi-
stency test is to verify the trace relations that were discussed in Secs. 6.2
and 6.3.2. In fact, starting from the trace consistency between F1 and F12, we
obtain

(N − 1)F1 = Tr2(F1F2 + g12) ,

→ Tr2 g12 = −F1 (6.44)

Now, doing the same on the next level, we have

(N − 2)F12 = Tr3 {F3F12 + F1g23 + F2g13 + g123} .
Using the result (6.44) we obtain

Tr3 g123 = −2g12 . (6.45)

The results (6.44) [(6.45)] are consistent with the normalization conditions
that were found above, as is easily checked by performing the trace over 1
[1 and 2]. Redoing the derivations that led to Eqs. (6.44) and (6.45) in the
thermodynamic limit, i.e. replacing N − 1→ N and N − 2→ N we obtain

Tr2 g12 = Tr3 g123 = 0 , N ≫ 1 .

6.4.3 BBGKY-hierarchy for the correlation operators

Using the cluster expansion it is straightforward to derive equations of motion
for the correlation operators12,

i~
∂

∂t
F1 − [H̄1, F1] = Tr2[V12, g12]

i~
∂

∂t
g12 − [H̄12, g12] = [V12, F1F2]+

Tr3

{

[V13, F1g23] + [V23, F2g13] + [V (12),3, g123]
}

i~
∂

∂t
g123 − [H̄123, g123] = [V (123), F1F2F3]+

[V (12),3, F3g12] + [V (13),2, F2g13] + [V (23),1, F1g23]+

Tr4[V
(12),4, g12g34] + Tr4[V

(13),4, g13g24] + Tr4[V
(23),4, g23g14]

+Tr4[V14, F1g234] + Tr4[V24, F2g134] + Tr4[V34, F3g124]

+Tr4[V
(123),4, g1234]

(6.46)

12see problem 5.7
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where we introduced the effective Hamiltonians which contain an effective po-
tential (Hartree potential or mean field) UH that we discussed above:

UH
1 = Tr2 V12 F2 , (6.47)

H̄1 = H1 + UH
1 , (6.48)

H̄12 = H̄1 + H̄2 + V12 = H̄0
12 + V12, (6.49)

H̄123 = H̄1 + H̄2 + H̄3 + V (123), (6.50)

V (123) = V12 + V13 + V23 (6.51)

where the superscript “0” indicates the noninteracting (mean field) contributi-
ons to the hamiltonians, e.g. H̄0

12 = H̄1+ H̄2, and so on. The external field U is
contained in the single-particle hamiltonians, and will not be written explicitly.

Let us rewrite the above results for an arbitrary basis representation.

H̄ij = Hij + UH
ij ,

H̄
(2)
ij,kl = H̄i,kδjl + H̄jlδik + Vij,kl = H̄

(2)0
ij,kl + Vij,kl,

H̄
(3)
ijk,lmn = H̄ilδjmδkn + H̄jmδikδkn + H̄knδjmδil+

+ Vij,lmδkn + Vik,lnδjm + Vjk,mnδil,

UH
ij =

∑

kl

Vik,jl Flk

V
(123)
ijk,opq = Vij,opδkq + Vik,oqδjp + Vjk,pqδio. (6.52)

With these results we now transform the operator equations for F1, g12 and
g123 into a general matrix representation, in analogy to Eq. (6.28):

i~
∂

∂t
Fij − [H̄1, F ]ij =

∑

klm

{Vik,lmglm,jk − gik,lmVlm,jk} (6.53)

i~
∂

∂t
gij,kl − [H̄(2), g]ij,kl =

∑

op

(Vij,opFokFpl − FioFjpVop,kl)+ (6.54)

+
∑

mop

{

Vim,opFokgjp,lm − Fiogjm,lpVok,pm

}

+
∑

mop

{

Vjm,poFplgio,km − Fjogim,kpVol,pm

}

+
∑

mopq

{

V
(12)3
ijm,opqg

(3)
opq,klm − g

(3)
ijm,opqV

(12)3
opq,klm

}

.
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The term on the r.h.s. of Eq. (6.53) is the collision integral. The first term
on the r.h.s. of Eq. (6.54) is the inhomogeneity whereas lines two and three
contain the polarization contributions. Finally, in the last term that couples to
three-particle correlations, one sum can be taken due to the Kronecker symbols
contained in the potential V (12)3, cf. the definition (6.29).

For completeness we also present the matrix form of the equation for the
three-particle correlation operator, cf. the third equation of the system (6.46),

i~
∂

∂t
g
(3)
ijk,lmn − [H̄(3), g(3)]ijk,lmn =

∑

opq

{

V
(123)
ijk,opqFolFpmFqn − FioFjpFkqV

(123)
opq,lmn

}

+

∑

opq

{

V
(12)3
ijk,opqFqngop,lm − Fkqgij,opV

(12)3
opq,lmn

}

+

∑

opq

{

V
(13)2
ijk,opqFpmgoq,ln − Fjpgik,oqV

(13)2
opq,lmn

}

+

∑

opq

{

V
(23)1
ijk,opqFolgpq,mn − Fiogjk,pqV

(23)1
opq,lmn

}

+

∑

opqr

{

V
(12)4
ijo,pqrgpq,lmgkr,no − gij,pqgko,nrV

(12)4
pqr,lmo

}

+

∑

opqr

{

V
(13)4
iko,pqrgpq,lngjr,mo − gik,pqgjo,mrV

(13)4
pqr,lno

}

+

∑

opqr

{

V
(23)4
jko,pqrgpq,mngir,mn − gjk,pqgio,lrV (23)4

pqr,mno

}

+

∑

opr

{

Vio,prFplg
(3)
jkr,mno − Fipg

(3)
jko,mnrVpr,lo

}

+

∑

opr

{

Vjo,prFpmg
(3)
ikr,lno − Fjpg

(3)
iko,lnrVpr,mo

}

+

∑

opr

{

Vko,prFpng
(3)
ijr,lmo − Fkpg

(3)
ijo,lmrVpr,no

}

+

∑

opqrs

{

V
(123)4
ijko,pqrs g

(4)
pqrs,lmno − g

(4)
ijko,pqrs V

(123)4
pqrs,lmno

}

,

(6.55)

where most of the multiple sums can be reduced by one summation index
because of the Kronecker deltas contained in V

(ab)c
ijk,lmn and V

(abc)
ijk,lmn, whereas the

matrix elements V
(abc)d
ijkl,mnop contain even two delta symbols.

