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where we used the general matrix elements with respect to k-particle product
states, bj1...jkm1...mk

= 〈j1 . . . jk|b̂|m1 . . .mk〉. Note again the inverse ordering
of the annihilation operators which exactly agrees with the expression for a
bosonic system. Obviously, the result (3.77) includes the previous examples of
single and two-particle operators as special cases.

3.5 Coordinate representation of second quan-

tization operators. Field operators

So far we have considered the creation and annihilation operators in an arbi-
trary basis of single-particle states. The coordinate and momentum represen-
tations are of particular importance and will be considered in the following.
As before, an advantage of the present second quantization approach is that
these considerations are entirely analogous for fermions and bosons and can be
performed at once for both, the only difference being the details of the com-
mutation (anticommutation) rules of the respective creation and annihilation
operators. Here we start with the coordinate representation whereas the mo-
mentum representation will be introduced below, in Sec. 3.6.

3.5.1 Definition of field operators

We now introduce operators that create or annihilate a particle at a given
space point rather than in given orbital φi(r). To this end we consider the
superposition in terms of the functions φi(r) where the coefficients are the
creation and annihilation operators,

ψ̂(x) =
∞
∑

i=1

φi(x)âi, (3.78)

ψ̂†(x) =
∞
∑

i=1

φ∗
i (x)â

†
i . (3.79)

Here x = (r, σ), i.e. φi(x) is an eigenstate of the operator r̂, and the φi(x)
form a complete orthonormal set. Obviously, these operators have the desired
property to create (annihilate) a particle at space point r in spin state σ. From
the (anti-)symmetrization properties of the operators a and a† we immediately
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Abbildung 3.7: Illustration of the relation of the field operators to the second
quantization operators defined on a general basis {φi(x)}. The field operator
ψ̂†(x) creates a particle at space point x (in spin state |σ〉) to which all single-
particle orbitals φi contribute. The orbitals are vertically shifted for clarity.

obtain
[

ψ̂(x), ψ̂(x′)
]

∓
= 0, (3.80)

[

ψ̂†(x), ψ̂†(x′)
]

∓
= 0, (3.81)

[

ψ̂(x), ψ̂†(x′)
]

∓
= δ(x− x′). (3.82)

These relations are straightforwardly proven by direct insertion of the de-
finitions (3.78) and (3.79). We demonstrate this for the last expression.

[

ψ̂(x), ψ̂†(x′)
]

∓
=

∞
∑

i,j=1

φi(x)φ
∗
j(x

′)
[

âi, â
†
j

]

∓
=

=
∞
∑

i=1

φi(x)φ
∗
i (x

′) = δ(x− x′) = δ(r− r′)δσ,σ′ ,

where, in the last line, we used the representation of the delta function in terms
of a complete set of functions.

3.5.2 Representation of operators

We now transform operators into second quantization representation using the
field operators, taking advantage of the identical expressions for bosons and
fermions.
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Single-particle operators

The general second-quantization representation was given by [cf. Secs. 3.3, 3.4]

B̂1 =
∞
∑

i,j=1

〈i|b̂|j〉a†iaj. (3.83)

We now transform the matrix element to coordinate representation:

〈i|b̂|j〉 =
∫

dxdx′φ∗
i (x)〈x|b̂|x′〉φj(x

′), (3.84)

and obtain for the operator, taking into account the definitions (3.78) and
(3.79),

B̂1 =
∞
∑

i,j=1

∫

dxdx′ a†iφ
∗
i (x)〈x|b̂|x′〉φj(x

′)aj =

=

∫

dxdx′ ψ̂†(x)〈x|b̂|x′〉ψ̂(x′). (3.85)

Diagonal case. For the important case that the matrix is diagonal, 〈x|b̂|x′〉 =
b̂(x)δ(x− x′), the final expression simplifies to

B̂1 =

∫

dx ψ̂†(x)b̂(x)ψ̂(x) (3.86)

Consider a few important examples.
Density operator. The first example is again the density operator. In first
quantization the operator of the particle density for N particles follows from
quantizing the classical result for point particles,

n̂(x) =
N
∑

α=1

δ(x− xα), (3.87)

and the expectation value in a certain N -particle state Ψ(x1, x2, . . . xN) is
25

〈n̂〉(x) = 〈Ψ|
N
∑

α=1

δ(x− xα)|Ψ 〉

= N

∫

d2d3 . . . dN |Ψ(x1 = x, 2, . . . N)|2 = n(r, σ), (3.88)

25This is the example of an (anti-)symmetrized pure state which is easily extended to
mixed states.
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which is the single-particle spin density of a (in general correlated) N -particle
system. The second quantization representation of the density operator follows
from our above result (3.86) by replacing b̂→ δ(x− x′), i.e.

n̂(x) =

∫

dx′ψ̂†(x′)δ(x− x′)ψ̂(x′) = ψ̂†(x)ψ̂(x), (3.89)

and the operator of the total density is the sum (integral) over all coordinate-
spin states

N̂ =

∫

dx n̂(x) =

∫

dx ψ̂†(x)ψ̂(x), (3.90)

naturally extending the previous results for a discrete basis to continuous
states.

Kinetic energy operator. The second example is the kinetic energy ope-
rator which is also diagonal and has the second-quantized representation

T̂ =

∫

dx ψ̂†(x)

(

− ~
2

2m
∇2

)

ψ̂(x). (3.91)

Single-particle potential operator. The third example is the second
quantization representation of the single-particle potential v(r) given by

V̂ =

∫

dx ψ̂†(x)v(r)ψ̂(x). (3.92)

If the potential is spin-independent, the spin summation can be performed,
and we are left with a coordinate integration.

Note that each of these examples is given by an operator that is a function of
the coordinate operator, hence, it is given by a diagonal matrix in coordinate-
spin representation.

Two-particle operators

In similar manner we obtain the field operator representation of a general
two-particle operator

B̂2 =
1

2

∞
∑

i,j,k,l=1

〈ij|b̂|kl〉a†ia†jalak. (3.93)

We now transform the matrix element to coordinate representation:

〈ij|b̂|kl〉 =
∫

dx1dx2dx3dx4φ
∗
i (x1)φ

∗
j(x2)〈x1x2|b̂|x3x4〉φl(x4)φk(x3), (3.94)
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and, assuming that the matrix is diagonal,
〈x1x2|b̂|x3x4〉 = b̂(x1, x2)δ(x1 − x3)δ(x2 − x4), we obtain, after inserting this
result into (3.93),

B̂diag
2 =

1

2

∞
∑

i,j,k,l=1

∫

dx1dx2 a
†
iφ

∗
i (x1)a

†
jφ

∗
j(x2)b̂(x1, x2)φl(x2)alφk(x1)ak.

