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Thus, the results (3.47) and (3.48) can be combined to the operator identity

Π̂ij =
N
∑

α=1

|i〉α〈j|α = â
†
i âj (3.49)

which, together with the definition (3.46), proves the theorem14.
For the special case that the orbitals are eigenfunctions of an operator,

b̂α|φi〉 = bi|φi〉—such as the single-particle hamiltonian, the corresponding
matrix is diagonal, bij = biδij, and the representation (3.43) simplifies to

B̂1 =
∞
∑

i=1

bi â
†
i âi =

∞
∑

i=1

bi n̂i, (3.50)

where bi are the eigenvalues of b̂. Equation (3.50) naturally generalizes the
familiar spectral representation of quantum mechanical operators to the case
of many-body systems with arbitrary variable particle number.

Two-particle operators

A two-particle operator is of the form

B̂2 =
1

2!

N
∑

α 6=β=1

b̂α,β, (3.51)

where b̂α,β acts only on particles α and β. An example is the operator of the pair

interaction, b̂α,β → w(|rα−rβ|). We introduce again matrix elements, now with
respect to two-particle states composed as products of single-particle orbitals,
which belong to the two-particle Hilbert space H2 = H1 ⊗H1,

bijkl = 〈ij|b̂|kl〉, (3.52)

Theorem: The second quantization representation of a two-particle operator
is given by

B̂2 =
1

2!

∞
∑

i,j,k,l=1

bijkl â
†
i â

†
j âlâk (3.53)

Proof:
We expand b̂ for an arbitrary pair α, β into a basis of two-particle orbitals

14See problem 2.
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|ij〉 = |φi〉|φj〉,

b̂ =
∞
∑

i,j,k,l=1

|ij〉〈ij|b̂|kl〉〈kl| =
∞
∑

i,j,k,l=1

|ij〉〈kl| bijkl,

leading to the following result for the total two-particle operator,

B̂2 =
1

2!

∞
∑

i,j,k,l=1

bijkl

N
∑

α 6=β=1

|i〉α|j〉β〈k|α〈l|β. (3.54)

The second sum is readily transformed, using the property (3.49) of the sigle-
particle states. We first extend the summation over the particles to include
α = β,

N
∑

α 6=β=1

|i〉α|j〉β〈k|α〈l|β =
N
∑

α=1

|i〉α〈k|α
N
∑

β=1

|j〉β〈l|β − δk,j

N
∑

α=1

|i〉α〈l|α

= â
†
i âkâ

†
j âl − δk,j â

†
i âl

= â
†
i

{

â
†
j âk + δk,j

}

âl − δk,j â
†
i âl

= â
†
i â

†
j âkâl.

In the third line we have used the commutation relation (3.36). After ex-
changing the order of the two annihilators (they commute) and inserting this
expression into Eq. (3.54), we obtain the final result (3.53)15.

General many-particle operators

The above results are directly extended to more general operators involving K

particles out of N

B̂K =
1

K!

N
∑

α1 6=α2 6=...αK=1

b̂α1,...αK
, (3.55)

and which have the second quantization representation

B̂K =
1

K!

∞
∑

j1...jkm1...mk=1

bj1...jkm1...mk
â
†
j1
. . . â

†
jk
âmk

. . . .âm1
(3.56)

15Note that the order of the creation operators and of the annihilators, respectively, is
arbitrary. In Eq. (3.53) we have chosen an ascending order of the creators (same order as the
indices of the matrix element) and a descending order of the annihilators, since this leads
to an expression which is the same for Bose and Fermi statistics, cf. Sec. 3.4.1.



116 KAPITEL 3. FERMIONS AND BOSONS

where we used the general matrix elements with respect to k-particle product
states, bj1...jkm1...mk

= 〈j1 . . . jk|b̂|m1 . . .mk〉. Note again the inverse ordering of
the annihilation operators. Obviously, the result (3.56) includes the previous
examples of single and two-particle operators as special cases.

Comment: of course, our goal is to compute expectation values of ope-
rators that correctly incorporate the spin statistics of the particles. It may
look, therefore, counter-intuitive, that the second quantization representation
of B̂K , K ≥ 2 includes matrix elements with non-(anti-)symmetric K-particle
states (product states). However, this is not a contradiction. The spin stati-
stics are taken care of by the creation and annihilation operates. The matrix
elements can be computed with any set of states, as long as they span the
relevant K-particle Hilbert space16.