While this matrix form of the first three hierarchy equations is completely
general, it is instructive to consider also the special cases of a Hubbard basis,
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cf. Chapter 7, or of a momentum basis, as these cases are relevant for strongly
correlated systems and jellium (spatially uniform systems), respectively.

6.5 Important approximations to the

hierarchy

Let us first rewrite the first two hierarchy equations introducing definitions for
some of the terms,

i~
∂

∂t
F1 − [H̄1, F1] = Tr2[V12, g12]

i~
∂

∂t
g12 − [H̄0

1 + H̄0
2 , g12] = [V12, F1F2] + L12 +Π12 + Tr3[V

(12),3, g123] , (6.56)

L12 = [V12, g12], Π12 = P̂12 (Tr3[V13, F1g23]) . (6.57)

We now summarize the most important approximations for the decoupling of
the BBGKY hierarchy.

1. Mean field (Hartree) approximation: g12 → 0, i.e. neglect of all correla-
tions. Closed mean field equation for F1.

2. Solution of an effective two-particle problem for F1 and g12, with g123 → 0
and different additional approximations.

a. Second Born approximation (SOA): neglect of ladder and polarization
contributions, L12 = Π12 → 0.

b. Third Born approximation (TOA): in addition to item a., inclusi-
on of first polarization contributions and ladder terms. This means,
L12 → LTOA

12 = [V12, g
SOA
12 ] and Π12 → ΠTOA

12 = P̂12

(

Tr3[V13, F1g
SOA
23 ]

)

c. Static T-matrix approximation: neglect of polarization contributions,
Π12 → 0, summation of an infinite “ladder” sum13. Thereby account
of arbitrary strong coupling effects on the two-particle level with
static pair interaction, cf. second line of Fig. 6.1.

d. Polarization approximation: neglect of “ladder” contributions, L12 →
0, summation of an infinite “bubble” sum, thereby account of dy-
namical screening effects in the weak coupling limit, cf. third line
of Fig. 6.1.

13If spin statistics are taken into account it turns out that there are two inde-
pendent T-matrix contributions: particle-particle ladders and particle-hole ladders, e.g.
[JSB20, JSO+22].
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e. Gould-DeWitt or FLEX approximation: linear combination of items c.
and d, gFLEX12 = gL12+g

Π
12−gSOA

12 where approximation a. is subtracted
to avoid double counting.

f. Dynamically screened ladder approximation: complete solution of the
second equation with ladder and polarization terms included (some-
times also called Wang-Cassing [WC85, Cas09] or Valdemoro appro-
ximation [CPdVV93]). For a detailed analysis, see Ref. [JSO+22].

The physical meaning of these approximations, in particular c. and d.,
can be understood from a diagrammatic representation and from an ite-
rative solution of the second equation, using the Born approximation a.
as the starting point. This is illustrated in Fig. 6.1.

3. Partial account of three-particle correlations. Generally, on this level, one
would neglect four-particle correlations, g1234 → 0.

a. Partial account of inhomogeneity contributions, whereas three-particle
ladder terms (V contributions to H̄123) and polarization contributi-
ons [third line of Eq. (6.46)] are neglected.

b. selfenergy effects

c. additional approximations. There is a broad class of additional appro-
ximations on three-particle correlations that have been proposed in
various fields that are presently being actively investigate. We on-
ly mention a few examples: the Nakatsuji-Yasuda approximation
[NY96], the selfconsistent RPA by Schuck and Tohyama [ST16].

6.6 Restoring spin statistics in the hierarchy

So far we have considered reduced density operators that describe the behavior
of a selection of 1, 2, 3 or more particles, in the presence of the rest of the
system. During this selection process we essentially “marked” these particles
which is only possible if Fermi or Bose statistics do not play a role. Among the
problems that we observed are the normalization of the correlation operators.
Furthermore, we observed that important exchange corrections, e.g. to the
Hartree mean field (the Fock term), and Pauli blocking, are missing in our
theory.

We now drop this restriction and extend the BBGKY hierarchy to density
operators that are fully (anti-)symmetrized. While the operator form of the
hierarchy is still completely general, symmetry properties are introduced in
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1 1
′F1

1 1
′

2 2
′

g12 V12

1

2

=V (r1− r2)
3

= Tr3V13F3

ih̄ġL
12
∼V12g12 ≡

1 1
′

2 2
′

g12 = + + + . . .

ih̄ġP
12
∼ Tr3V13F1g23 ≡

1 1
′

2 2
′

3

g23

= + 3 +
3

4
+ . . .

