
Kapitel 3

Fermions and bosons

We now turn to the quantum statistical description of many-particle systems.
The indistinguishability of microparticles leads to a number of far-reaching
consequences for the behavior of particle ensembles. Among them are the
symmetry properties of the wave function. As we will see there exist only
two different symmetries leading to either Bose or Fermi-Dirac statistics.

Consider a single nonrelativistic quantum particle described by the ha-
miltonian ĥ. The stationary eigenvalue problem is given by the Schrödinger
equation

ĥ|φi〉 = ǫi|φi〉, i = 1, 2, . . . (3.1)

where the eigenvalues of the hamiltonian are ordered, ǫ1 < ǫ2 < ǫ3 . . . . The
associated single-particle orbitals φi form a complete orthonormal set of states
in the single-particle Hilbert space1

〈φi|φj〉 = δi,j,
∞
∑

i=1

|φi〉〈φi| = 1. (3.2)

3.1 Spin statistics theorem

We now consider the quantum mechanical state |Ψ〉 of N identical particles
which is characterized by a set of N quantum numbers2 j1, j2, ..., jN , meaning
that particle i is in single-particle state |φji〉. The states |Ψ〉 are elements of the
N -particle Hilbert space which we define as the direct product of single-particle

1The eigenvalues are assumed to be non-degenerate. Also, the extension to the case of a
continuous basis is straightforward.

2The quantum numbers comprise all orbital and spin quantum numbers of a single par-
ticle.
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96 KAPITEL 3. FERMIONS AND BOSONS

Abbildung 3.1: Example of the occupation of single-particle orbitals by 3 par-
ticles. Exchange of identical particles (right) cannot change the measurable
physical properties, such as the occupation probability.

Hilbert spaces, HN = H1 ⊗H1 ⊗H1 ⊗ . . . (N factors), and are eigenstates of
the total hamiltonian Ĥ,

Ĥ|Ψ{j}〉 = E{j}|Ψ{j}〉, {j} = {j1, j2, . . . } . (3.3)

The explicit structure of the N−particle states is not important now and will
be discussed later3.

Since the particles are assumed indistinguishable it is clear that all physical
observables cannot depend upon which of the particles occupies which single
particle state, as long as all occupied orbitals, i.e. the set j, remain unchainged.
In other words, exchanging two particles k and l (exchanging their orbitals,
jk ↔ jl) in the state |Ψ〉 may not change the probability density, cf. Fig. 3.1.
The mathematical formulation of this statement is based on the permutation
operator Pkl with the action

Pkl|Ψ{j}〉 = Pkl|Ψj1,...,jk,...jl,...,jN 〉 =
= |Ψj1,...,jl,...jk,...,jN 〉 ≡ |Ψ′

{j}〉, ∀k, l = 1, . . . N, (3.4)

where we have to require

〈Ψ′
{j}|Ψ′

{j}〉 = 〈Ψ{j}|Ψ{j}〉. (3.5)

Indistinguishability of particles requires PklĤ = Ĥ and [Pkl, Ĥ] = 0, i.e. Pkl

and Ĥ have common eigenstates. This means Pkl obeys the eigenvalue problem

Pkl|Ψ{j}〉 = λkl|Ψ{j}〉 = |Ψ′
{j}〉. (3.6)

3Recall that, in this section, we assume that the particles do not interact with each other.
The generalization to interacting particles will be discussed in Sec. 3.2.5.
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Obviously, P †
kl = Pkl, so the eigenvalue λkl is real. Then, from Eqs. (3.5) and

(3.6) immediately follows

λ2
kl = λ2 = 1, ∀k, l = 1, . . . N, (3.7)

with the two possible solutions: λ = 1 and λ = −1. From Eq. (3.6) it follows
that, for λ = 1, the wave function |Ψ〉 is symmetric under particle exchange
whereas, for λ = −1, it changes sign (i.e., it is “anti-symmetric”).

This result was obtained for an arbitrary pair of particles, so we may expect
that it is straightforwardly extended to systems with more than two particles.
Experience shows that, in nature, there exist only two classes of microparticles
– one which has a totally symmetric wave function with respect to exchange
of any particle pair whereas, for the other, the wave function is antisymmetric.
The first case describes particles with Bose-Einstein statistics (“bosons”) and
the second, particles obeying Fermi-Dirac statistics (“fermions”)4.