3.4 Second quantization for fermions

We now turn to particles with half-integer spin, i.e. fermions, which are de-
scribed by anti-symmetric wave functions and obey the Pauli principle, cf.
Sec. 3.2.3.

3.4.1 Creation and annihilation operators for fermions

As for bosons we wish to introduce creation and annihilation operators that
should again allow for the construction of any many-body state out of the
vacuum state, according to [cf. Eq. (3.37)]

|n1, n2, . . . 〉 = Λ−
1...N |i1 . . . iN〉 =

(

â
†
1

)n1
(

â
†
2

)n2

. . . |0〉. ni = 0, 1, (3.57)

Due to the Pauli principle we expect that there will be no additional prefactors
resulting from multiple occupations of orbitals, as in the case of bosons17. So
far we do not know how these operators look like explicitly. Their definition
has to make sure that the N -particle states have the correct anti-symmetry
and that application of any creator (or annihilator) more than once will return
zero.

Example: N = 2. To solve this problem, consider two fermions which can
occupy the orbitals k or l. The two-particle state has the symmetry |kl〉 =
−|lk〉, upon particle exchange. The anti-symmetrized state is constructed of

16This is the same approach as has been used in the construction of the N -particle wave
function of an interacting system in Sec. 3.2.5.

17The prefactors are always equal to unity because 1! = 1.
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the product state of particle 1 in state k and particle 2 in state l and has the
properties

Λ−
1...N |kl〉 = â

†
l â

†
k|0〉 = |11〉 = −Λ−

1...N |lk〉 = −â
†
kâ

†
l |0〉, (3.58)

i.e., it changes sign upon exchange of the particles (third equality). This indi-
cates that the state depends on the order in which the orbitals are filled, i.e.,
on the order of action of the two creation operators. One possible choice is
used in the above equation and immediately implies that18

â
†
kâ

†
l + â

†
l â

†
k = [â†k, â

†
l ]+ = 0, ∀k, l, (3.59)

where we have introduced the anti-commutator19. In the special case, k = l,

we immediately obtain
(

â
†
k

)2

= 0, for an arbitrary state, in agreement with

the Pauli principle. Calculating the hermitean adjoint of Eq. (3.59) we obtain
that the anti-commutator of two annihilators vanishes as well,

[âk, âl]+ = 0, ∀k, l. (3.60)

We expect that this property holds for any two orbitals k, l and for any N -
particle state that involves these orbitals since our consideration did not de-
pend on a specific case.

Now we can introduce an explicit definition of the fermionic creation ope-
rator which has all these properties. The operator creating a fermion in orbital
k of a general many-body state is defined as20

â
†
k| . . . , nk, . . . 〉 = (1− nk)(−1)αk | . . . , nk + 1, . . . 〉, αk =

∑

l<k

nl (3.61)

where the prefactor explicitly enforces the Pauli principle, and the sign factor
takes into account the position of the orbital k in the many-fermion state and
the number of fermions standing “to the left” of the “newly created” particle,
cf. Fig. 3.6. In other words, with αk pair exchanges (anti-commutations) the
particle would move from the leftmost place to the position (e.g. according
to an ordering with respect to the orbital energies Ek) of orbital k in the N -
particle state. We now derive the annihilation operator by inserting a complete

18We can leave out the state |0〉 on which the operators act because our derivation can be
repeated for any state.

19This was introduced by P. Jordan and E. Wigner in 1927. Sometimes the anticommutator
is denoted with curly brackets, {Â, B̂}.

20There can be other conventions which differ from ours by the choice of the exponent αk

which, however, is irrelevant for physical observables.
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Abbildung 3.6: Illustration of the phase factor α in the fermionic creation and
annihilation operators. A fermion is added to orbital “p” (red arrow) and has
to be moved past three singly occupied orbitals (np = 1) with lower energy.
This requires αp = 3 pair exchanges, i.e. a sign change will occur. Particles
in orbitals with higher energy do not influence the sign. The single-particle
orbitals are assumed to be in a definite order (e.g. with respect to the energy
eigenvalues).

set of anti-symmetric states and using (3.61)