Abbildung 6.1: Graphical representation of important approximations to the
BBGKY-hierachy. First line: F1, g12, V12, V (r1− r2) (distance dependent po-
tential in coordinate representation) and the Hartree mean field UH

1 . 2nd/3rd
line: the “ladder”/“polarization” terms. Both series start with the first Born
approximation, ∼ V12F1F2 (only first term of commutator shown), each suc-
cessive term follows by iteratively inserting the previous one into the lad-
der/polarization term. Figure from Ref. [Bon98].

the calculation of the trace. Until now we had assumed that all traces are over
a complete set of s-particle states that are constructed as products of single-
particle states belonging to the s-particle Hilbert space. As we discussed in
detail in Ch. 3, for bosons (fermions), instead, (anti-)symmetric states have to
be used that belong to the (anti-)symmetric subspace H+

s (H−
s ). The straight-

forward way of doing this is, to define all trace operations which appear in the
hierarchy equations in such a way that they are carried out in the correspon-
ding subspace of s-particle states14. However, it turns out that working with
matrix elements of operators that are computed with (anti-)symmetric states
(i.e. Slater determinants or permanents15) is very cumbersome. Therefore, we
will follow a different strategy: we will carry over the (anti-)symmetry from
the states to the operators.

6.6.1 (Anti-)Symmetrized density operators

Let us explain this procedure which we apply to the general nonequilibrium
case. The projection onto the (anti-)symmetric subspace of the Hilbert space

14This procedure was demonstrated in Sec. 3.10, see also Ref. [SBF+11].
15This approach has been used in configuration path integral Monte Carlo (CPIMC),

introduced in Ref. [SBF+11]. For details see Sec. 4.3
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is achieved by acting with an (anti-)symmetrization operator Λ± (see Sec. 3.2)

|Ψ1...N(t)〉± = Λ±
1...N |Ψ1...N(t)〉 . (6.58)

Λ±
1...N =

1√
N !

λ±1...N , (6.59)

±〈Ψ1...N(t)|Ψ1...N(t)〉± = 〈Ψ1...N(t)|Ψ1...N(t)〉 = 1 , (6.60)

where we introduced a new definition, λ±, for the (anti-)symmetrization ope-
rators that does not contain the normalization pre-factor, which will be used
throughout this section. From this we can construct the (anti-)symmetrized
N -particle density operator of the full system (recall that the probabilities
obey 0 ≤ Wa ≤ 1 and

∑

aWa = 1),

ρ±N(t) =
∑

a

Wa|Ψ(a)
1...N(t)〉± ±〈Ψ(a)

1...N(t)| =
1

N !

∑

a

Wa|Ψ(a)
1...N〉(λ±1...N)2〈Ψ

(a)
1...N |

=
1

N !

∑

a

Wa|Ψ(a)
1...N(t)〉〈Ψ

(a)
1...N(t)|(λ±1...N)2 = ρN(t)λ

±
1...N , (6.61)

where the final steps will become clear from the properties of the (anti-)symme-
trization operators below, cf. Eq. (6.78). The (anti-)symmetrized density ope-
rator16 should obey the standard normalization condition, as in the spinless
case, which is easily verified,

Tr1...N ρ
±
N(t) =

∑

i1...iN

〈i1 . . . iN |ρ±N(t)|i1 . . . iN〉 = 1 , (6.62)

as it follows directly from the definition of ρ±N in terms of the states |Ψ(a)
1...N〉±,

Eq. (6.58), which are each normalized to unity17.

Let us now compute the expectation value of an arbitrary s−particle ope-

16This result agrees with the previous equilibrium result, see Sec. 4.1, and extends it to
arbitrary nonequilibrium situations.

17The only difference to the spinless case is that, now, the trace is restricted to states of
the (anti-)symmetric subspace of the Hilbert space.
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rator for the case of fermions or bosons, in a general mixed state

〈B̂s〉±(t) =
1

s!
Tr±B̂sF̂1...s(t)

=
1

(s!)2

∑

i1...is

〈i1 . . . is|λ±1...sB̂sF̂1...s(t)λ
±
1...s|i1 . . . is〉 (6.63)

=
1

(s!)2

∑

i1...is

〈i1 . . . is|B̂sF̂1...s(t)(λ
±
1...s)

2|i1 . . . is〉 (6.64)

=
1

s!

∑

i1...is

∑

k1...ks

〈i1 . . . is|B̂s|k1 . . . ks〉〈k1 . . . ks|F̂±
1...s(t)|i1 . . . is〉 . (6.65)

This result means (we discuss the key transformations below) that the com-
putation of expectation values in the (anti-)symmetric subspace of the Hilbert
space can be performed in the full Hilbert space with normal product states
whereas the (anti-)symmetrization is carried over to the density operators18,

F̂1...s(t)→ F̂±
1...s(t) = F̂1...s(t)λ

±
1...s , (6.66)

exactly as in the case of the full N -particle density operator, Eq. (6.61).

6.6.2 Relation between reduced density operators and
field operators

Our result for the (anti-)symmetrized expectation value of an s-particle ope-
rator, Eq. (6.65) can now be compared to the result in terms of field operators
that we established earlier, cf. Eq. (5.89). Since both expressions are identi-
cal and contain the same matrix element of the operator B̂s, we can directly
read-off the connection between RDO and second quantization operators:

〈i1 . . . is|F̂±
1...s(t)|k1 . . . ks〉 = 〈a†k1 . . . a

†
ks
ais . . . ai1〉ρN (t) , (6.67)

where the time argument on the r.h.s. indicates that Heisenberg operators
are being used. This relation has far reaching consequences because we have
connected two completely independent approaches.

One application is to verify the normalization of the (anti-)symmetrized

18This idea was first realized by Dufty and Boercker [BD79].
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reduced density operators19 which is done as for ρ±N above:

Tr1...s F̂
±
1...s =

∑

i1...is

〈i1 . . . is|F̂±
1...s|i1 . . . is〉 =

=
∑

i1...is

〈a†i1 . . . a
†
is
ais . . . ai1〉ρN (6.68)

= Tr±1...s F̂1...s = Tr1...s F̂1...s =
N !