Using again the definition of the field operators the final result for a diagonal
two-particle operator in coordinate representation is

B̂diag
2 =

1

2

∫

dx1dx2 ψ̂
†(x1)ψ̂

†(x2)b̂(x1, x2)ψ̂(x2)ψ̂(x1) (3.95)

Note again the inverse ordering of the destruction operators which makes this
result universally applicable to fermions and bosons. The most important ex-
ample of this representation is the operator of the two-particle interaction, Ŵ ,
which is obtained by replacing b̂(x1, x2) → w(x1 − x2).

With this, a generic N-particle hamiltonian comprised of kinetic, potential
and pair interaction energies becomes, in coordinate representation,

Ĥ =

∫

dx ψ̂†(x)

(

− ~
2

2m
∇2 + v(r)

)

ψ̂(x)

+
1

2

∫

dx1dx2 ψ̂
†(x1)ψ̂

†(x2)w(r1 − r2)ψ̂(x2)ψ̂(x1) , (3.96)

where each integral includes a spin summation:
∫

dx ≡
∫

d3r
∑

σ.
Comment: Even though all quantities now depend on a continuous varia-

ble r, for practical applications, the coordinate has to be discretized, and the
problem is solved on a grid. This may lead to large basis sets, in particular,
in non-equilibrium situations where the system is strongly excited. A possible
way to optimize the computations is the us of finite element methods (finite
element discrete variable representation, FEDVR), e.g. [BBB10a], which we
briefly discuss in Sec. 3.7.

3.6 Momentum representation of second quan-

tization operators

We now consider the momentum representation of the creation and annihilati-
on operators. This is useful for translationally invariant systems such as the
uniform electron gas (jellium model, cf. Sec. 3.6.3), or, approximately, for dense
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plasmas, warm dense matter [DGB18], electron-hole plasmas in semiconduc-
tors, or nuclear matter, since the eigenfunctions of the momentum operator,

〈x|φk,s〉 = φk,s(x) =
1

V1/2
eik·rδs,σ, x = (r, σ), (3.97)

are eigenfunctions of the translation operator. Here we use periodic boundary
conditions to represent an infinite system by a finite box of length L and volume
V = L3, so the wave numbers have discrete values kx = 2πnx/L, . . . kz =
2πnz/L with nx, ny, nz being integer numbers. The eigenfunctions (3.97) form
a complete orthonormal set, where the orthonormality condition reads

〈φk,s|φk′,s′〉 =
1

V

∫

V

d3r ei(k
′−k)r

∑

σ

δs,σδs′,σ = δk,k′δs,s′ , (3.98)

and we took into account that the integral over the finite volume V equals
zero, for k 6= k′, and V , otherwise.

3.6.1 Creation and annihilation operators
in momentum space

The creation and annihilation operators on the Fock space of N -particle states
constructed from the orbitals (3.97) are obtained by inverting the definition of
the field operators (3.78) written with respect to the momentum-spin states
(3.97)

ψ̂(x) =
∑

k′σ′

φk′,σ′(x)âk′,σ′ .

Multiplication by φ∗
k,σ(x) and integration over x yields, with the help of con-

dition (3.98),

âk,σ =

∫

dx φ∗
k′σ′ψ̂(x) =

1

V1/2

∫

V

d3r e−ik·rψ̂(r, σ), (3.99)

and, similarly for the creation operator,

â†k,σ =
1

V1/2

∫

V

d3r eik·rψ̂†(r, σ). (3.100)

Relations (3.99) and (3.100) are nothing but the Fourier transforms of the field
operators. These operators obey the same (anti-)commutation relations as the
field operators, which is a consequence of the linear superpositions (3.99),
(3.100), cf. the proof of Eq. (3.82).
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3.6.2 Representation of operators

We again construct the second quantization representation of the relevant
operators, now in terms of creation and annihilation operators in momentum
space.

Single-particle operators

For a single-particle operator we have, according to our general result, Eq.
(3.70), and denoting x = (r, s), x′ = (r′, s′),

B̂1 =
∑

kσ

∑

k′σ′

a†kσ〈kσ|b̂|k′σ′〉 ak′σ′

=
∑

kσ

∑

k′σ′

∫

dx dx′a†kσ〈kσ|x〉〈x|b̂|x′〉〈x′|k′σ′〉 ak′σ′

=
1

V
∑

kσ

∑

k′σ′

∫

dx dx′a†kσe
−ikr〈x|b̂|x′〉eik′r′ak′σ′δσ,sδσ′,s′ ,

=
1

V
∑

k

∑

k′

∫

dx dx′a†kse
−ikr〈x|b̂|x′〉eik′r′ak′s′ , (3.101)

where, in the third line, we inserted complete sets of momentum eigenstates
(3.97). If the momentum matrix elements of the operator b̂ are known, the first
line can be used directly. Otherwise, the matrix element is obtained from the
known coordinate space result in the last line.

Kinetic energy. For an operator that commutes with the momentum
operator and, thus, is given by a diagonal matrix, one integration (and spin
summation) can be performed. We demonstrate this for the example of the
kinetic energy operator. Then 〈x|b̂|x′〉 → −~

2∇2

2m
δ(x−x′), and we obtain, using

the property (3.98),

T̂ =
1

V
∑

kσ

∑

k′

∫

V

d3r a†kσ e
−ikr ~

2k
′2

2m
eik

′rak′σ

=
∑

kσ

~
2k2

2m
a†kσakσ. (3.102)

Note that one spin summation remains of the two that are contained in the
x-integrals in Eq. (3.101) [the second is removed due to the diagonality of b̂].

Single-particle potential. In similar fashion we obtain for the single-
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particle potential, upon replacing 〈x|b̂|x′〉 → v(r)δ(x− x′),

V̂ =
∑

kσ

∑

k′

a†kσ ak′σ
1

V

∫

V

d3r e−ikr v(r) eik
′r

=
∑

kσ

∑

k′

ṽk−k′a†kσ ak′σ, (3.103)

where we introduced the Fourier transform of the single-particle potential,
ṽq ≡ V−1

∫

d3r v(r)e−iqr. Note that the single-particle potential operator is
not given by a diagonal matrix, and it is not expressed in terms of orbital oc-
cupations, n̂kσ. This is, of course, a direct consequence of non-commutativity of
coordinate and momentum. In other words, the space dependence v(r) breaks
the translational invariance of the system.

Single-particle density. Finally, the operator of the single-particle den-
sity becomes, in momentum space by Fourier transformation,

n̂q =
∑

σ

n̂qσ =
∑

σ

1

V

∫

V

d3r ψ†
σ(r)ψσ(r) e

−iqr

=
1

V
∑

σkk′

a†k′σakσ
1

V

∫

V

d3r ei(k−k′)re−iqr

=
1

V
∑

σk

a†k−q,σakσ. (3.104)

This shows that the Fourier component of the single-particle density opera-
tor, n̂q, describes a density fluctuation with wave number q, corresponding to
transitions of the particles from state |φkσ〉 to state |φk−q,σ〉, for arbitrary k.
With this result we may rewrite the single-particle potential (3.103) as

V̂ = V
∑

q

ṽq n̂−q. (3.105)

Two-particle operators

We now turn to two-particle operators. Rewriting the general result (3.74) for
a spin-momentum basis, we obtain

B̂2 =
1

2!