The one-to-one correspondence of (anti-)symmetric states with bosons (fer-
mions) is the content of the spin-statistics theorem. It was first proven by Fierz
[Fie39] and Pauli [Pau40] within relativistic quantum field theory. Require-
ments include 1.) Lorentz invariance and relativistic causality, 2.) positivity
of the energies of all particles and 3.) positive definiteness of the norm of all
states.

3.2 Symmetric and antisymmetric N-particle

wave functions

We now explicitly construct the N -particle wave function of a system of many
fermions or bosons.

Case of N = 2. For two particles occupying the orbitals |φj1〉 and |φj2〉,
respectively, there are two possible wave functions: |Ψj1,j2〉 and |Ψj2,j1〉 which
follow from one another by applying the permutation operator P12. Since both
wave functions represent the same physical state it is reasonable to elimina-
te this ambiguity by constructing a new wave function as a suitable linear
combination of the two,

|Ψj1,j2〉± = C12 {|Ψj1,j2〉+ A12P12|Ψj1,j2〉} , (3.8)

with an arbitrary complex coefficient A12. Using the eigenvalue property of the
permutation operator, Eq. (3.6), we require that this wave function has the

4Fictitious systems with mixed statistics have been investigated by various authors, e.g.
[MG64, MG65] and obey “parastatistics”. For a text book discussion, see Ref. [Sch08], p. 6.
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proper symmetry,

P12|Ψj1,j2〉± = ±|Ψj1,j2〉± , (3.9)

which follows from the linearity of |Ψ〉± in the eigenstates of P. The explicit
form of the coefficients in Eq. (3.8) is obtained by acting on this equation
with the permutation operator and equating this to ±|Ψj1,j2〉±, according to
Eq. (3.9), and using P 2

12 = 1̂,

P12|Ψj1,j2〉± = C12

{

|Ψj2,j1〉+ A12P
2
12|Ψj1,j2〉

}

=

= C12 {±A12|Ψj2,j1〉 ± |Ψj1,j2〉} ,

which leads to the requirement A12 = λ, whereas normalization of |Ψj1,j2〉±
yields C12 = 1/

√
2. The final result is

|Ψj1,j2〉± =
1√
2
{|Ψj1,j2〉 ± P12|Ψj1,j2〉} ≡ Λ±

12|Ψj1,j2〉 (3.10)

where,

Λ±
12 =

1√
2
{1± P12}, (3.11)

denotes the (anti-)symmetrization operator of two particles which is a linear
combination of the identity operator and the pair permutation operator.

Case of N = 3. The extension of this result to 3 fermions or bosons
is straightforward. For 3 particles (1, 2, 3) there exist 6 = 3! permutations:
three pair permutations, (2, 1, 3), (3, 2, 1), (1, 3, 2), that are obtained by acting
with the permutation operators P12, P13, P23, respectively on the initial con-
figuration. Further, there are two permutations involving all three particles,
i.e. (3, 1, 2), (2, 3, 1), which are obtained by applying the operators P13P12 and
P23P12, respectively. Thus, the three-particle (anti-)symmetrization operator
has the form

Λ±
123 =

1√
3!
{1± P12 ± P13 ± P23 + P13P12 + P23P12}, (3.12)

where we took into account the necessary sign change in the case of fermions
resulting for any pair permutation.

General case. This result is generalized to N particles where there exists
a total of N ! permutations, according to5

|Ψ{j}〉± = Λ±
1...N |Ψ{j}〉, (3.13)

5This result applies only to fermions. For bosons the prefactor has to be corrected, cf.
Eq. (3.25).
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with the definition of the (anti-)symmetrization operator of N particles,

Λ±
1...N =

1√
N !

∑

PǫSN

sign(P )P̂ (3.14)

where the sum is over all possible permutations P̂ which are elements of the
permutation group SN . Each permutation P has the parity, sign(P ) = (±1)Np ,
which is equal to the number Np of successive pair permuations into which P̂
can be decomposed (cf. the example N = 3 above). Below we will construct
the (anti-)symmetric state |Ψ{j}〉± explicitly. But before this we consider an
alternative and very efficient notation which is based on the occupation number
formalism.