(N − s)! . (6.69)

Therefore, all our previous results remain in place if we replace, everywhere,
F̂1...s → F̂±

1...s. At the same time we eliminated the need to work with matrix
elements in terms of Slater determinants or permanents as well as partial traces
thereof, but can continue to use simple product states.

Before continuing with an (anti-)symmetrization of the BBGKY-hierarchy,
we first consider the above derivations and the properties of the (anti-)symme-
trization operators λ± more in detail.

6.6.3 Properties of the (anti-)symmetrization operators

1. The operators are defined according to

λ±1...s =
∑

P (s)

ǫN(P (s)) P (s), (6.70)

with ǫ = 1 for bosons, −1 for fermions, and zero for spinless particles. For
fermions, the sign of each contribution depends on whether P (s) is an even
or odd permutation, i.e. if P (s) can be decomposed into an even or odd
number N(P (s)) of binary permutations. For bosons, all contributions
have the same prefactor +1.

2. The lowest order operators are

λ±12 = 1 + ǫP12 , (6.71)

λ±123 = λ±12 (1 + ǫP13 + ǫP23), (6.72)

λ±1234 = λ±123 (1 + ǫP14 + ǫP24 + ǫP34), (6.73)

. . .

This is verified by direct computation.

19Problem: prove this directly for F̂±
12 using the definition.
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3. The permutation operator has the following properties, which are easily
verified,

P 2
ij = 1̂,

TrjPij = 1̂, (6.74)

PijAijPij = Aji,

PijBij = BjiPij, (6.75)

4. Pair permutations of different particles don’t commute, i.e., PijPjk 6=
PjkPij. For the case of three-particle states, the three different permuta-
tions, labeled by α, β, γ, have the properties

PβPγ = PαPβ , (6.76)

PγPβ = PβPα . (6.77)

5. Important properties of λ± are

(1− ǫPij)λ
±
12 = 0, ǫ 6= 0 ,

λ±12(1 + ǫP12 + ǫP13) = (1 + ǫP12 + ǫP13)λ
±
12

P23λ
±
13 = λ±12P23

(λ±1...s)
2 = s!λ±1...s . (6.78)

The first property means that Fermi and Bose statistics are incompatible. The
property (6.78) has been used above, in Eqs. (6.61) and (6.65). Let us prove it
for the simplest cases, starting with s = 2,

(λ±12)
2 = (1 + 2ǫP12 + P 2

12) = 2(1 + ǫP12) = 2λ±12 .

For the case s = 3, we have

(λ±123)
2 = λ±12(1 + ǫP13 + ǫP23)(1 + ǫP12 + ǫP13 + ǫP23 + P12P13 + P12P23)

= 3(λ±12)
2(1 + ǫP13 + ǫP23) = 3!λ±123 ,

where, during the transformations, expressions (6.76) and (6.77) have been
used. It remains to generalize this to the N -particle case, see problem 2,
Sec. 6.6.9.

We conclude that, due to the property (6.78), in computing expectation
values and traces we need to perform an (anti-)symmetrization only once.

We now return to the BBGKY-hierarchy. All reduced s-particle operators
will now be replaced by F1...s → F1...sλ

±
1...s, and the same with the correlation

operators, products of single-particle operators, and products of single-particle
and correlation operators and so on.
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6.6.4 Trace consistency for (anti-)symmetrized RDO

Let us now return to the problem of trace consistency that we discussed in
Sec. 6.2.2 and investigate how the results are modified if the density opera-
tors are (anti-)symmetrized. Consider again the case of an ideal two-particle
operator which now becomes an Hartree-Fock operator, F ideal

12 = F1F2λ
±
12. We

recompute the partial trace (6.13) using matrix notation

(N − 1) 〈i1|F |k1〉 =
∑

i2

〈i1i2|F1F2|k1i2〉 ±
∑

i2

〈i1i2|F1F2|i2k1〉

= N〈i1|F |k1〉 ±
∑

i2

〈i1|F |i2〉〈i2|F |k1〉

= N〈i1|F |k1〉 ± 〈i1|F 2|k1〉 (6.79)

After cancellation we obtain the condition for trace consistency:

〈i1|F |k1〉 = Fi1k1 = ∓〈i1|F 2|k1〉 = ∓F 2
i1k1

, (6.80)

where we also introduced a short matrix notation. This equation can be satis-
fied only for fermions (lower sign) if the matrix of F 2 equals the matrix of F ,
i.e. the single-particle density operator is idempotent.

If the trace relation is not fulfilled, this also leads to inconsistencies in the
normalization. Indeed, performing in Eq. (6.80) also the trace over the variable
“1”, we obtain

N = ∓
∑

i

F 2
ii . (6.81)

For fermions and, in case of idempotency, the r.h.s. also gives N .

Trace consistency of F12 with spin components resolved. We now
extend this analysis to an explicit treatment of the spin components.20 We
consider only fermions with spin 1/2 for which only two spin projections exist.
For the trace relation of the spin-up component this leads to

(N − 1)F ↑↑
ij =

∑

p

(

F ↑↑↑↑
ipjp + F ↑↓↑↓

ipjp

)

. (6.82)

The spin components of the Hartree–Fock two-particle density matrix are

F ↑↑↑↑
ijkl = F ↑↑

ik F
↑↑
jl − F

↑↑
il F

↑↑
jk , (6.83)

F ↑↓↑↓
ijkl = F ↑↑

ik F
↓↓
jl . (6.84)

20Result of Jan-Philip Joost.
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Note that the Fock contribution of the ↑↓↑↓-component vanishes since spin
flips are not allowed, i.e. F ↑↓ = 0. Inserting Eqs. (6.83) and (6.84) in Eq. (6.82)
results in

(N − 1)F ↑↑
ij =

∑

p

(

F ↑↑
ij F

↑↑
pp − F ↑↑

ip F
↑↑
pj + F ↑↑

ij F
↓↓
pp

)

(6.85)

= NF ↑↑
ij −

∑

p

F ↑↑
ip F

↑↑
pj , (6.86)

where we took into account the normalization
∑

p F
↑↑
pp =

∑

p F
↓↓
pp = N

2
. Conse-

quently, trace consistency holds if

F ↑↑
ij =

∑

p

F ↑↑
ip F

↑↑
pj = [F ↑↑ 2]ij . (6.87)

Eq. (6.87) holds if the spin-up single-particle density matrix is idempotent.
(The same must hold for the the spin-down component.) This means that in the
case that the single-particle density matrix is idempotent the Fock contribution
provides the ‘−1’-term that is missing in Eq. (6.13).