∑

k1σ1k2σ2

∑

k′

1
σ′

1
k′

2
σ′

2

a†k1σ1
a†k2σ2

〈

k1σ1k2σ2
∣

∣ b̂
∣

∣k′
1σ

′
1k

′
2σ

′
2

〉

ak′

2
σ′

2
ak′

1
σ′

1
.

(3.106)

We now apply this result to the interaction potential where the matrix element
in momentum representation was computed before, 〈k1σ1k2σ2|ŵ|k′

1σ
′
1k

′
2σ

′
2〉 =
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w̃(k1 −k′
1)δk1+k2,k′

1
+k′

2
δσ1,σ′

1
δσ2,σ′

2
. Here w̃ denotes the Fourier transform of the

pair interaction, and the interaction does not change the spin of the involved
particles, see problem 6, Sec. 3.9. Inserting this into Eq. (3.106) and introducing
the momentum transfer q = k′

1 − k1 = k2 − k′
2, we obtain

Ŵ =
1

2!

∑

k1k2q

∑

σ1σ2

w̃(q)a†k1σ1
a†k2σ2

ak2−q,σ2
ak1+q,σ1

. (3.107)

In the case of a Coulomb potential, the contribution of q = 0 is divergent
and should be excluded (this will be discussed below in Sec. 3.6.3). In similar
manner other two-particle quantities are computed.

With this result we can write down the second quantization representation
in spin-momentum space of a generic many-particle hamiltonian that contains
kinetic energy, an external potential and a pair interaction contribution. From
the expressions (3.102, 3.103, 3.107) we obtain

Ĥ =
∑

kσ

~
2k2

2m
a†kσakσ +

∑

kk′σ

ṽk−k′ a†kσak′σ

+
1

2!

∑

k1k2q

∑

σ1σ2

w̃(q)a†k1σ1
a†k2σ2

ak2−q,σ2
ak1+q,σ1

. (3.108)

This result is a central starting point for many investigations in condensed
matter physics, quantum plasmas or nuclear matter. We will apply this result
to one of the key model systems – the uniform electron gas (“jellium”) – in
Sec. 3.6.3.

Finally, let us compare this result to the coordinate representation. In both
cases the kinetic energy part is diagonal. However, the coordinate represen-
tation contains a complicated differential operator whereas the momentum
representation includes just a factor k2. On the other hand, the momentum
representation of the interaction potential is more complicated than in the
coordinate representation. While in the latter we have two sums (integrals)
over the orbitals (coordinates), in the former case there are three. Therefore,
the momentum representation will be advantageous if kinetic energy domina-
tes (weakly coupled quantum system) and, vice versa, in the strong coupling
limit.

3.6.3 The uniform electron gas (jellium)

An important special case where the momentum representation is advanta-
geous is the uniform electron gas (UEG) or jellium. This is a key model sy-
stem in many-body and condensed matter physics as it allows to describe
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fundamental properties of quantum degenerate electrons including their long-
range Coulomb interaction. To restore charge neutrality one includes a charge
compensating background. The assumption of the model is that this back-
ground is uniform and static and does not respond to the dynamics of the
electrons. This background compensates the divergent term with q = 0 in the
electron-electron interaction.

The uniform electron gas is spatially homogeneous, so the momentum is
conserved. The hamiltonian of this system follows from the result (3.108) by
omitting the external potential,

Ĥ =
∑

kσ

~
2k2

2m
a†kσakσ + EM

+
1

2!

′
∑

k1k2q

∑

σ1σ2

w̃(q)a†k1σ1
a†k2σ2

ak2−q,σ2
ak1+q,σ1

, (3.109)

where the Madelung energy accuonts for the selfinteractio of the ions (derived
from the Ewald procedure) and is given by [SGVB15]

EM = −2.837297
(

3
4π

)1/3 N2/3

rs
. Furthermore, the prime on the sum indicates

that the q = 0 term is missing in the sum over q. This is motivated by the
fact the in reality the charge of the electron gas is compensated by the ionic
background. In the jellium model this background is assumed to be purely
static.

The thermodynamic properties of the UEG and the main idea of CPIMC
will be discussed in Sec. 4.3.

Application to relativistic quantum systems

The momentum representation is conveniently extended to relativistic many-
particle systems. In fact, since the Dirac equation of a free particle has plane
wave solutions, we may use the same single-particle orbitals as in the non-
relativistic case. With this, the matrix elements of the single-particle potential
and of the interaction potential remain unchanged (if magnetic corrections to
the interaction are neglected). The only change is in the kinetic energy con-
tribution, due to the relativistic modification of the single-particle dispersion,
ǫk =

~
2k2

2m
→

√
~2k2c2 +m2c4, where m is the rest mass. In the ultra-relativistic

limit, ǫk = ~ck. Otherwise the hamiltonian (3.108) remains valid.

Of course, this is true only as long as pair creation processes are negligible.
Otherwise we would need to extend the description by introducing the negati-
ve energy branch ǫk− = −

√
~2k2c2 +m2c4 and the corresponding second set of
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plane wave states. In all matrix elements we would need to include a second in-
dex (+,−) referring to the energy band. For interacting systems, furthermore,
relativistic corrections to the interaction energy have to be included.

3.7 Other basis sets

In the sections above we derived the second quantization representation of
many-particle states and operators. We derived the results for a general re-
presentation in a complete orthonormal system of orbitals {|i〉} and for two
specific representations: the coordinate and momentum representations. The
solution of the problem becomes trivial if the hamiltonian is diagonal in the
chosen representation.

System in an external potential. If the particles are exposed to a single-
particle potential such as a Coulomb potential of a nucleus or an oscillator
potential, use of the momentum representation is not advantageous because
the external potential is not diagonal in momentum eigenstates. In that case
the eigenstates of a single particle in that potential, such as the hydrogen
wave functions or the oscillator eigenstates, allow for an efficient description.
Alternatively problems in an external potential can be solved on a coordinate
grid, i.e. in coordinate representation because there potential energy operators
are diagonal. However, coordinate grids can become very large. This problem
can be reduced by choosing, instead of a Cartesian system properly adapted
coordinate systems, such as spherical coordinates (for single-center potentials)
or prolate spheroidal basis (for two-atomic molecules), e.g. [LBSB16].