The properties of the (anti-)symmetrization operators Λ±
1...N are analyzed

in Problem 1, see Sec. 3.9.

3.2.1 Occupation number representation

The original N -particle state |Ψ{j}〉 contained clear information about which
particle occupies which state. Of course, this information is unphysical, as it
is in conflict with the indistinguishability of particles. With the construction
of the symmetric or anti-symmetric N -particle state, |Ψ{j}〉±, this information
about the identity of particles is eliminated, and the only information which is
retained is how many particles, np, occupy single-particle orbital |φp〉. We thus
may use a different notation for the state |Ψ{j}〉± in terms of the occupation

numbers np of the single-particle orbitals,

|Ψ{j}〉± = |n1n2 . . . 〉 ≡ |{n}〉, np = 0, 1, 2, . . . , p = 1, 2, . . . (3.15)

Here {n} denotes the total set of occupation numbers of all single-particle
orbitals. Since this is the complete information about the N -particle system,
these states form a complete system that is orthonormal by construction of
the (anti-)symmetrization operators,

〈{n}|{n′}〉 = δ{n},{n′} ≡ δn1,n′

1
δn2,n′

2
. . .

∑

{n}

|{n}〉〈{n}| = 1. (3.16)

The attractive feature of this representation is that it is equally applicable
to fermions and bosons. The only difference between the two lies in the allowed
values of the occupation numbers, as we will see in the next two sections.
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3.2.2 Fock space

In Sec. 3.1 we have introduced the N -particle Hilbert space HN . In the followi-
ng we will need either totally symmetric or totally anti-symmetric states which
form the sub-spaces H+

N and H−
N of the Hilbert space. Furthermore, below we

will develop the formalism of second quantization by defining creation and an-
nihilation operators acting on symmetric or anti-symmetric states. Obviously,
the action of these operators will give rise to a state with N + 1 or N − 1
particles. Thus, we have to introduce, in addition, a more general space con-
taining states with different particle numbers: We define the symmetric (anti-
symmetric) Fock space F± as the direct sum of symmetric (anti-symmetric)
Hilbert spaces H±

N with particle numbers N = 0, 1, 2, . . . ,

F+ = H0 ∪H+
1 ∪H+

2 ∪ . . . ,

F− = H0 ∪H−
1 ∪H−

2 ∪ . . . . (3.17)

Here, we included the vacuum state |0〉 = |0, 0, . . . 〉 which is the state without
particles which belongs to both Fock spaces.

3.2.3 Non-interacting many-fermion wave function

Let us return to the case of two particles, Eq. (3.10), and consider the case
j1 = j2. Due to the minus sign in front of P12, we immediately conclude that
|Ψj1,j1〉− ≡ 0. This state is not normalizable and thus cannot be physically
realized. In other words, two fermions cannot occupy the same single-particle
orbital – this is the Pauli principle which has far-reaching consequences for the
behavior of fermions.

We now construct the explicit form of the anti-symmetric wave function.
This is particularly simple if the particles are non-interacting. Then, the total
hamiltonian is additive6,

Ĥ =
N
∑

i=1

ĥi, (3.18)

and all hamiltonians commute, [ĥi, ĥj] = 0, for all i and j. Then all par-
ticles have common eigenstates, and the total wave function (prior to anti-
symmetrization) has the form of a product

|Ψ{j}〉 = |Ψj1,j2,...jN 〉 = |φj1(1)〉|φj2(2)〉 . . . |φjN (N)〉

6This is an example of an observable of single-particle type which will be discussed more
in detail in Sec. 3.3.1.
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where the argument of the orbitals denotes the number (index) of the particle
that occupies this orbital. As we have just seen, for fermions, all orbitals have
to be different. Now, the anti-symmetrization of this state can be performed
immediately, by applying the operator Λ−

1...N given by Eq. (3.14). For two
particles, we obtain

|Ψj1,j2〉− =
1√
2!