Comments: This result is directly extended to the case of spin-unsymme-
tric systems where N↑ 6= N↓. For bosons, the Fock term, apparantly does not
solve the trace consistency problem. For spin-0 bosons the previous (spin-less)
treatment applies. The next case to study would be spin-1 bosons, but there
we cannot directly use the present derivation, as we need to include three spin
projections.

Idempotency for a mixed state and in case of correlations. Here we
show that the single-particle density matrix can be idempotent only in a pure
state21 and in the absence of correlations.

Let ρ be the N -particle density operator of a mixed state, as introduced in
the beginning,

ρ =
∑

k

Wk|Ψk〉〈Ψk| ,

with
∑

kWk = 1. We now show that ρ is idempotent if and only if the corre-
sponding state is pure. We compute the square and use the orthonormality of
the states,

ρ2 =
∑

kl

WkWl|Ψk〉〈Ψk|Ψl〉〈Ψl| =
∑

k

W 2
k |Ψk〉〈Ψk| . (6.88)

21Result of Jan-Philip Joost.
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Thus, the idempotency of ρ, i.e. ρ = ρ2, is only fulfilled if Wk = W 2
k for all k.

The latter equation is fulfilled only by Wk = 0 and Wk = 1, and the sum over
all Wk is normalized to one. Therefore, all but one Wk have to vanish, leading
to a pure state.

Let us now discuss application of this result to the single-particle density
operator, ρ → F1. In this case, the states |ψk〉 have to be understood as
natural orbitals. For an ideal system, this are Slater determinants. Then the
same derivation applies, and the results for the eigenvalues hold.

Let us now consider a correlated system in the ground state. Then we again
can write F as a superposition of natural orbitals. Consider as an example
jellium. There the natural orbitals are plane waves, the single-particle density
matrix is diagonal, Fkk′ = nkδk,k′ , and the eigenvalues pk can be understood
as occupation numbers (momentum distribution nk). The density matrix in
coordinate space will then be a superposition of these orbitals. For an ideal
system in the ground state, the momentum distribution is a step function which
indeed satisfies the idempotency condition. In contrast, in case of correlations,
the density matrix is still diagonal, but the momentum distribution is softened
around the Fermi edge which means that the occupation numbers around the
Fermi edge will violate the idempotency condition. At finite temperatures, the
distribution will be even more softened, and the idempotency condition will
be even more strongly violated.

As a historical remark we note that trace consistency and the related con-
cept of so-called N-representability have been studied by Coleman [CY00]. This
is presently actively discussed in reduced density matrix theory of atoms, e.g.
by Maziotti [Maz07]. More details are discussed in the appendix ??.

6.6.5 (Anti-)Symmetrization of the first equation.
Exchange and Hartree-Fock

Let us now start with the (anti-)symmetrization of the equation for F1, Eq. (6.30).
It follows if we use, on the r.h.s., the trace over (anti-)symmetric two-particle
states. As we have seen above, this can be transformed into a trace over pro-
duct states where the (anti-)symmetrization is, instead, carried over to F12.
This means F12 is replaced by the (anti-)symmetrized expression (6.66) to-
gether with the (anti-)symmetrized cluster expansion,

F±
12 = (F1F2 + g12)λ

±
12 , (6.89)
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which leads to the modified equation

i~
∂

∂t
F1 − [H1, F1] = Tr2

(

[V12, F1F2 + g12]λ
±
12

)

= Tr2[V12, F1F2λ
±
12 + g±12] ,

where we have introduced the (anti-)symmetrized pair correlation operator. Let
us now consider the product of two single-particle operators which previously
led to the Hartree mean field. Now we have

Tr2[V12, F1F2λ
±
12] = Tr2[V12λ

±
12, F1F2] = [HHF

1 , F1],

with HHF
1 = Tr2V

±
12 F2; V ±

12 = V12λ
±
12 = V12(1̂ + ǫP̂12), (6.90)

where we introduced the Hartree-Fock Hamiltonian and the (anti-)symmetrized
pair potential. The expression for HHF generalizes the previously introduced
mean-field operator (Hartree field) UH, Eq. (6.47). So everywhere we may re-
place UH → HHF. The matrix form of the Hartree-Fock hamiltonian becomes,

HHF
ij =

∑

kl

V ±
ik,jlFlk ,

V ±
ik,jl = Vik,jl + ǫVik,lj .

Using the definition of the Hartree-Fock Hamiltonian (6.90), the product
of one-particle density operators can be included into an effective hamiltonian,
and we obtain the (anti-)symmetrized first hierarchy equation

i~
∂

∂t
F1 − [H̄1, F1] = Tr2[V12, g

±
12] , (6.91)

H̄1 = H1 +HHF
1 = H1 + Tr2V

±
12F2 . (6.92)

The term on the r.h.s. of Eq. (6.91) is the collision integral and involves the
(anti-)symmetrized pair correlation operator the equation of which we need to
derive next.