Combination of grid and basis representations. The size of a coordi-
nate grid can be further reduced by making the grid non-equidistant or adap-
tive and time-dependent. An alternative approach is a combination of grid and
basis expansions – the so-called finite element discrete variable representation
(FEDVR). Here the space is divided into a set of finite elements FE which
can be non-equidistant. Inside of each finite element, a basis set {χi

m(x)} is
introduced which allows for a compact representation of functions within the
interval and for efficient space integrations. A one-dimensional example for
the grid is shown in Fig. 3.8, and the functions in two adjacent finite elements
are illustrated in Fig. 3.9. The main advantage is that second quantization
operators retain the same properties as in the standard coordinate represen-
tation, in particular the diagonality of all potential terms. This method has
been applied for solutions of the time-dependent Schrödinger equation, as well
as for the propagation of the Keldysh-Kadanoff-Baym equations of Nonequi-
librium Green Functions theory, for the latter see Refs. [BBB10a, BBB10b].
For applications to three-dimensional atomic systems, often a radial FEDVR
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is used, combined with spherical harmonics, for the angular part. For details
and further references, see the review [HHB14].

Interacting particles. On the other hand, in the case of interactions bet-
ween the particles, the matrix representation of the pair interaction operator
is the main bottleneck. If the interaction is weak an accurate representation of
the single-particle hamiltonian including the external potential is important,
and the use of the eigenfunctions of the single-particle hamiltonian is appro-
priate. In contrast, if the pair interaction is strong it may be advantageous to
use basis states that, at least partially, take into account interaction effects.
This can be obtained from an approximate solution of the interacting problem.
A popular approach is to treat the many-body system on the mean field level
and use Hartree or Hartree-Fock eigenstates for which efficient numerical pro-
cedures have been developed. In that case the total hamiltonian is brought to
the form

Ĥ = Ĥ1 + ŴMF + Ŵ corr (3.110)

and the Hartree or Hartree-Fock eigenstates diagonalize the first two terms.
The complexity of the problem then depends on the properties of the ma-
trix elements of the remaining interactions, i.e. of the correlation part of the
hamiltonian and the approximations used for its treatment.

Optimized basis sets. For completeness we mention that there exist va-
rious basis sets that are optimized for specific applications and make a compro-
mise between accuracy and computational efficiency. For example, in quantum
chemistry, for the description of atoms and molecules, often instead of the ex-
act hydrogen-type orbitals simpler functions are used, such as Slater-type or
Gaussian-type orbitals, see e.g. our discussion in Sec. 3.2.5. In density functio-
nal theory, on the other hand, often pseudopotentials are used or combinations
of localized states in the vicinity of atoms or ions and plane waves in the outer
region, for a text book discussion, see Ref. [Mar12]. Similar approaches are
used in atomic and molecular physics in the context of restricted active space
methods, see Sec. 3.2.5.

3.8 Observables. Expectation values.

For practical applications and comparison with experiments we need to go
beyond the representation of many-particle states or of operators. What is nee-
ded is to compute expectation values of operators in the proper state of the sy-
stem. Examples are the total energy, the interaction energy, the dipole moment
or the optical absorption spectrum. This problem is well understood for simple
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systems such as the hydrogen atom. There the energy in a given state |nlm〉 re-
duces to the computation of the expectation value, 〈Ĥ〉 = 〈nlm|Ĥ|nlm〉 = En,
whereas the dipole absorption spectrum is related to matrix elements of the di-
pole operator, 〈nlm|P̂ |n′l′m′〉, leading to the well-known dipole selection rules.
However, these properties become already much more complicated if more than
one electron is involved, such as in helium, lithium or more complex atoms or
molecules. In this case, the proper spin (anti-)symmetry has to be taken into
account in the computation of the expectation value.

3.8.1 (Anti-)symmetrized observables of many-particle
systems

To compute the expectation value of an operator Â in a pure state we have to
use the (anti-)symmetrized version of the latter, given by Eq. (3.13),

〈Â〉± = 〈{n}|Â|{n}〉 = (3.111)

= 〈Ψ{j}Λ
±
1...N |Â|Λ±

1...NΨ{j}〉 = 〈Ψ{j}|Â±|Ψ{j}〉 , (3.112)

where, in the last line, we expressed the result in terms of non-(anti-)symmetric
N-particle states whereas the (anti-)symmetrization is carried over to the ope-
rator, Â→ Â± = Λ±

1...N ÂΛ
±
1...N . Of course, both results are identical. Below we

consider them separately.

3.8.2 Expectation values with product states

Let us start by considering the second version of the computation of expecta-
tion values given by Eq. (3.112). Then the states can be represented as linear
superpositions of product states, |Ψ{j} = |j1〉 . . . |jN〉 leading to comparative-
ly simple integrations or summations. Still we need to work out the (anti-
)symmetrization of the involved operator. We illustrate this for a two-particle
system. Then we can transform

Â±
12 = Λ±

12Â12Λ
±
12 =

= Â12

(

Λ±
12

)2
= (3.113)

= Â12λ
±
12 (3.114)

λ±1...N = (N !)1/2Λ±
1...N , (3.115)

where we defined a modified (anti-)symmetrization operator in order to elimi-
nate the normalization factor. For example, λ±12 = 1±P12. Let us first verify the
second line, Eq. (3.113), which implies that [Λ±

12, Â12] = 0. This commutator



3.8. OBSERVABLES. EXPECTATION VALUES. 137

is easily computed by using the matrix representation of the involved opera-
tors with respect to an arbitrary complete orthonormal system of two-particle
states,

√
2 〈i1i2|[Λ±

12, Â12]|j1j2〉 =
∑

k1k2

{〈i1i2|k1k2〉 ± 〈i1i2|k2k1〉} 〈k1k2|Â|j1j2〉

−
∑

k1k2

〈i1i2|Â|k1k2〉 {〈k1k2|j1j2〉 ± 〈k2k1|j1j2〉}

= ±
{

〈i2i1|Â|j1j2〉 − 〈i1i2|Â|j2j1〉
}

, (3.116)

where the direct terms cancel and, in the exchange terms, we used the orthonor-
mality, 〈j|i〉 = δij. We conclude that the commutator vanishes if 〈i1i2|Â|j1j2〉 =
〈i2i1|Â|j2j1〉, i.e. for an operator that is symmetric in the particle indices,
A12 = A21, which is an expected property for identical particles.

Square of the (anti-)symmetrization operators. Now it remains to
prove relation (3.114) which we demonstrate by explicit calculation,

(

λ±12
)2

= (1̂± P̂12)(1̂± P̂12) = 2(1̂± P̂12) = 2λ±12 .

Similarly one readily confirms26 that
(

λ±123
)2

= 6λ±123. This can be generalized
to the result

(

λ±1...s
)2

= s!λ±1...s (3.117)
(

Λ±
1...s

)2
= (s!)1/2 Λ±

1...s = λ±1...s (3.118)

The fact that the square of the operators can be reduced to the first power
is not surprising since Λ±

12 projects onto the (anti-)symmetric subspace of the
two-particle Hilbert space and, repeating this operation once more (or more
than once), will not change the result, up to a coefficient. The same is true
for the case of N ≥ 3. This and more properties of the (anti-)symmetrization
operators will be investigated in more detail in Sec. 6.6.3.