{|φj1(1)〉|φj2(2)〉 − |φj1(2)〉|φj2(1)〉} =

= |0, 0, . . . , 1, . . . , 1, . . . 〉. (3.19)

In the last line, we used the occupation number representation, which has eve-
rywhere zeroes (unoccupied orbitals) except for the two orbitals with numbers
j1 and j2. Obviously, the combination of orbitals in the first line can be writ-
ten as a determinant which allows for a compact notation of the general wave
function of N fermions as a Slater determinant,

|Ψj1,j2,...jN 〉− =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

|φj1(1)〉 |φj1(2)〉 ... |φj1(N)〉
|φj2(1)〉 |φj2(2)〉 ... |φj2(N)〉

... ... ... ...

... ... ... ...

∣

∣

∣

∣

∣

∣

∣

∣

=

= |0, 0, . . . , 1, . . . , 1, . . . , 1, . . . , 1, . . . 〉. (3.20)

In the last line, the 1’s are at the positions of the occupied orbitals. This
becomes obvious if the system is in the ground state, then the N energetically
lowest orbitals are occupied, j1 = 1, j2 = 2, . . . jN = N , and the state has
the simple notation |1, 1, . . . 1, 0, 0 . . . 〉 with N subsequent 1’s. Obviously, the
anti-symmetric wave function is normalized to one.

As discussed in Sec. 3.2.1, the (anti-)symmetric states form an orthonormal
basis in Fock space. For fermions, the restriction of the occupation numbers
leads to a slight modification of the completeness relation which we, therefore,
repeat:

〈{n}|{n′}〉 = δn1,n′

1
δn2,n′

2
. . . ,

1
∑

n1=0

1
∑

n2=0

. . . |{n}〉〈{n}| = 1. (3.21)

3.2.4 Non-interacting many-boson wave function

The case of bosons is analyzed analogously. Considering again the two-particle
case

|Ψj1,j2〉+ =
1√
2!

{|φj1(1)〉|φj2(2)〉+ |φj1(2)〉|φj2(1)〉} =

= |0, 0, . . . , 1, . . . , 1, . . . 〉, (3.22)
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the main difference to the fermions is the plus sign. Thus, this wave function
is not represented by a determinant, but this combination of products with
positive sign is called a permanent.

The plus sign in the wave function (3.22) has the immediate consequence
that the situation j1 = j2 now leads to a physical state, i.e., for bosons, there
is no restriction on the occupation numbers, except for their normalization

∞
∑

p=1

np = N, np = 0, 1, 2, . . . N, ∀p. (3.23)

Thus, the two single-particle orbitals |φj1〉 and |φj2〉 occuring in Eq. (3.22) can
accomodate an arbitrary number of bosons. If, for example, the two particles
are both in the state |φj〉, the symmetric wave function becomes

|Ψj,j〉+ = |0, 0, . . . , 2, . . . 〉 =

= C(nj)
1√
2!

{

|φj(1)〉|φj(2)〉+ |φj(2)〉|φj(1)〉
}

, (3.24)

where the coefficient C(nj) is introduced to assure the normalization condition
+〈Ψj,j|Ψj,j〉+ = 1. Since the two terms in (3.24) are identical the normalization
gives 1 = 4|C(nj)|2/2, i.e. we obtain C(nj = 2) = 1/

√
2. Repeating this

analysis for a state with an arbitrary occupation number nj, there will be nj!
identical terms, and we obtain the general result C(nj) = 1/

√
nj. Finally, if

there are several states with occupation numbers n1, n2, . . . with
∑∞

p=1 np = N ,

the normalization constant becomes C(n1, n2, ...) = (n1!n2! . . . )
−1/2. Thus, for

the case of bosons action of the symmetrization operator Λ+
1...N , Eq. (3.14), on

the state |Ψj1,j2,...jN 〉 will not yield a normalized state. A normalized symmetric
state is obtained by the following prescription,

|Ψj1,j2,...jN 〉+ =
1√

n1!n2!...
Λ+

1...N |Ψj1,j2,...jN 〉 (3.25)

Λ+
1...N =

1√
N !