6.6.6 (Anti-)Symmetrization of the second hierarchy
equation

For the (anti-)symmetrization of the second hierarchy equation, we cannot
start from the previous equation for g12 because it was derived using the cluster
expansion for distinguishable particles. Instead, we have to go back to the
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equation for F12, Eq. (6.31), and apply the (anti-)symmetrized versions of the
cluster (Ursell-Mayer) expansions for F±

12, Eq. (6.89), and of F±
123:

F±
123 =

[

F1F2F3 + P̂123(F1g23) + g123

]

λ±123 , (6.93)

which yields

i~
∂

∂t

(

F1F2λ
±
12 + g±12

)

− [H12, F1F2λ
±
12 + g±12]

= Tr3

{

[V13 + V23, F1F2F3] + [V13 + V23, F1g23]

+ [V13 + V23, F2g13] + [V13 + V23, F3g12]

+ [V13 + V23, g123]
}

(1 + ǫP13 + ǫP23)λ
±
12 , (6.94)

where we factorized the operator22 λ±123. Let us now transform some of the
terms appearing in this equation.

Hartree-Fock and Pauli blocking: The r.h.s. contains the trace over three-
operator products, F1F2F3, which now becomes the trace over
F1F2F3(1 + ǫP13 + ǫP23)λ

±
12. First, we notice that

Tr3V13(1 + ǫP13)F3F1F2λ
±
12 = HHF

1 F1F2λ
±
12 , (6.95)

and similarly for 1 ⇐⇒ 2. Now we transform the remaining terms, i.e.
the two terms containing V13 P23 and V23 P13. Starting with P23 we obtain

Tr3V13F1F2F3P23λ
±
12 = F2Tr3V13F1F3P23λ

±
12

F2Tr3P23V12F1F2λ
±
12 = F2Tr3P23V12λ

±
12F1F2 =

= F2V
±
12F1F2 (6.96)

where, in the last equality, we used the property (6.74) of the permuta-
tion operator. The second term follows by interchanging 1↔ 2, with the
result F1V

±
12F1F2. Thus the entire trace term, together with the commu-

tator [V12, F1F2λ
±
12], becomes

V12F1F2λ
±
12 + Tr3(V13 + V23)F1F2λ

±
12F3(1 + ǫP13 + ǫP23)

= (HHF
1 +HHF

2 )F1F2λ
±
12 + V̂ ±

12F1F2 , (6.97)

V̂ ±
12 = V̂12λ

±
12 , V̂12 = (1 + ǫF1 + ǫF2)V12 . (6.98)

22In Refs. [BD79] and [Bon98] the overall factor λ±
12 occuring in each term was cancelled.

This factor is retained here and applied to all terms.
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This means exchange effects modify the pair interaction in the presence
of other particles, V12 → V̂ ±

12 : the potential contains a blocking factor
(ǫ = −1 for fermions) that takes into account the occupation of the
two-particle states by other particles. In case of bosons, one observes the
familiar enhancement of the scattering process.

The second part of the commutator is transformed in the same way23,

F1F2λ
±
12V12 + Tr3F1F2F3λ

±
12(1 + ǫP13 + ǫP23)(V13 + V23)

= F1F2λ
±
12(H

HF
1 +HHF

2 ) + F1F2V̂
±†
12 ,

V̂ ±†
12 = V̂ †

12λ
±
12 , V̂ †

12 = V12(1 + ǫF1 + ǫF2) . (6.99)

The Hartree-Fock terms cancel when we subtract the equation for F1F2λ
±
12

below. Finally, the entire scattering term Ψ̂12 (inhomogeneity in the equa-
tion for g12) arises from the commutator of both terms and can be re-
written in a form familiar from Green functions theory:

V̂ ±
12F1F2 − F1F2V̂

±†
12 ≡ Ψ̂±

12 =

=(1 + ǫF1)(1 + ǫF2)V
±
12F1F2 − F1F2V

±
12(1 + ǫF1)(1 + ǫF2) =

=F>
1 F

>
2 V

±
12F

<
1 F

<
2 − F<

1 F
<
2 V

±
12F

>
1 F

>
2 (6.100)

F<
1 = F1, F>

1 = 1 + ǫF1 ,

where the latter two notations resemble the single-particle correlation
functions on the time diagonal, G≷(t, t).

Pauli blocking in the particle-particle ladder terms: The right hand si-
de of the second hierarchy equation also contains the following contribu-
tion
Tr3[V13, F2g13(1 + ǫP13 + ǫP23)λ

±
12] and permutations 1 ⇐⇒ 2. They are

transformed exactly as in the previous case, with the result

Tr3V13F2g13P23λ
±
12 = F2Tr3P23V12g12λ

±
12 = F2V12g

±
12,

Tr3V23F1g23P13λ
±
12 = F1V12g

±
12,

Tr3λ
±
12P23F2g13V13 = g±12V12F2,

Tr3λ
±
12P13F1g23V23 = g±12V12F1. (6.101)

The first expression again used the property (6.74) of the permutation
operator, and the other expressions are transformed in similar manner.

23Note that the action of the (anti-)symmetrization operator could also be shifted from
the potential V̂ to the operator pair F1F2. This does not change matrix elements of the
entire expression.
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The first two expressions can be combined with the classical ladder term,
V12g

±
12, to V̂12g

±
12, whereas the second two yield the replacement g±12V12 →

g±12V̂
†
12. Thus the complete ladder term becomes

[V12, g
±
12]→ V̂12g

±
12 − g±12V̂ †

12 . (6.102)

Note that, in the ladder terms, the operator λ±12 has to act on the operator g12,
rather than on the pair potential, because we need to obtain an equation of
motion for g±12, as this quantity has physical meaning and enters the collision
term of the first equation.