Summary. To summarize the result of this section, we have shown that
expectation values for fermions and bosons can be computed using states
that are not (anti-)symmetrized. Instead, the observable A needs to be (anti-
)symmetrized by computing Â± = Âλ±. In practice this means that the matrix
representation has to be replaced by (for N = 2)

〈i1i2|Â12|j1j2〉 → 〈i1i2|Â12|j1j2〉 ± 〈i1i2|Â12|j2j1〉 =
= 〈i1i2|Â12|j1j2〉 ± 〈i2i1|Â12|j1j2〉 .

26See problems, Sec. 3.9
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An example where this is used is the pair potential w12 which is often replaced
by w±

12. The main advantage of doing this is that the number of particle pairs
contributing to the total interaction energy Ŵ can be reduced, see Sec. 3.10.8.

Further examples of (anti-)symmetrized operators are the reduced density
operators, F±

12, F
±
123 and so on, see Chapter 6, and nonequilibrium Green functi-

ons, see Chapter 8. For these approaches, therefore, representations in terms of
product states are commonly used. The properties of the (anti-)symmetrization
operators will be studied in more detail in Sec. 6.6.1.

3.8.3 Expectation values with (anti-)symmetric states

Let us now turn to the computation of expectation values in terms of Sla-
ter determinants/permanents. As an example we consider a system without
interaction for which the hamiltonian is additive,

Ĥ =
∞
∑

i,j=1

hij a
†
iaj , (3.119)

with the matrix elements 〈{n}|Ĥ|{n′}〉. If the system is spatially uniform, it
is advantageous to use the momentum representation with the hamiltonian in
the form (3.108). Occupation number states are then Slater determinants or
permanents of plane waves which are eigenstates of the hamiltonian which is
given by the unitary product with identical vectors,

〈{n}|
∑

kσ

~
2k2

2m
a†kσakσ|{n′}〉 =

∑

kσ

~
2k2

2m
nkσδ{n},{n′} . (3.120)

Obviously, this hamiltonian is diagonal in the Fock state basis and on the
diagonal appear the eigenvalues of the total single particle energy, i.e. the
total energy, in the given N-particle state.

Expectation value of single-particle operators. Let us now repeat
this procedure for an arbitrary single-particle operator B̂1 in a general basis
and compute the expectation value of this operator in a given Fock state. To
this end we only need the diagonal matrix element,

〈B̂1〉 = 〈{n}|B̂1|{n}〉 = 〈{n}|
∞
∑

i,j=1

bij a
†
iaj|{n}〉

=
∞
∑

i,j=1

δijbij 〈{n}|a†iaj|{n}〉

=
∞
∑

i=1

bii ni , (3.121)
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where ni are the occupation numbers in the state |{n}〉, and only the diagonal
elements of bij give a non-vanishing contribution. Obviously, if Slater determi-
nants or permanents are used it is advantageous to employ the second quanti-
zation representation of the observable, because the action of the creation and
annihilation operators on the states can be straightforwardly computed.

Expectation values for stationary solutions of the Schrödinger
equation. The expectation value (3.121) holds for any Slater determinant/per-
manent constructed from eigenstates of the single-particle hamiltonian, i.e. of
the one-particle Schrödinger equation. This can be a uniform system (then we
would use plane waves) or a system in an external potential – then we would
use the eigenfunctions of the hamiltonian in that potential.

In contrast, if the system is interacting and is described by the complete
hamiltonian (3.108), the interaction term is highly non-diagonal in a plane wa-
ve basis. The exact solution procedure then corresponds to a diagonalization
of this hamiltonian. This is always possible – at least, in principle – and leads
to the so-called natural orbitals. If these orbitals are found the hamiltonian is
again additive, as in the case above. However, this diagonalization procedure
scales exponentially with the number of single-particle orbitals needed to re-
present the system which makes exact solutions impractical already for small
particle numbers on the order of N = 20 . . . 30, see our discussion in Sec. 3.2.5.

Due to this difficulty of exact diagonalization, alternative methods to solve
the many-body ground state problem have been developed which include per-
turbation theory or variational approaches. A different route are computational
approaches such as density functional theory (DFT), many-body perturbation
theory, and quantum Monte Carlo (QMC). For systems in the ground state
the most advanced methods are diffusion Monte Carlo (DMC) and full con-
figuration interaction QMC (FCIQMC), the former operating in coordinate
space and the latter in Slater determinant space which was developed by A.
Alavi and co-workers. Here we will not further explore ground state approa-
ches but refer to the extensive literature on DMC and FCIQMC in physics and
quantum chemistry. Instead, we will consider in more detail the case of finite
temperatures, cf. chapter 4.

3.8.4 Outlook

After investigating the basic properties of the method of second quantization
we now turn to more advanced topics. One of them is the extension of the
analysis to systems at a finite temperature, i.e. in a mixed ensemble. This
will be the subject of Chapter 4. After this we turn to the time evolution of
the field operators following an external perturbation. This will be studied in
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detail for the case of single-time observables, in Chapter 5. A second route to
nonequilibrium dynamics is to use field operator products that depend on two
times which leads to the theory of nonequilibrium Green functions which we
discuss in Chapter 8.

3.9 Problems to Chapter 3

1. Express λ±123 via λ±12 and Λ±
123 via Λ±

12, cf.

2. Generalize the previous result to find a decomposition of λ±1...N into lower
order operators.

3. Prove the bosonic commutation relations (3.35).

4. Prove the anti-commutation relation (3.64) between fermionic creation
and annihiliation operators.

5. Discuss what happened to the sum over α in the derivation of Eq. (3.49).

6. Compute the momentum matrix element of the pair interaction.

7. Prove that
(

Λ±
123

)2
= (3!)1/2Λ±

123

3.10 Supplement: Matrix elements in Fock

space. Spinor representation for fermions

We now further extend the analysis of the anti-symmetric Fock space. A con-
venient orthonormal basis for a system of N fermions are the anti-symmetric
states27 |{n}〉, cf. Eq. (3.21). Then operators are completely defined by their
action on these states and by their matrix elements. For fermions the occupa-
tion number representation can be cast into a simple spinor formulation which
we consider next.

3.10.1 Spinor representation of single-particle states

The fact that the fermionic occupation numbers have only two possible values
is very similar to the two spin projections of spin-1/2 particles and allows

27This representation is being used, e.g., in quantum Monte Carlo simulations, such as
configuration path integral Monte Carlo, cf. Ref. [SBF+11]
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for a very intuitive description in terms of spinors. Thus, an empty or singly
occupied orbital can be written as a column

|0〉 →
(

1
0

)

− empty orbital,

|1〉 →
(

0
1

)

− occupied orbital,

and, analogously for the “bra”-states,

〈0| →
(

1 0
)

− empty orbital,

〈1| →
(

0 1
)

− occupied orbital,

where the two form an orthonormal basis: 〈0|0〉 = 〈1|1〉 = 1; 〈0|1〉 = 0. We
will also use the combined notation 〈α|β〉 = δα,β, where α, β = 0, 1.