∑

PǫSN

P̂ . (3.26)

Hence the symmetric state contains the prefactor (N !n1!n2!...)
−1/2 in front of

the permanent.
An example of the wave function of N bosons is

|Ψj1,j2,...jN 〉+ = |n1n2 . . . nk, 0, 0, . . . 〉,
k

∑

p=1

np = N, (3.27)
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where np 6= 0, for all p ≤ k, whereas all orbitals with the number p > k are
empty. In particular, the energetically lowest state of N non-interacting bosons
(ground state) is the state where all particles occupy the lowest orbital |φ1〉,
i.e. |Ψj1,j2,...jN 〉+GS = |N0 . . . 0〉. This effect of a macroscopic population which
is possible only for particles with Bose statistics is called Bose-Einstein con-

densation. Note, however, that in the case of interaction between the particles,
a permanent constructed from the free single-particle orbitals will not be an
eigenstate of the system. In that case, in a Bose condensate a finite fraction of
particles will occupy excited orbitals (“condensate depletion”). The construc-
tion of the N-particle state for interacting bosons and fermions is subject of
the next section.

3.2.5 Interacting bosons and fermions

So far we have assumed that there is no interaction between the particles, and
the total hamiltonian is a sum of single-particle hamiltonians. In contrast, in
the case of interactions,

Ĥ =
N
∑

i=1

ĥi + Ĥint, (3.28)

and the N -particle wave function will (prior to anti-symmetrization), in ge-
neral, deviate from a product of single-particle orbitals. Moreover, there is no
reason why interacting particles should occupy single-particle orbitals |φp〉 of
a non-interacting system.

The solution to this problem is based on the fact that the (anti-)symmetric
states, |Ψ{j}〉± = |{n}〉, form a complete orthonormal set in the N -particle Hil-
bert space, cf. Eq. (3.16). This means, any symmetric or antisymmetric state
can be represented as a superposition of N -particle permanents or determi-
nants, respectively,

|Ψ{j}〉± =
∑

{n}, N=const

C±
{n}|{n}〉 (3.29)

where the orbitals correspond to the non-interacting problem. The effect of
the interaction between the particles on the ground state wave function is to
“add” contributions from determinants (permanents) involving higher lying
orbitals to the ideal wave function, i.e. the interacting ground state includes
contributions from (non-interacting) excited states. For weak interaction, we
may expect that energetically low-lying orbitals will give the dominating con-
tribution to the wave function. For example, for two fermions, the dominating
states in the expansion (3.29) will be |1, 1, 0, . . . 〉, |1, 0, 1, . . . 〉, |1, 0, 0, 1 . . . 〉,
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1. In the ground state, T = 0, particles occupy the N energetically lowest
orbitals where particle N occupies the orbital with ki = kF ∼ n1/3, corre-
sponding to the Fermi energy ǫ(kF ) = EF . The N -particle wave function
is then a Slater determinant of these N plane waves. In occupation num-
ber representation this wave function has ni = 1, for all ki ≤ kF , and
zeroes, for all ki > kF .

2. At finite temperature, some particles are excited into states above the
Fermi energy. This means, the occupation of states around the Fermi edge
fluctuates and the mean value is a real number between 0 and 1. This
N-particle state cannot be represented by a single Slater determinant of
orbitals that are fully occupied (np = 1) but, instead, it is represented
by a weighted average of the ground state and excited states where the
weight is given by the Boltzmann factor, Pk = e−Ek/kBT , where Ek =
∑∞

i=1 ǫin
(k)
i is the total energy of all particles in the given determinant

“k”.

3. Finally, in the case of an interacting electron gas, even at T = 0, a
single determinant is again not sufficient because interactions lead to
excitations of particles into orbitals above the Fermi energy. This again
gives rise to fractional occupations of the orbitals which corresponds to
a superposition of Slater determinants, cf. Eq. (3.29).

This behavior is illustrated in Fig. 3.2. The ideal ground state is shown by
the dashed step function whereas the case of finite temperature is depicted by
the full line which is nothing but the Fermi distribution that decays exponen-
tially, for large k. The correlated distributions are shown by the orange and
blue dashed lines corresponding to weak and moderate Coulomb interaction,
respectively. Note that correlation effects lead to a qualitative change of the
large k-asymptotic: it is no longer exponential but proportional to k−8. The
present results are quasi-exact and do not involve any approximation. They
are obtained from Configuration Path Integral Monte Carlo (CPIMC) simu-
lations [SBF+11, HSD+21]. Note the exceptional accuracy of the data which
span ten orders of magnitude in the occupation numbers n(k). For an over-
view on the properties of the interacting electron gas at finite temperature, see
Ref. [DGB18].