Cancellation of the uncorrelated terms in F±
12. From equation (6.94)

we now subtract the equation of motion for the product F1F2λ
±
12 that follows

from (6.91),

i~
∂

∂t
F1F2λ

±
12 − [H̄0

12, F1F2λ
±
12] = F2Tr3[V13, g

±
13]λ

±
12 + F1Tr3[V23, g

±
23]λ

±
12 ,

(6.103)

H̄0
12 = H̄1 + H̄2 = H1 +H2 +HHF

1 +HHF
2 ,

which eliminates, from the r.h.s. of Eq. (6.94), the terms Tr3[V13, F2g13(1 +
ǫP13)] and Tr3[V23, F1g23(1 + ǫP23)], and adds to the r.h.s. the term [V12, F1F2]
which is absent in Eq. (6.94). We now identify (and cancel) the Hartree-
Fock hamiltonians, on the r.h.s., because they are included in H̄0

12 but not
in H12, in Eq. (6.94). As we just showed, cf. Eq. (6.99), these are the terms
Tr3V13F1F2F3(1 + ǫP13)λ

±
12, where we only wrote one half of the commutator,

and the term with 1 ⇐⇒ 2 has to be added as well. Finally there are the
terms of the form Tr3V13F1F2F3ǫP23λ

±
12 = F2V

±
12F1F2 that contribute to Pauli

blocking in the pair interaction, as shown above in Eq. (6.99). As a result, all
terms containing the product F1F2F3, are absorbed in different terms.

In similar manner we transform products of the form F1g23, i.e.

Tr3V13F3g12(1 + ǫP13 + ǫP23)λ
±
12 ,

Tr3(V13 + V23)F2g13(1 + ǫP13 + ǫP23)λ
±
12 ,

plus terms ↔ 2. In the first line, the term with the 1 gives the Hartree term,
HH

1 g
±
12, whereas the remaining terms will be considered below, in Eq. (6.105).

In the second line, the term ∼ V23 . . . ǫP23 yields the Fock hamiltonian HF
2 g

±
12,

whereas the terms with the potential V13 . . . (1 + ǫP13)λ
±
12 compensate the col-

lision integrals in the equation for F1F2λ
±
12. Further, V13 . . . ǫP23λ

±
12 produces

the Pauli blocking contribution, F2V12g
±
12, in the ladder term, see Eq. (6.102).

The remainder in the second equation is the term ∼ V23 . . . (1 + ǫP13)λ
±
12 that

is also included in Eq. (6.105) below.
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With these identifications we can gather the terms in the equation for g±12:

i~
∂

∂t
g±12 − [H̄0

12, g
±
12]− (V̂12 g

±
12 − g±12 V̂ †

12) = (V̂ ±
12F1F2 − F1F2V̂

±†
12 )

+ Π̃
(1)
12 + Π̃

(2)
12 + Tr3[V13 + V23, g

±
123] , (6.104)

where Π̃(1,2) denote the remaining terms [Π̃
(2)
12 follows from the substitution

1←→ 2] that are collected in Eq. (6.105) and will be transformed below.
Preliminary Summary. Before proceeding, let us summarize the new

effects obtained so far, compared to the previous version for distinguishable
particles:

1. The correlation operators are replaced by properly (anti-)symmetrized
operators, i.e. g12 → g±12 and g123 → g±123.

2. Exchange effects appear in the mean field terms, i.e. the Hartree mean
field is replaced by the Hartree-Fock operators.

3. Pauli blocking and exchange appear in the inhomogeneity of the second
equation, i.e. V12F1F2 → V̂ ±

12F1F2, ultimately giving rise to Pauli blocking
and exchange in the scattering integrals of the first hierarchy equation.

4. Pauli blocking factors appear in the ladder terms, i.e. V12 g12 → V̂12 g
±
12,

giving rise to Pauli blocking in the T-matrices. Note that no exchange
terms appear.

Polarization and particle-hole ladder terms: What is left is to identify
the polarization terms that were present in the previous (spinless) equation
for g12, Eq. (6.57), and to establish their modification arising from the (anti)-
symmetrization. It is clear that these terms must be contained in the remainder
of the F · g terms that we noted before and summarize in the following:

Tr3
{

V13F3g12(ǫP13 + ǫP23)λ
±
12 + V23F2g13(1 + ǫP13 + ǫP12 + P13P12)

}

,
(6.105)

to which the symmetric term with 1↔ 2 and the other half of the commutators
have to be added.

Classical polarization term. GW (red). First, we realize that the term
with the 1 is the only one that is present in the spinless case (ǫ → 0) and,
indeed, it coincides with the classical polarization term. Replacing 1 → 1 +
ǫP13 “upgrades” the classical polarization term to the classical-type expression,
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Tr3V23F2g
±
13, but now containing the fully (anti-)symmetric pair correlation

operator.
Exchange corrections to the polarization terms. Let us now analyze

the remaining six terms in Eq. (6.105). We start with the first two contributions
from the first term (of the total of four terms):

Tr3V13F3g12ǫP13 = Tr3V13ǫP13F1g23 ,

Tr3V13F3g12ǫP23ǫP12 = Tr3V13ǫP13F1g23ǫP23 ,

where, in the second expression, we used P23P12 = P13P23. Adding these two
expressions and the classical polarization term discussed above (where we ex-
change 1↔ 2) yields

Π
(1)
12 = Tr3[V

±
13 , F1]g

±
23 , (6.106)

thus the previous result was “upgraded” once more, by replacing V12 → V ±
12 .

This is the result that was derived in Refs. [DKBB97] and [Bon98] and des-
cribes polarization effects including exchange effects (in the Green functions
language this corresponding to GW with exchange).