3.10.2 Spinor representation of operators

In the spinor representation each second quantization operator becomes a 2×2
matrix,

Â→ Aαβ =

(

A00 A01

A10 A11

)

, (3.122)

where Aαβ = 〈α|Â|β〉 and α, β = 0, 1.
Particle number operator. For the operator n̂ the two spinors are ei-

genstates, n̂|n〉 = n|n〉, with n = 0, 1. The operator has the following action

n̂

(

0
1

)

= 1

(

0
1

)

, (3.123)

n̂

(

1
0

)

= 0

(

1
0

)

= 0, (3.124)

and is, therefore, given by a diagonal matrix in this spinor representation with
its eigenvalues on the diagonal,28

n̂→ 〈α|n̂|β〉 = β · 1̂ =

(

0 0
0 1

)

, (3.125)

and one readily confirms by direct matrix multiplication that this is consistent
with the action of the operator given by Eqs. (3.123) and (3.124).

28The first [second] row corresponds to the case 〈α| = 〈0| [〈α| = 〈1|], whereas the first
[second] column corresponds to |β〉 = |0〉 [|β〉 = |1〉].
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3.10.3 Spinor representation of â and â†

Using the definitions (3.61) and (3.62) we readily obtain the matrix elements
of the creation and annihilation operators in spinor representation29. We again
consider the matrices with respect to one of the single-particle states |φk〉 and
take into account that, for fermions, nk is either 0 or 1. As a result, we obtain

〈

αk

∣

∣

∣
â†k

∣

∣

∣
βk

〉

=

(

0 0
1 0

)

≡ A†
k, (3.126)

〈αk |âk| βk〉 =

(

0 1
0 0

)

≡ Ak, (3.127)

where the matrix of âk is the transposed of that of â†k and we introduced the
short-hand notation Ak in the space of single-particle orbitals |φk〉.

We summarize the main properties of the matrices Ak and A†
k which are a

consequence of the properties of â†k and âk and can be verified by direct matrix
multiplication:

1. A2
k =

(

A†
k

)2

= 0, which reflects the Pauli principle.

2. A†
kAk =

(

0 0
0 1

)

= nk1̂k, – a diagonal matrix with the eigenvalues of

n̂k on the diagonal, cf. Eq. (3.125). This is the spinor representation of
n̂k.

3. AkA†
k =

(

1 0
0 0

)

= (1 − nk)1̂k = 1̂k − A†
kAk, i.e. A†

k and Ak anti-

commute.

4. For different single-particle spaces, k 6= l, [A†
k,Al]+ = [A†

k,A
†
l ]+ =

[Ak,Al]+ = 0.

3.10.4 Relation to Pauli matrices

The similarity of the basis states and the eigenstates of spin operator ŝz for
spin-1/2 particles, which are both given by two-row spinors, suggests to look
for additional similarities on the level of operators. It is easy to see that Pauli
matrix σz can be reproduced by the following combination of operators,

σz =

(

1 0
0 −1

)

= A†A−AA† = 2A†A− 1̂ . (3.128)

29They have the same properties as the spin 1/2 operators s±.
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Thus, while the fermionic creation and annihilation operators anti-commute,
their commutator yields a nontrivial result as well – the Pauli spin matrix σz.
Obviously, also the spin matrices σx and σx follow immediately,

2 σx =

(

0 1
1 0

)

= A† +A , (3.129)

2i σy =

(

0 1
−1 0

)

= A† −A . (3.130)

It remains to be verified whether the known properties of the Pauli matrices
may be useful for dealing with the second quantization operators.

Problem: Recall the properties of the Pauli spin matrices30 and apply
them to the second quantization operators.

3.10.5 Matrix elements of â and â† in Fock space

It is possible to extend the spinor representation to the case ofM > 1 orbitals.
Then, each orbital would be represented by a two-row spinor and operators by
2M × 2M dimensional matrices. However, this quickly becomes inconvenient.

We will, therefore, follow a different route and work with a given set of
occupation numbers. These states form an orthonormal system in the anti-
symmetric Hilbert space, i.e. 〈{n}|{n′}〉 = δ{n},{n′}. The result is not a matrix
any more but a number equal to zero or one. Since the action of the operators
âk and â†k we can immediately compute their matrix elements where the result
will be again equal to zero ore one:

〈

{n}
∣

∣

∣
â†k

∣

∣

∣
{n′}

〉

= (−1)αk δk{n},{n′}δn′

k,0
δnk,1 (3.131)

where the original prefactor 1 − n′
k has been transformed into an additional

Kronecker delta for nk. The matrix of the annihilation operator is

〈{n} |âk| {n′}〉 = (−1)αk δk{n},{n′} δn′

k,1
δnk,0 (3.132)

With these basic results we can easily compute the Fock space matrix elements
of arbitrary operators.

30See M. Bonitz, “Quantum Mechanics. Lecture Notes”
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3.10.6 Matrix elements of one-particle operators in Fock
space

To compute the matrix elements of one-particle operators, Eq. (3.44), we need
the matrix of the projector Π̂kl. Using the results (3.132) for the annihiliator
and (3.131) for the creator successively we obtain, for the case k 6= l,

〈

{n}
∣

∣

∣
â†l âk

∣

∣

∣
{n′}

〉

=
∑

{n̄}

〈

{n}
∣

∣

∣
â†l

∣

∣

∣
{n̄}

〉

〈{n̄} |âk| {n′}〉 =

= (−1)α
′

k

∑

{n̄}

(−1)ᾱl δn̄k,0δ
k
{n̄},{n′}δn̄k,n

′

k−1δnl,1δ
l
{n̄},{n}δn̄l+1,nl

= (−1)α
′

kδnl,1δ
kl
{n},{n′}

∑

n̄,n̄k

(−1)ᾱl δn̄k,0δn̄k,nk
δn̄l,n

′

l
δn̄k,n

′

k−1δn̄l+1,nl

= (−1)αk′lδkl{n},{n′}δnl,1δn′

l,0
δnk,0δn′

k,1
, αk′l =

∑

m<k

n′
m +

∑

m<l

nm .(3.133)

Note that the occupation numbers entering the exponent αk′l are restricted by
the Kronecker symbols. For the case k = l we recover the matrix element of
the occupation number operator31

〈

{n}
∣

∣

∣
â†kâk

∣

∣

∣
{n′}

〉

= 〈{n} |n̂k| {n′}〉 = nkδ{n},{n′}. (3.134)

Arbitrary single-particle operators.With the results (3.133) and (3.134)
we readily obtain the matrix representation of a single-particle operator, defi-
ned by Eq. (3.68),

〈

{n}
∣

∣

∣
B̂1

∣

∣

∣
{n′}

〉

=
∞
∑

k,l=1

blk

〈

{n}
∣

∣

∣
â†l âk

∣

∣

∣
{n′}

〉

(3.135)

First, for a diagonal operator Bdiag, blk = bkδkl, the result is simply

〈

{n}
∣

∣

∣
B̂diag

1

∣

∣

∣
{n′}

〉

= δ{n},{n′}

∞
∑

k=1

bknk = δ{n},{n′}

N
∑

m=1

bnm . (3.136)

where, in the last equality, we have simplified the summation by including
only the occupied orbitals (all other orbitals have nk = 0) which have been
reordered so that they have the numbers n1, n2 . . . nN .