Configuration Interaction. The approach of computing the N -particle
state via a superposition of permanents or determinants can be extended
beyond the ground state properties. Indeed, extensions to thermodynamic equi-
librium (mixed ensemble where the superpositions carry weights proportional
to Boltzmann factors, e.g. [SBF+11]) and also nonequilibrium versions of CI
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(time-dependent CI, TDCI) that use pure states are meanwhile well establis-
hed. In the latter, the coefficients become time-dependent, C±

{n}(t), whereas
the orbitals remain fixed. We will consider the extension of the occupation
number formalism to the thermodynamic properties of interacting bosons and
fermions in Chapter ??. Further, nonequilibrium many-particle systems will
be considered in Chapters 6 and 8 where we will develop alternative approa-
ches based on reduced density operators and nonequilibrium Green functions,
respectively.

The main problem of CI-type methods is the exponential scaling with the
system size which we illustrate for a simple example. Consider a system of
N↑ = N↓ = N/2 electrons and a single-particle basis of 2Nb orbitals. Then the
total number of determinants NFCI correspondso to the total number of ways
N↑ electrons can be placed on Nb orbitals times the same number for the N↓

electrons:

NFCI =

(

Nb

N↑

)(

Nb

N↓

)

=

[

Nb!

(N↑)!(Nb −N↑)!

]2

(3.30)

For the example of a moderate electron number N = 10 and a basis dimension
M = 100 we obtain NFCI ∼ (1005/120)2 ∼ 1016. This “exponential wall” dra-
matically limits the range of exact quantum mechanical simulations of many-
particle systems. This estimate was just for a ground state calculation. For
finite temperature the number of required orbitals Nb needed to cover the
excitations in the system increases with temperature. In similar manner, in
nonequilibrium situations where particles are excited to high energy orbitals
Nb may again increase significantly.

Multiconfiguration and restricted active space approaches. To mit-
igate the exponential efficiency loss of full CI, in recent years a large variety
of approximate methods has been developed. Here we mention multiconfigu-
ration (MC) approaches such as MC Hartree or MC Hartree-Fock which exist
also in time-dependent variants (MCTDH and MCTDHF), e.g. [MMC90] and
are now frequently applied to interacting Bose and Fermi systems. In this me-
thod not only the coefficients C±(t) are optimized but also the orbitals are
adapted in a time-dependent fashion. The main advantage is the reduction of
the basis size, as compared to CI. A recent time-dependent application to the
photoionization of helium can be found in Ref. [HB11]. Another very general
approach consists in subdividing the N -particle state in various classes with
different properties. This has been termed “Generalized Active Space” (or re-
stricted active space) approach and is very promising due to its generality
[HB12, HB13]. An overview on first results is given in Ref. [HHB14]. Similar
approaches have been developed in many other groups, including L. Madsen
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Abbildung 3.4: Hartree-Fock basis (B1) for bound electrons, combined with
grid (FE-DVR) basis for continuum states to resolve ionization (B2), from
Ref. [HB12].

3.3.1 Creation and annihilation operators for bosons

We now introduce the creation operator â†i acting on states from the symmetric
Fock space F+, cf. Sec. 3.2.2. It has the property to increase the occupation
number ni of single-particle orbital |φi〉 by one. In analogy to the harmonic
oscillator, Sec. 2.3 we use the following definition

â†i |n1n2 . . . ni . . . 〉 =
√
ni + 1 |n1n2 . . . ni + 1 . . . 〉 (3.31)

While in case of coupled harmonic oscillators this operator created an additio-
nal excitation in oscillator “i”, now its action leads to a state with an additional
particle in orbital “i”. The associated annihilation operator âi of orbital |φi〉 is
now constructed as the hermitean adjoint (we use this as its definition) of â†i ,
i.e. [â†i ]

† = âi, and its action can be deduced from the definition (3.31),

âi|n1n2 . . . ni . . . 〉 =
∑

{n′}

|{n′}〉〈{n′}|âi|n1n2 . . . ni . . . 〉

=
∑

{n′}

|{n′}〉〈n1n2 . . . ni . . . |â†i |n′
1 . . . n

′
i . . . 〉∗ =

=
∑

{n′}

√

n′
i + 1 δi{n},{n′}δni,n′

i+1|{n′}〉 =

=
√
ni |n1n2 . . . ni − 1 . . . 〉, (3.32)

yielding the same explicit definition that is familiar from the harmonic os-
cillator8: the adjoint of â†i is indeed an annihilation operator reducing the