âk| . . . , nk, . . . 〉 =
∑

{n′}

|{n′}〉〈{n′}|âk| . . . , nk, . . . 〉 =

=
∑

{n′}

|{n′}〉〈{n}|â†k|{n′}〉∗

=
∑

{n′}

(1− n′
k)(−1)α

′

kδk{n′},{n}δnk,n
′

k
+1|{n′}〉

= (2− nk)(−1)αk | . . . , nk − 1, . . . 〉
≡ nk(−1)αk | . . . , nk − 1, . . . 〉

where, in the third line, we used definition (3.33). Also, α′
k = αk because the

sum involves only occupation numbers that are not altered. Note that the
factor 2 − nk = 1, for nk = 1. However, for nk = 0 the present result is not
correct, as it should return zero. To this end, in the last line we have added
the factor nk that takes care of this case. At the same time this factor does not
alter the result for nk = 1. Thus, the factor 2−nk can be skipped entirely, and
we obtain the expression for the fermionic annihilation operator of a particle
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in orbital k

âk| . . . , nk, . . . 〉 = nk(−1)αk | . . . , nk − 1, . . . 〉 (3.62)

Using the definitions (3.61) and (3.62) one readily proves the anti-commutation
relations given by the
Theorem: The creation and annihilation operators defined by Eqs. (3.61) and
(3.62) obey the relations

[âi, âk]+ = [â†i , â
†
k]+ = 0, ∀i, k, (3.63)

[

âi, â
†
k

]

+
= δi,k. (3.64)

Proof of relation (3.63):
Consider, the case of two annihilators and the action on an arbitrary anti-
symmetric state

[âi, âk]+|{n}〉 = (âiâk + âkâi) |{n}〉, (3.65)

and consider first case i = k. Inserting the definition (3.62), we obtain

(âk)
2 |{n}〉 ∼ nkâk|n1 . . . nk − 1 . . . 〉 = 0,

and thus the anti-commutator vanishes as well. Consider now the case21 i < k:

âiâk|{n}〉 = âink(−1)
∑

l<k nl |n1 . . . nk − 1 . . . 〉 =
= nink(−1)

∑
l<k nl(−1)

∑
l<i nl |n1 . . . ni − 1 . . . nk − 1 . . . 〉.

Now we compute the result of the action of the exchanged operator pair

âkâi|{n}〉 = âkni(−1)
∑

l<i nl |n1 . . . ni − 1 . . . 〉 =
= nink(−1)

∑
l<i nl(−1)

∑
l<k nl−1|n1 . . . ni − 1 . . . nk − 1 . . . 〉,

The only difference compared to the first result is in the additional −1 in the
second exponent. It arises because, upon action of âk after âi, the number
of particles to the left of k is already reduced by one. Thus, the two expressi-
ons differ just by a minus sign, which proves vanishing of the anti-commutator.

The proof of relation (3.64) proceeds analogously and is subject of Problem 3,
cf. Sec. 3.9.

Thus we have proved all anti-commutation relations for the fermionic ope-
rators and confirmed that the definitions (3.61) and (3.62) obey all properties
required for fermionic field operators. We can now proceed to use these ope-
rators to bring arbitrary quantum-mechanical operators into second quantized
form in terms of fermionic orbitals.

21This covers the general case of i 6= k, since i and k are arbitrary.
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Particle number operators

As in the case of bosons, the operator

n̂i = â
†
i âi (3.66)

is the occupation number operator for orbital i because, for ni = 0, 1,

â
†
i âi|{n}〉 = â

†
i (−1)αini|n1 . . . ni − 1 . . . 〉 = ni[1− (ni − 1)]|{n}〉,

where the prefactor equals ni, for ni = 1 and zero otherwise. Thus, the anti-
symmetric state |{n}〉 is an eigenstate of n̂i with the eigenvalue coinciding with
the occupation number ni of this state

22.
The total particle number operator is defined as

N̂ =
∞
∑

i=1

n̂i =
∞
∑

i=1

â
†
i âi, (3.67)

because its action yields the total particle number:
N̂ |{n}〉 = ∑∞

i=1 ni|{n}〉 = N |{n}〉.

Single-particle operators

Consider now again a single-particle operator

B̂1 =
N
∑

α=1

b̂α, (3.68)

and let us find its second quantization representation.
Theorem: The second quantization representation of a single-particle opera-
tor is given by

B̂1 =
∞
∑

i,j=1

bij â
†
i âj (3.69)

Proof:
As for bosons, cf. Eq. (3.44), we have

B̂1 =
N
∑

α=1

∞
∑

i,j=1

bij|i〉α〈j|α =
∞
∑

i,j=1

bijΠ̂ij, (3.70)

22This result, together with the anti-commutation relations for the operators a and a†

proves the consistency of the definitions (3.61) and (3.62).
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where Π̂ij was defined by (3.42), and it remains to show that Π̂ij = â
†
i âj, for

fermions as well. To this end we consider action of Π̂ij on an anti-symmetric

state, taking into accont that Π̂ij commutes with the anti-symmetrization ope-
rator Λ−

1...N , Eq. (3.14),

Π̂ij|{n}〉 =
1√
N !