31This result is contained in expression (3.133). Indeed, in the special case k = l, we obtain
αk′l →

∑

m<k(n
′
m + nm), δkl{n},{n′} → δk{n},{n′}
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For the general case of a non-diagonal operator it follows from (3.135)32

〈

{n}
∣

∣

∣
B̂1

∣

∣

∣
{n′}

〉

= δ{n},{n′}

N
∑

k=1

bnknk
+ (3.137)

+
N
∑

k 6=l=1

(−1)αk′l+γkl bnlnk
δnknl

{n},{n′} δnl,1δn′

l,0
δnk,0δn′

k,1
,

where γkl = 1, for k < l, and 0, otherwise.

3.10.7 Matrix elements of two-particle operators in Fock
space

To compute the matrix elements of two-particle operators, Eq. (3.74), we need
the matrix elements of four-operator products, which we transform, using the
anti-commutation relations (3.64), according to

â†i â
†
j âlâk = −â†i âlâ†j âk + δjl â

†
i âk. (3.138)

Next, transform the matrix element of the first term on the right,

〈

{n}
∣

∣

∣
â†i âlâ

†
j âk

∣

∣

∣
{n′}

〉

=
∑

{n̄}

〈

{n}
∣

∣

∣
â†i âl

∣

∣

∣
{n̄}

〉〈

{n̄}
∣

∣

∣
â†j âk

∣

∣

∣
{n′}

〉

=

=
∑

{n̄}

(−1)αil̄δil{n},{n̄}δni,1δn̄i,0δnl,0δn̄l,1 × (−1)αj̄k′δjk{n̄},{n′}δn̄j ,1δn′

j ,0
δn̄k,0δn′

k,1
,

32The non-diagonal matrix elements are transformed to summation over occupied orbitals
as

∞
∑

k 6=l=1

blk

〈

{n}
∣

∣

∣
â†l âk

∣

∣

∣
{n′}

〉

=
N
∑

k 6=l=1

bnlnk

〈

{n}
∣

∣â†nl
ânk

∣

∣ {n′}
〉

,

where it remains to carry out the action oft the two operators. Note that the sign of the
result is different for nl < nk and nl > nk.
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where αj̄k′ =
∑

p<j n̄p+
∑

p<k n
′
p etc. Performing the summation, with the help

of the Kronecker deltas we obtain the final result33

〈

{n}
∣

∣

∣
â†i âlâ

†
j âk

∣

∣

∣
{n′}

〉

= (−1)αilj′k′δiljk{n},{n′}A
†
iAlA†

jAk (3.139)

with αilj′k′ =
∑

p<i

np +
∑

p<l

np +
∑

p<j

n′
p +

∑

p<k

n′
p.

This is a general result which also contains the cases of equal index pairs.
Then, proceeding as in footnote 31, we obtain the results for the special cases.

i=l: (−1)αj′k′δjk{n},{n′}niA†
jAk

j=k: (−1)αilδil{n},{n′}njA†
iAl

l=j: (−1)αik′δik{n},{n′}(1− nl)A†
iAk

i=l, j=k: δ{n},{n′}ninj

k=i: (−1)αlj′δlj{n},{n′}niAlA†
j + (−1)αilδil{n},{n′}δijA

†
iAl

this section is not finished yet!

3.10.8 Fock Matrix of the binary interaction. Slater-
Condon rules

Of particular importance is the occupation number matrix representation of
the interaction potential. This is an example of a two-particle quantity the
properties of which we discussed in section 3.10.7. But for this special case, we
can make further progress34. Starting point is the pair interaction

Ŵ =
1

2

N
∑

α 6=β=1

ŵ(α, β), (3.140)

33We first rewrite

∑

{n̄p}

δil{n},{n̄p}
δjk{n̄p},{n′} =

∑

n̄in̄ln̄j n̄k

δiljk{n},{n′}δnj ,n̄j
δnk,n̄k

δn̄i,n
′

i
δn̄l,n

′

l
,

Taking into account the other Kronecker deltas we can combine pairs and perform the
remaining four summations,

∑

n̄i
δn̄i,n

′

i
δn̄i,0 = δn′

i
,0 and so on.

34M. Heimsoth contributed to this section.
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with the second quantization representation (3.74)

Ŵ =
1

2

∑

ijkl

wijklâ
†
i â

†
j âlâk . (3.141)

The matrix elements are defined as

wijkl =

∫

d3xd3y φ∗
i (x)φ

∗
j(y)w(x,y)φk(x)φl(y), (3.142)

and have the following symmetries

wijkl = wjilk, (3.143)

wijkl = w∗
klij, (3.144)

where property (3.143) follows from the symmetry of the potential w(x,y) =
w(y,x). This allows us to eliminate double counting of pairs from the sum in
Eq. (3.141) by introducing the anti-symmetrized pair potential35

Ŵ =
∞
∑

1≤i<j

∞
∑

1≤k<l

w−
ijklâ

†
j â

†
i âkâl, (3.145)

w−
ijkl = wijkl − wijlk . (3.146)

Note the change of the order of the creation and annihilation operator pairs
in Eq. (3.145).

We now compute the matrix of (3.145) with fully anti-symmetric vectors
|{n}〉 and |{n′}〉

〈{n}|Ŵ |{n′}〉 =
∞
∑

1≤i<j

∞
∑

1≤k<l

w−
ijkl〈{n}|â

†
j â

†
i âkâl|{n′}〉. (3.147)

35 We summarize the main steps: First, using the anti-commutation relations of the anni-
hilators and performing an index change, we transform (the contribution k = l vanishes),

∑

kl

wijklâlâk =
∑

k<l

(wijkl − wijlk)âlâk =
∑

k<l

w−
ijklâlâk.