Residual polarization terms. Connection to particle-hole ladder
terms. There are four terms left from Eq. (6.105) which we transform such
that an (anti-)symmetric pair correlation operator is produced (note that we
have to retain the index change 1↔ 2 in the second term)

R(1)x = Tr3V13F3g12(P13P12 + ǫP23) + Tr3V13F1g23(P23P12 + ǫP12) (6.107)

Transforming the two parantheses according to

P̂13P̂12 + ǫP̂23 = ǫP̂13ǫP̂12 + ǫ3P̂ 2
13P̂23 =

= (ǫP̂13 + ǫ2P̂13P̂23)ǫP̂12 = ǫP̂13λ
±
23 · ǫP̂12 ,

P̂23P̂12 + ǫP̂12 = λ±23 · ǫP̂12 ,

Inserting these results into Eq. (6.107) and using Eq. (6.75), an overall factor
ǫP̂12 can be taken out to the right, with the result

R(1)x =
{

Tr3V13ǫP̂13F1g23λ
±
23 + Tr3V13F1g23λ

±
23

}

· ǫP̂12

=Tr3V
±
13F1g

±
23 · ǫP̂12 (6.108)

Together with the second part of the commutator, this yields exactly the pola-
rization term, Eq. (6.106) times ǫP̂12. Analogously, the symmetric term arising

from exchanging 1↔ 2 yields Π
±(2)
12,DO · ǫP̂12.
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Comparison to Green functions approaches and to the G1–G2 scheme sug-
gests that these terms describe particle-hole ladder contributions and are equi-
valent to the particle-hole T-matrix approximation for the selfenergy ΣTPH.
This has been demonstrated by a direct calculation, starting from the Keldysh-
Kadanoff-Baym equations using the selfenergy ΣTPH [JSB20].

Thus, all terms of Eq. (6.105), together with the permuted terms (1 ↔ 2)
and the second halfs of the commutators, can be combined into

Eq. (6.105) =
(

Π
±(1)
12,DO +Π

±(2)
12,DO

)

λ±12 . (6.109)

Summary and discussion. The system of the (anti-)symmetrized first
and second hierarchy equations (6.91) and (6.104) is exact. Dropping the term
g±123 corresponds to the dynamically screened ladder approximation24 and is
expected to be conserving. With the proper replacement of quantities,

Fij = ±i~G<
ij ,

g±12 = (i~)2 G12 ,

this approximation is equivalent to (the most general version of) the G1-G2
equations of Ref. [JSB20] that follow from the time-diagonal version of the
Kadanoff-Baym equations using the Hartree-Fock-GKBA.

With this we achieved our goal and present the final result for the (anti-
)symmetrized first and second equations of the BBGKY-hierarchy:

i~
∂

∂t
F1 − [H̄1, F1] = Tr2[V12, g

±
12] , (6.110)

i~
∂

∂t
g±12 − [H̄0

12, g
±
12] = Ψ±

12 + L12 +Π±
12 + Tr3[V

(12),3, g±123] , (6.111)

Ψ±
12 = V̂ ±

12F1F2 − F1F2V̂
±†
12 = Ψ12λ

±
12 , (6.112)

L12 = (V̂12 g
±
12 − g±12 V̂ †

12) , (6.113)

Π±
12 = Π12λ

±
12 , Π12 = Tr3[V

±
13 , F1]g

±
23 + (1↔ 2) . (6.114)

where Ψ±
12 denotes the inhomogeneity and L12 the complete pp-ladder term.

Finally, Π±
12 = Π12 + Πx

12 is the complete polarization term that is comprised
of the bubble sum (Π12, λ±12 → 1) and the exchange term, Πx

12 = ǫP12Π12,
i.e. the particle-hole T-matrix (λ±12 → ǫP12).

24abbreviated DSL. As mentioned before, in other fields the alternative names are being
used such as Wang-Cassing approximation or Valdemoro approximation.
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Let us discuss possible conserving closure approximations25, extending our
discussion before the (anti-)symmetrization, restricting ourselves to g123 → 0.
As before, we can neglect L12 and/or Π

±
12 completely. In addition, it is possible

to eliminate from all terms the factor λ±12. This would eliminate, in particular,
the particle-hole ladder term Πx

12, but the solution g12 would not necessarily
be (anti-)symmetric. Another valid approximation is to neglect, separately, in
any term (or part of terms) the exchange contribution(s). For a discussion of
energy conserving approximations, see Refs. [Bon98] and [JSO+22].

6.6.7 Matrix form of the equations and comparison to
the G1-G2 scheme

It is straightforward to bring the system of equations (6.110)–(6.114) into a
matrix form26 with respect to an arbitrary basis of one and two-particle states
including also the different spin combinations. This also allows for a direct
comparison with the recently developed G1-G2 scheme [SJB20, JSB20] and
other methods based on reduced density matrix theory.

(to be completed).

6.6.8 (Anti-)Symmetrization of the third equation

To make further progress we need to develop improved many-body approxima-
tions. This can be done by including (in part) contributions from three-particle
correlations, g123. For this it is crucial to perform an anti-symmetrization of
Eq. (6.46)27

to be completed

6.6.9 Problems

Problem 1: Compute the normalization of F±
1...s for non-interacting particles. Apply

the Hartree-Fock approximation.

Problem 2: Prove Eq. (6.78) for the case s > 3.

Problem 3: Derive the matrix representation of the second hierarchy equation, Eq. (6.111).
Compare each term with the ones of the G1-G2 scheme of Ref. [JSB20].

25this is still preliminary
26see Problem 3.
27see Problem 4.
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Problem 4: Derive the (anti-)symmetrized equation for the three-particle correlation
operator, g±123. Start from the equation of motion for F123 and perform
the (anti-)symmetrized cluster expansion.