N
∑

α=1

∑

πǫSN

sign(π)|i〉α〈j|α · |j1〉π(1)|j2〉π(2) . . . |jN〉π(N). (3.71)

If the product state does not contain the orbital |j〉 expression (3.71) vanishes,
due to the orthogonality of the orbitals. Otherwise, let jk = j. Then 〈j|jk〉 = 1,
and the orbital |jk〉 will be replaced by |i〉, unless the state |i〉 is already present,
then we again obtain zero due to the Pauli principle, i.e.

Π̂ij|{n}〉 ∼ (1− ni)nj

∣

∣{n}ij
〉

, (3.72)

where we used the notation (3.46). What remains is to figure out the sign
change due to the removal of a particle from the i-th orbital and creation of
one in the k-th orbital. To this end we first “move” the (empty) orbital |j〉
past all orbitals to the left occupied by αj =

∑

p<j np particles, requiring just
αj pair permutations and sign changes. Next we move the “new” particle to
orbital “i” past αi =

∑

p<i np particles occupying the orbitals with an energy

lower then Ei leading to αi pair exchanges and sign changes23. Taking into
account the definitions (3.61) and (3.62) we obtain24

Π̂ij|{n}〉 = (−1)αi+αj(1− ni)nj

∣

∣{n}ij
〉

= â
†
i âj|{n}〉 (3.73)

which, together with the equation (3.70), proves the theorem. Thus, the second
quantization representation of single-particle operators is the same for bosons
and fermions.

Two-particle operators

As for bosons, we now derive the second quantization representation of a two-
particle operator B̂2.

23Note that, if i > j, the occupation numbers occuring in αi have changed by one compared
to those in αj .

24One readily verifies that this result applies also to the case j = i. Then the prefactor is
just [1− (nj − 1)]nj = nj , and αi = αj , resulting in a plus sign

Π̂jj |{n}〉 = nj |{n}〉 = â
†
j âj |{n}〉.
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Theorem: The second quantization representation of a two-particle operator
is given by

B̂2 =
1

2!

∞
∑

i,j,k,l=1

bijkl â
†
i â

†
j âlâk (3.74)

Proof:
As for bosons, we expand B̂ into a basis of two-particle orbitals |ij〉 = |φi〉|φj〉,

B̂2 =
1

2!

∞
∑

i,j,k,l=1

bijkl

N
∑

α 6=β=1

|i〉α|j〉β〈k|α〈l|β, (3.75)

and transform the second sum

N
∑

α 6=β=1

|i〉α|j〉β〈k|α〈l|β =
N
∑

α=1

|i〉α〈k|α
N
∑

β=1

|j〉β〈l|β − δk,j

N
∑

α=1

|i〉α〈l|α

= â
†
i âkâ

†
j âl − δk,j â

†
i âl

= â
†
i

{

−â
†
j âk + δk,j

}

âl − δk,j â
†
i âl

= −â
†
i â

†
j âkâl.

In the third line we have used the anti-commutation relation (3.64). After
exchanging the order of the two annihilators, which now leads to a sign change
and, inserting this expression into Eq. (3.75), we obtain the final result (3.74).

Comment: from the derivation it is clear that there exist a variety of
equivalent representations of two-particle operators that are obtained by in-
terchanging pairs of field operators. Here we note one that is obtained when
we retain the original alternating order of creation and annihilation operators.
Introducing the single-particle density operator n̂ij = â

†
i âj

B̂2 =
1

2!

∞
∑

i,j,k,l=1

bijkl {n̂ikn̂jl − δkjn̂il} . (3.76)

General many-particle operators

The above results are directly extended to a general K-particle operator, K ≤
N , which was defined in Eq. (3.55). Its second quantization representation is
found to be

B̂K =
1

K!

∞
∑

j1...jkm1...mk=1

bj1...jkm1...mk
â
†
j1
. . . â

†
jk
âmk

. . . .âm1
(3.77)