Extending this to the sum over i, j and using the symmetry properties (3.143), we obtain

∑

ij,k<l

(wijkl − wijlk)â
†
i â

†
j âlâk =

∑

i<j,k<l

(wijkl − wjikl − wijlk + wjilk)â
†
i â

†
j âlâk =

= 2
∑

i<j,k<l

w−
ijklâ

†
i â

†
j âlâk = 2

∑

i<j,k<l

w−
ijklâ

†
j â

†
i âkâl
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Each of the two vectors contains N particles (the interaction does not change
the particle number), i.e. exactly N occupied orbitals, which are all different.
So the sums over i, j and k, l, in fact, run over two (possibly different) sets of N
orbitals with the numbers (m1,m2 . . .mN) and (m′

1,m
′
2 . . .m

′
N), respectively,

36

〈{n}|Ŵ |{n′}〉 → 〈{m}|Ŵ |{m′}〉 =

=
N
∑

1≤i<j

N
∑

1≤k<l

w−
mimjm′

km
′

l
〈{m}|â†mj

â†mi
âm′

k
âm′

l
|{m′}〉.(3.148)

Using the definitions of the creation and annihilation operators, Eqs. (3.61),
(3.62), and taking advantage of the operator order in (3.148)37, the operators
can be evaluated, with the result

〈{m}|Ŵ |{m′}〉 =
N
∑

1≤i<j

N
∑

1≤k<l

(−1)i+j+k+l w−
mimjm′

km
′

l
〈{m}|mi,mj

|{m′}〉m′

k,m
′

l
,

× nmj
nmi

n′
mk
n′
ml

(3.149)

where the notation |{m′}〉m′

k,m
′

l
means that the single-particle orbitals with

number m′
k and m′

l are missing in the state |{m′}〉 which now is a state of
N − 2 particles, and similarly for 〈{m}|mi,mj

. The scalar product of the two
anti-symmetric N − 2-particle states in Eq. (3.149) is non-zero only if the two
states contain N − 2 identical orbitals. To simplify the analysis, in Eq. (3.149)
we have moved the missing orbitals to positions one and two in the states the-
reby accumulating the total sign factor contained in this expression. Thus, the
remaining orbitals are not only identical but they also have identical numbers,
i.e. m3 = m′

3,m4 = m′
4, . . . .

Finally, expression (3.149) will be only non-zero if the missing orbitals fall
in one of three cases which will be denoted by I, II and III38:

1. The two states are identical, {n} ≡ {n′} and, consequently {m} ≡ {m′}.
Then Eq. (3.149) yields

〈{n}|ŴI |{n′}〉 = δ{n},{n′}

N
∑

1≤i<j

w−
mimjmimj

nmi
nmj

. (3.150)

36by |{m}〉 = |{m}〉(|{n}〉) we will denote the subset of N occupied orbitals contained
in the state |{n}〉. For example, a three-particle state |{n}〉 = |1, 0, 0, 1, 1〉 transforms into
|m1m2m3〉 where themi point to the original orbitals with numbersm1 = 1,m2 = 4,m3 = 5.
Note that the matrix 〈{n}|Ŵ |{n′}〉 is diagonal in all orbitals missing simultaneously in 〈{m}|
and |{m′}〉.

37Since i < j and k < l, the signs produced by the first and second operators are inde-
pendent of each other.

38Thereby we return to the full vectors (including the empty orbitals) and restore the
delta functions.
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The specific matrix elements of the interactions that appear in this ex-
pression are given by [cf. Eq. (3.142)]

w−
ijij =

∫

d3x |φi(x)|2
∫

d3y |φj(y)|2w(x,y)−

−
∫

d3xφ∗
i (x)φj(x)

∫

d3y φ∗
j(y)φi(y)w(x,y) . (3.151)

The first integral describes the pair interaction energy of two particles
that occupy orbitals φi and φj, respectively which extend over the entire
space. The y-integral has the meaning of the average interaction potential
created by the particle that occupies orbital φj at space point x, i.e. the
induced electrostatic potential Φind

i (x) which is the solution of Poisson’s
equation. This result is nothing but the Hartree mean field. Similarly,
the second integral describes the pair interaction energy of two particles
that are not localized in a specific orbital but, instead, make a transi-
tion from orbital φj to orbital φi and vice versa. This constitutes the
exchange contribution to the mean field potential, so the entire expressi-
on reproduces the Hartree-Fock mean field. By definition, the remaining
two contributions to the potential describe correlation effects.

2. The two states are identical except for one orbital: the orbital mp with
number p is present in state 〈{m}| but is missing in state |{m′}〉 which,
instead, contains an orbital mr with number r missing in 〈{m}|. Then
the scalar product of the two N−2 particle states is nonzero only if both
these states are annihilated and Eq. (3.149) yields39

〈{n}|ŴII |{n′}〉 =δmpm′

r

{n},{n′}δnmp ,1δn′

mp
,0δnmr ,0δn′

mr
,1×

×
N−1
∑

1≤i,i 6=p,r

(−1)p+r ·Θ(p, r, i)w−
mimpmim′

r
nmi

, (3.152)

where Θ(p, r, i) = −1, if eithermp < mi orm
′
r < mi, otherwise Θ(p, r, i) =

1. The specific matrix elements of the interactions that appear in this
expression are given by [cf. Eq. (3.142)]

w−
ipir =

∫

d3y φp(y)
∗φr(y)

∫

d3x |φi(x)|2w(x,y)−

−
∫

d3xφ∗
i (x)φr(x)

∫

d3y φ∗
p(y)φi(y)w(x,y) . (3.153)

39To obtain the correct sign we move the orbitals p and r to the last place in the product
in state 〈{n}| and in |{n′}〉, respectively and count the number of transpositions (difference).
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This case describes single-particle excitations where |{n′}〉 = |{n}rp〉. The
first integral describes the coupling of the potential induced by particles
in orbital φi at point y with a second particle that undergoes a transition
from orbital φr to φp. The second integral is the exchange correction to
the first one. It describes the interaction of a particle pair, one of which
makes a transition from orbital φi to φp and the other from φr to φi.

3. The two states are identical except for two orbitals with the numbers mp

and mq in 〈{m}| and m′
r and m

′
s in |{m′}〉, respectively. Without loss of

generality we can use mp < mq and m
′
r < m′

s. Then Eq. (3.149) yields

〈{n}|ŴIII |{n′}〉 =δmpmqm′

rm
′

s

{n},{n′} δnmp ,1δn′

mp
,0δnmq ,1δn′

mq
,0δnmr ,0δn′

mr
,1δnms ,0δn′

ms
,1

× (−1)p+q+r+sw−
mpmqm′

rm
′

s
. (3.154)

This case describes two-particle excitations where |{n′}〉 = |{n}rspq〉.

These results are known as Slater-Condon rules and were obtained by those
two authors in 1929 and 1930 [Sla29, Con30]. They are of prime importance
for wave function based many-body methods, such as configuration interaction
(CI) and Multiconfiguration Hartree-Fock (MCHF) and their time-dependent
extensions, e.g. [HHB14]. Similarly this representation is used in configuration
path integral Monte Carlo simulations of strongly correlated fermions at finite
temperature, e.g. [SBF+11] and references therein. This method has been suc-
cessfully applied to describe the warm dense electron gas [DGB18] and yielded
exact results for the thermodynamic properties, e.g. [GDS+17]. The theoretical
description of quantum many-particle systems in thermodynamic equilibrium,
at a finite temperature, will be discussed in Ch. 4.