8See our results for coupled harmonic oscillators in section 2.3.2.
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Abbildung 3.5: Angle-resolved photoionization yield (norm of electron wave
function outside rc = 20aB) of beryllium (N = 4) for a IR-pump-XUV-
probe field and delay δ. 20 cycles XUV-pulse: 200 eV, 1012Wcm−2; single-
cycle IR-pulse, 780 nm, 1011Wcm−2. Comparison of different approximations
that take into account a different number of participating orbitals. (2s): TD-
CIS; (ns,mp): CISD with double excitations up to orbitals ns and mp. From
Ref. [HB12].
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occupation of orbital |φi〉 by one. In the third line of Eq. (3.32) we introduced
the modified Kronecker symbol in which the occupation number of orbital i is
missing,

δi{n},{n′} = δn1,n′

1
. . . δni−1,n′

i−1
δni+1,n′

i+1
. . . . (3.33)

δik{n},{n′} = δn1,n′

1
. . . δni−1,n′

i−1
δni+1,n′

i+1
. . . .δnk−1,n

′

k−1
δnk+1,n

′

k+1
. . . . (3.34)

In the second line, this definition is extended to two missing orbitals.

We now need to verify the proper bosonic commutation relations, which
are given by the
Theorem: The creation and annihilation operators defined by Eqs. (3.31, 3.32)
obey the relations

[âi, âk] = [â†i , â
†
k] = 0, ∀i, k, (3.35)

[

âi, â
†
k

]

= δi,k. (3.36)

Proof of relation (3.36):
Consider first the case i 6= k and evaluate the commutator acting on an arbi-
trary state

[

âi, â
†
k

]

|{n}〉 = âi
√
nk + 1| . . . ni, . . . nk + 1 . . . 〉

− â†k
√
ni| . . . ni − 1, . . . nk . . . 〉 = 0

Consider now the case i = k: Then

[

âk, â
†
k

]

|{n}〉 = (nk + 1)|{n}〉 − nk|{n}〉 = |{n}〉,

which proves the statement since no restrictions with respect to i and k were
made. Analogously one proves the relations (3.35), see problem 19.

Construction of the N-particle state

As for the harmonic oscillator or any quantized field, an arbitrary many-
particle state can be constructed from the vacuum state by repeatedly applying
the creation operator(s). For example, single and two-particle states with the

9From this property we may also conclude that the ladder operators of the harmonic
oscillator have bosonic nature, i.e. the elementary excitations of the oscillator (oscillation
quanta or phonons) are bosons.
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proper normalization are obtained via

|1〉 = â†|0〉,
|0, 0 . . . 1, 0, . . . 〉 = â†i |0〉,

|0, 0 . . . 2, 0, . . . 〉 =
1√
2!

(

â†i

)2

|0〉,

|0, 0 . . . 1, 0, . . . 1, 0, . . . 〉 = â†i â
†
j|0〉, i 6= j,

where, in the second (third) line, the 1 (2) stands on position i, whereas in
the last line the 1’s are at positions i and j. This is readily generalized to an
arbitrary symmetric N -particle state according to10.

|n1, n2, . . . 〉 =
1√

n1!n2! . . .

(

â†1

)n1
(

â†2

)n2

. . . |0〉 (3.37)

Particle number operators

The operator

n̂i = â†i âi (3.38)

is the occupation number operator for orbital i because, for ni ≥ 1,

â†i âi|{n}〉 = â†i
√
ni|n1 . . . ni − 1 . . . 〉 = ni|{n}〉,

whereas, for ni = 0, â†i âi|{n}〉 = 0. Thus, the symmetric state |{n}〉 is an
eigenstate of n̂i with the eigenvalue coinciding with the occupation number
ni of this state. In other words: all n̂i have common eigenfunctions with the
hamiltonian and commute with it, [n̂i, H] = 0.

The total particle number operator is defined as

N̂ =
∞
∑

i=1

n̂i =
∞
∑

i=1

â†i âi, (3.39)

because its action yields the total number of particles in the system: N̂ |{n}〉 =
∑∞

i=1 ni|{n}〉 = N |{n}〉. Thus, also N̂ commutes with the hamiltonian and has
the same eigenfunctions.

10The origin of the prefactors was discussed in Sec. 3.2.4 and is also analogous to the case
of the harmonic oscillator Sec. 2.3.



112 KAPITEL 3. FERMIONS AND BOSONS

Single-particle operators

Consider now a general single-particle operator11 defined as

B̂1 =
N
∑

α=1

b̂α, (3.40)

where b̂α acts only on the variables associated with particle with number “α”.
We will now transform this operator into second quantization representation.
To this end we define the matrix element with respect to the single-particle
orbitals

bij = 〈i|b̂|j〉, (3.41)

and the generalized projection operator12

Π̂ij =
N
∑

α=1

|i〉α〈j|α, (3.42)

where |i〉α denotes the orbital i occupied by particle α.

Theorem: The second quantization representation of a single-particle opera-
tor is given by

B̂1 =
∞
∑

i,j=1

bij Π̂ij =
∞
∑

i,j=1

bij â
†
i âj (3.43)

Proof:
We first expand b̂, for an arbitrary particle α, into a basis of single-particle
orbitals, |i〉 = |φi〉,

b̂ =
∞
∑

i,j=1

|i〉〈i|b̂|j〉〈j| =
∞
∑

i,j=1

bij|i〉〈j|,

where we used the definition (3.41) of the matrix element. With this result we
can transform the total operator, Eq. (3.40), using the definition (3.42),

B̂1 =
N
∑

α=1

∞
∑

i,j=1

bij|i〉α〈j|α =
∞
∑

i,j=1

bijΠ̂ij, (3.44)

11Examples are the total momentum, total kinetic energy, angular momentum or potential
energy of the system.

12For i = j this definition contains the standard projection operator on state |i〉, i.e. |i〉〈i|,
whereas for i 6= j this operator projects onto a transition, i.e. transfers an arbitrary particle
from state |j〉 to state |i〉.
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We now express Π̂ij in terms of creation and annihilation operators by ana-

lyzing its action on a symmetric state (3.25), taking into account that Π̂ij

commutes with the symmetrization operator Λ+
1...N , Eq. (3.26)

13,

Π̂ij|{n}〉 =
1√

n1!n2! . . .
Λ+

1...N

N
∑

α=1

|i〉α〈j|α · |j1〉|j2〉 . . . |jN〉. (3.45)

The product state is constructed from all orbitals that are occupied by the N
particles and, in general, includes the orbitals |i〉 and |j〉. In general, these or-
bitals will be present ni and nj times, respectively (there is no Pauli principle).
Let us consider two cases.
1) j 6= i: Since the single-particle orbitals form an orthonormal basis, 〈j|j〉 = 1,
multiplication with 〈j|α reduces the number of occurences of orbital |j〉 in the
product state by one, whereas multiplication with |i〉α increases the number of
orbitals |i〉 by one. The occurence of nj such orbitals (occupied by nj particles)
in the product state gives rise to an overall factor of nj because nj terms of
the sum will yield a non-vanishing contribution.

Finally, we compare this result to the properly symmetrized state which
follows from |{n}〉 by increasing ni by one and decreasing nj by one, which
will be denoted by

∣

∣{n}ij
〉

= |n1, n2 . . . ni + 1 . . . nj − 1 . . . 〉

=
1

√

n1! . . . (ni + 1)! . . . (nj − 1)! . . .
Λ+

1...N · |j1〉|j2〉 . . . |jN〉. (3.46)

It contains the same particle number N as the state |{n}〉 but, due to the diffe-
rent orbital occupations, the prefactor in front of Λ+

1...N differs by
√
nj/

√
ni + 1,

compared to the one in Eq. (3.45) which we, therefore, can rewrite as

Π̂ij|{n}〉 = nj

√
ni + 1
√
nj

∣

∣{n}ij
〉

= â†i âj|{n}〉. (3.47)

2), j = i: The same derivation now leads again to a number nj of factors,
whereas the square roots in Eq. (3.47) compensate each other, and we obtain

Π̂jj|{n}〉 = nj |{n}〉
= â†j âj|{n}〉. (3.48)

13From the definition (3.42) it is obvious that Π̂ij is totally symmetric in all particle
indices.


